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In the current manuscript, we intend to investigate the existence, uniqueness, and the stability of positive solution in relation to a
fractional version of variable order thermostat model equipped with nonlocal boundary values in the Caputo sense. In fact, we will
get help from the constant piece-wise functions for transforming our variable order model into an auxiliary standard model of
thermostat. By Guo-Krasnoselskii’s fixed point theorem on cones, we derive the required conditions ensuring the existence
property for positive solutions. An example is illustrated to examine the validity of the observed results.

1. Introduction

One of the most significant subbranches of mathematics in
other existing computational and applied disciplines is arbi-
trary order calculus, notably fractional order calculus. Because
of its applicability in a variety of fields including applied sci-
ence and engineering, as well as its flexibility to model differ-
ent systems, processes, and phenomena with memory effects,
an arbitrary order calculus theory is regarded as an important
subject of research for most researchers, mathematicians, sci-
entists, and engineers. Fractional derivatives are powerful tools
for describing the memory and heredity qualities of a wide
range of materials and processes. The experts have contributed
significantly to the study of fractional differential equations in
recent years, for example, see some papers about the modeling
of the Sturm-Liouville-Langevin problem [1], studying the
Langevin boundary value problem (BVP) [2], investigation
of the combination synchronization of a Caputo-Hadamard
system [3], modeling of the Caputo-conformable pantograph
problem [4], modeling of the hybrid thermostat [5], impulsive

fractional systems [6], and modeling COVID-19 cases in the
fractional settings [7], (for more studies, we refer to [8–13]).

The discussions of BVPs have attracted the focus of
many scholars, and in this direction, valuable results have
been obtained. Of course, various methods have been uti-
lized to study fractional BVP such as the Banach contraction
map principle [14], fixed point theorems [15], monotone
iterative method [16], variational method [17], fixed point
index theory and coincidence degree theory [18, 19], and
numerical methods [20, 21]. On the other hand, numerous
researches and review studies have been done in exploring
the existence and stability of solutions to constant order
fractional problems, while the subject of existence and stabil-
ity in relation to the variable order problems is discussed sel-
dom in the newly published papers including investigation
of the variable order model of alcoholism [22], multiterm
variable order BVPs [23], nonsingular variable order prob-
lems [24], initial value problems with conformable variable
orders [25], approximate solutions on half-axis for a variable
order IVP [26], singular variable order BVPs [27], Ulam-
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Hyers-Rassias stability for an implicit variable order BVP
[28], and the generalized variable order Lyapunov-type
inequality [29].

Infante and Webb [30] modeled a mechanical device,
i.e., thermostat in terms of the following nonlocal second
order boundary value problem which is insulated at t = 0
with a heat-dissipating controller at t = 1 based on the tem-
perature that is measured by a mechanical sensor at the time
t = c:

−y′′ =H t, yð Þ, t ∈ I, y′ 0ð Þ = 0, γy′ 1ð Þ + y cð Þ = 0, I ≔ 0, 1½ �:
ð1Þ

Keeping in view the importance and accuracy of frac-
tional operators to study of boundary value problems, Nieto
and Pimentel [31] consider the fractional analogue of ther-
mostat control model as

−cDα
0y tð Þ =H t, y tð Þð Þ,

y′ 0ð Þ = 0, γcDα−1
0 y 1ð Þ + y cð Þ = 0,

(
ð2Þ

where γ > 0, c ∈ ð0, 1Þ, α ∈ ð1, 2Þ, cDθ
0 denotes the derivative

in the form of Caputo of order θ ∈ fα, α − 1g and H is con-
tinuous on ½0, 1� × ½0,∞Þ. These two mathematicians dis-
cussed the existence of positive solution to the proposed
problem using fixed point approach.

In 2015, Shen et al. [32] turned to the fractional model of
thermostat with a parameter

−cDα
0y tð Þ = aH t, y tð Þð Þ,

y′ 0ð Þ = 0, γcDα−1
0 y 1ð Þ + y cð Þ = 0,

(
ð3Þ

where γ > 0, c ∈ ½0, 1�, α ∈ ð1, 2�. They proved the existence
along with the nonexistence of positive solutions for differ-
ent values of parameter a.

On the other side, keeping in view the advancements in
studies of fractional calculus, it was observed that the con-
stant order fractional calculus is not the ultimate instrument
for the modeling of physical problems. In this regard, Lor-
enze and Hartley [33], in 1998, proposed the variable order
fractional operator to model complex dynamics problems
and further study in this field were given by them in [34].

In consistent with the theory of variable order fractional
calculus, we aim to consider a simple type of the variable
order Caputo fractional thermostat model in terminal points
which possesses a mathematical structure as

−cDu tð Þy tð Þ = f t, y tð Þð Þ, t ∈ J = 0, S½ �,
y′ 0ð Þ = 0, cDu tð Þ−1y Mð Þ + y 0ð Þ = 0,

(
ð4Þ

where uðtÞ: J ⟶ ð1, 2� stands for a function as the variable
order, f : J ×ℝ⟶ℝ is continuous.

There are no research manuscripts about the application
of cones on variable order systems. This gap motivates us to
investigate the generalized version of thermostat model in

the context of fractional variable orders with respect to con-
stant piece-wise functions. Furthermore, the presented
structure is expressed in a unique and simple case, allowing
us to generalize several typical specific cases previously
addressed, and also this structure makes the novelty of our
work. The ultimate goal of this study is to explore some
results in relation to existence theory for the solutions of var-
iable order BVP for the Caputo fractional thermostat model
(4). Note that in this model, we use the Caputo fractional
derivative. In fact, the importance of the fractional deriva-
tives is their memory property which can describe the
dynamical behavior of a system during a time interval. This
kind of derivatives is not local and that is why we can ana-
lyze the solutions of a system with respect to various values
of fractional orders. Also, we emphasize that our model is
a generalization of two constant order thermostat models
given in [31, 32] to variable order version.

The structure of the manuscript is designed as follows:
the following section is based on some basic notions related
to the current study. In Section 3, to get help of Guo-
Krasnoselskii fixed point theorem, a suitable partition of
the underlying interval J is proposed. This variable order
BVP for the Caputo fractional thermostat model (4) is
divided into the finite number of BVPs consisting of the
Caputo fractional differential equations of constant orders,
and then using the concept of Green’s function, the equiva-
lent solution of the proposed problem is obtained and some
properties of Green’s function are discussed. Finally, the
existence result for (4) is proved based on the cones in Sec-
tion 4. In the next section (Section 5), an example is pre-
pared to give the illustrations of the main findings. We end
our research by conclusions in Section 6.

2. Preliminaries

The collection CðJ ,ℝÞ of all functions ϰ : J⟶ℝ having the
property of continuity will be a Banach space via kϰk = sup
f∣ϰðtÞ∣ : t ∈ Jg:.

Definition 1 (see [35, 36]). The left Riemann-Liouville frac-
tional integral and left Caputo fractional derivative of vari-
able order uðtÞ of H are recalled as

Iu tð Þ
0+ H tð Þ = 1

Γ u tð Þð Þ
ðt
0
t −wð Þu tð Þ−1H wð Þdw, t ∈ J , ð5Þ

cDu tð Þ
0+ H tð Þ = 1

Γ n − u tð Þð Þ
ðt
0
t −wð Þn−u tð Þ−1H nð Þ wð Þdw,

ð6Þ
with uðtÞ: J ⟶ ðn − 1, n�.

Remark 2 (see [37, 38]). In Equations (5) and (6), by choos-
ing the constant order u, the Caputo fractional derivative
and the Riemann-Liouville fractional integral of variable
order will be the same conventional of the Caputo fractional
derivative and Riemann-Liouville fractional integral of con-
stant order, respectively.
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Lemma 3 (see [38]). Suppose α1, b1 > 0 and n = ½α1� + 1, then

Iα1b+1
cDα1

b+1
ψ tð Þ

� �
= h tð Þ + 〠

n−1

k=0

ψ kð Þ 0ð Þ
k!

tk: ð7Þ

Lemma 4 (see [39]). Let α1, α2 > 0, ψ ∈ L1ðb1, b2Þ, and cDα1
b+1

ψ ∈ L1ðb1, b2Þ. Then, the differential equation

cDα1
b+1
ψ = 0 ð8Þ

has unique solution

ψ tð Þ = ϖ0 + ϖ1 t − b1ð Þ + ϖ2 t − b1ð Þ2+⋯+ϖn−1 t − b1ð Þn−1
ð9Þ

and

Iα1b+1
cDα1

b+1

� �
ψ tð Þ = ψ tð Þ + ϖ0 + ϖ1 t − b1ð Þ + ϖ2 t − b1ð Þ2+⋯+ϖn−1 t − b1ð Þn−1

ð10Þ

under the conditions n − 1 < α1 ≤ n, ϖj ∈ℝ.
Moreover,

cDn
b+1
ψ tð Þ = ψ nð Þ tð Þ, n ∈ℕ,

cDα1
b+1

Iα1b+1

� �
ψ tð Þ = ψ tð Þ,

Iα1b+1 Iα2b+1

� �
ψ tð Þ = Iα2b+1 Iα1b+1

� �
ψ tð Þ = Iα1+α2b+1

ψ tð Þ:

ð11Þ

Remark 5 (see [26, 27]). It is observed that the property of
semigroup is not consistent for arbitrary functions uðtÞ, vðtÞ
in the role of variable orders, i.e.,

Iu tð Þ
b+1

Iv tð Þ
b+1

ψ tð Þ ≠ Iu tð Þ+v tð Þ
b+1

ψ tð Þ: ð12Þ

Example 1. Assume yðtÞ ≡ 1 for t ∈ J = ½0, 3� and uðtÞ = t/2

and vðtÞ = 1, t ∈ ½0, 1�
2, t∈�1, 3�:

(
Then,

Iu tð Þ
0+ Iv tð Þ

0+ y tð Þ
� �

=
ðt
0

t − sð Þu tð Þ−1

Γ u tð Þð Þ
ðs
0

s − τð Þv sð Þ−1

Γ v sð Þð Þ y τð Þdτds

=
ðt
0

t − sð Þu tð Þ−1

Γ u tð Þð Þ
ð1
0

s − τð Þ0
Γ 1ð Þ dτ +

ðs
1

s − τð Þ
Γ 2ð Þ dτ

" #

� ds =
ðt
0

t − sð Þu tð Þ−1

Γ u tð Þð Þ
s2

2 − s + 3
2

� �
ds,

Iu tð Þ+v tð Þ
0+ y tð Þ = 1

Γ u tð Þ + v tð Þð Þ
ðt
0
t − sð Þu tð Þ+v tð Þ−1y sð Þds:

ð13Þ

For t = 2, we write

Iu tð Þ
0+ Iv tð Þ

0+ y tð Þ
� ����

t=2
=
ð2
0

2 − sð Þ0
Γ 1ð Þ

s2

2 − s + 3
2

� �
ds =

ð2
0

s2

2 − s + 3
2

� �
ds = 7

3 , ð14Þ

and accordingly,

Iu tð Þ+v tð Þ
0+ y tð Þ

���
t=2

=
ð2
0

2 − sð Þu tð Þ+v tð Þ−1

Γ u tð Þ + v tð Þð Þ y sð Þds =
ð1
0

2 − sð Þ1
Γ 2ð Þ

� ds +
ð2
1

2 − sð Þ2
Γ 3ð Þ ds = 3

2 + 1
6 = 5

3 :

ð15Þ

As a result, the semigroup property is not valid in the gen-
eralized case for the Riemann-Liouville fractional integral of
variable order.

The next results will be used in the main results concern-
ing the Riemann-Liouville fractional integral given in (5).

Lemma 6 (see [26]). Let u ∈ CðJ , ð1, 2�Þ, then for

h ∈ Cρ J ,ℝð Þ = h tð Þ ∈ C J ,ℝð Þ, tρh tð Þ ∈ C J ,ℝð Þ, 0 ≤ ρ ≤ 1f g,
ð16Þ

we have

∃Iu tð Þ
0+ h tð Þ,∀t ∈ J ;

Iu tð Þ
0+ h tð Þ ∈ C J ,ℝð Þ:

ð17Þ

Definition 7 (see [26, 27, 40]). Consider a subset I of ℝ:

(a) A generalized interval is either empty, singleton sub-
set, or an interval

(b) The finite set P of generalized interval is a partition
of I whenever every s ∈I belongs to exactly one of
the generalized intervals E in P

(c) h : I ⟶ℝ is piece-wise constant with respect to P
of I if ∀E ∈P , h is constant on E

Theorem 8 (Guo-Krasnoselskii fixed point theorem [41]).
Assume a cone P and bounded subsets B1, B2 of a Banach
space E with

0 ∈ B1 ⊂ B1 ⊂ B2, ð18Þ

and assume a completely continuous operator T : P ∩ ðB2 \
B1Þ⟶ P such that

(i) ∥Ty∥≥∥y∥,y ∈ P ∩ ∂B1 and ∥Ty∥≤∥y∥,y ∈ P ∩ ∂B2; or

(ii) ∥Ty∥≤∥y∥,y ∈ P ∩ ∂B1 and ∥Ty∥≥∥y∥,y ∈ P ∩ ∂B2:

Then, operator T possesses a fixed point in P ∩ ðB2 \ B1Þ:
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3. Auxiliary BVP and Green’s Function

Before moving to the main results, we first assume the fol-
lowing assertions:

Let n ∈ℕ, and the finite sequence fSjgnj=0 of points in a

way that 0 = S0 < Sj < Sn = S, j = 1,⋯, n − 1. Designate J j ≔
ðSj−1, Sj�, j = 1, 2,⋯, n. Then, the partition of interval J is
P = fJ j : j = 1, 2,⋯, ng.

Suppose a constant piece-wise map uðtÞ: J ⟶ ð1, 2�
with respect to P , i.e., uðtÞ =∑n

j=1ujI jðtÞ, where uj ∈ ð1, 2�,
and I j stands for the interval J j, j = 1, 2,⋯, n:

I j tð Þ =
1, for t ∈ J j,
0, elsewhere:

(
ð19Þ

For all j ∈ℕn
1 , Ej = CðJ j,ℝÞ, denotes Banach spaces via

∥y∥Ej
= supt∈J j ∣ yðtÞ ∣ :.

To achieve our main findings, let us first reduce the var-
iable order FBVP (4) to a standard constant order system.
With the aid of (6), the variable order BVP for the Caputo
fractional thermostat model (4) takes the form

−〠
j−1

k=1

ðSk
Sk−1

t − sð Þ1−uk
Γ 2 − ukð Þ y′′ sð Þds −

ðt
Sj−1

t − sð Þ1−uj

Γ 2 − uj

	 
 y′′ sð Þds = f t, y tð Þð Þ:

ð20Þ

If ~y ∈ CðJ j,ℝÞ is ~y ≡ 0 on ½0, Sj−1� and is a solution of
(20), then (20) becomes

−cD
uj

S+j−1
~y tð Þ = f t, ~y tð Þð Þ, t ∈ J j: ð21Þ

Taking the above into consideration ∀j ∈ℕn
1 and with

piece-wise functions uj, we take into account the next auxil-
iary BVP of constant order, the Caputo fractional thermostat
model is formulated as

−cD
uj

S+j−1
y tð Þ = f t, y tð Þð Þ, t ∈ J j

y′ Sj−1
	 


= 0, cDuj−1y Sj
	 


+ y Sj−1
	 


= 0:

8<:
ð22Þ

In the following, relevant Green’s function is obtained in
relation to auxiliary BVP of constant order of the Caputo
fractional thermostat model (22).

Lemma 9. Let 1 < uj ≤ 2, ∀j ∈ℕn
1 . Then, y ∈ Ej is a solution of

the auxiliary BVP of constant order of the Caputo fractional
thermostat model

−cD
uj

S+j−1
y tð Þ = f tð Þ, t ∈ J j

y′ Sj−1
	 


= 0, cDuj−1y Sj
	 


+ y Sj−1
	 


= 0:

8<: ð23Þ

if it fulfills

y tð Þ =
ðSj
Sj−1

Gj t, sð Þf sð Þds, ð24Þ

where Green’s function Gjðt, sÞ is stated as

Gj t, sð Þ = 1 −
t − sð Þuj−1

Γ uj

	 
 , s ≤ t

1, s > t:

8><>: ð25Þ

Proof. Using Lemma 3, there are c0, c1 ∈ℝ such that

y tð Þ = −Iuj f tð Þ + c0 + c1t = −
ðt
Sj−1

t − sð Þuj−1

Γ uj

	 
 f sð Þds + c0 + c1t:

ð26Þ

In view of Lemma 4,

y′ tð Þ = −
ðt
Sj−1

t − sð Þuj−2

Γ uj − 1
	 
 f sð Þds + c1: ð27Þ

By y′ð0Þ = 0, we get that c1 = 0:. Moreover,

CDuj−1y tð Þ = −I1y tð Þ: ð28Þ

Using the boundary condition CDα−1yðSjÞ + yðSj−1Þ = 0,
we get

c0 =
ðSj
Sj−1

f sð Þds: ð29Þ

At the end, (26) takes the form

y tð Þ =
ðSj
Sj−1

f sð Þds −
ðt
Sj−1

t − sð Þuj−1

Γ uj

	 
 f sð Þds =
ðSj
Sj−1

Gj t, sð Þf sð Þds:

ð30Þ

The proof is completed.

Remark10. Notice that for each fixed s ∈ ½Sj−1, Sj�, ∂Gj/∂t = 0
for t ≤ s and ∂Gj/∂t < 0 for t > s; this turns Gjðt, sÞ a decreas-
ing function. Therefore

max
t∈ Sj−1,Sj½ �

Gj t, sð Þ = Gj Sj−1, s
	 


=
1, s > Sj−1,

1 +
Sj−1 − s
	 
uj−1

Γ uj

	 
 , s ≤ Sj−1,

8>><>>:

min
t∈ Sj−1,Sj½ �

Gj t, sð Þ = Gj Sj, s
	 


=
1 −

Sj − s
	 
uj−1

Γ uj

	 
 s > Sj−1,

Sj−1 − s
	 
uj−1 − Sj − s

	 
uj−1

Γ uj

	 
 + 1, s ≤ Sj−1:

8>>>>><>>>>>:
ð31Þ
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As a result, due to behavior of Gjðt, sÞ with respect to s,
we have

min
t,s∈ Sj−1,Sj½ �

Gj t, sð Þ = 1 −
Sj − Sj−1
	 
uj−1

Γ uj

	 
 ,

max
t,s∈ Sj−1,Sj½ �

Gj t, sð Þ = 1 +
S
uj−1
j−1

Γ uj

	 
 :
ð32Þ

We shall prove that Gjðt, sÞ meets the following property
to ensure the existence of positive solution of the variable
order Caputo fractional thermostat model (4) proposed by
Lan and Webb in [42]:

(H2): ∃φ : ½Sj−1, Sj�⟶ ½0,∞Þ as a measurable mapping,
½c, d� ⊆ ½Sj−1, Sj� and ξ ∈ ½0, 1� such that

∣Gj t, sð Þ∣ ≤ φ sð Þ, ∀t, s ∈ Sj−1, Sj
� �

,

Gj t, sð Þ ≥ ξφ sð Þ, ∀t ∈ c, d½ �,∀s ∈ Sj−1, Sj
� �

:
ð33Þ

Lemma 11. If ΓðujÞ > ðSj − Sj−1Þuj−1, then Gjðt, sÞ > 0 for all
t, s ∈ ½Sj−1, Sj�, and Gjðt, sÞ satisfies (H2).

Proof. Taking ½c, d� = ½Sj−1, Sj�,, then

∣Gj t, sð Þ∣ = Gj t, sð Þ ≤ 1 +
S
uj−1
j−1

Γ uj

	 
 ≔ φ sð Þ,

Gj t, sð Þ ≥ ξφ sð Þ ∀s, t ∈ Sj−1, Sj
� �

,
ð34Þ

where

ξ =
Γ uj

	 

− Sj − Sj−1
	 
uj−1

Γ uj

	 

+ S

uj−1
j−1

: ð35Þ

The proof is completed.

Lemma 12. If ΓðujÞ = ðSj − Sj−1Þuj−1, then Gjðt, sÞ ≥ 0 for all
t, s ∈ ½Sj−1, Sj�, and Gjðt, sÞ satisfies (H2).

Proof. Taking ½c, d� = ½Sj − 1, d� such that Sj−1 ≤ d < Sj, and
using the preceding lemma arguments, we obtain

∣Gj t, sð Þ∣ ≤ 1 +
S
uj−1
j−1

Γ uj

	 
 ≔ φ sð Þ,∀t, s ∈ Sj−1, Sj
� �

: ð36Þ

Setting

ξ =
Γ uj

	 

− d − Sj−1
	 
uj−1

Γ uj

	 

+ S

uj−1
j−1

, ð37Þ

we get

G t, sð Þ ≥ ξφ sð Þ, ∀t ∈ Sj−1, d
� �

,∀s ∈ Sj−1, Sj
� �

: ð38Þ

The proof is completed.

Lemma 13. If ΓðujÞ < ðSj − Sj−1Þuj−1, then Gðt, sÞ changes
sign on ½Sj−1, Sj� × ½Sj−1, Sj�, and Gjðt, sÞ satisfies (H2).

Proof. Let ½c, d� = ½Sj−1, d� be such that Sj−1 ≤ d < Sj and Γ

ðujÞ > ðd − Sj−1Þuj−1: We have

∣Gj t, sð Þ∣ ≤max 1 +
S
uj−1
j−1

Γ uj

	 
 , 1 − Sj−1
	 
uj−1

Γ uj

	 
 − 1
( )

≔ φ sð Þ,∀t, s ∈ Sj−1, Sj
� �

,

G t, sð Þ ≥ ξφ sð Þ,∀t ∈ Sj−1, d
� �

,∀s ∈ Sj−1, Sj
� �

,

ð39Þ

where

ξ =min
Γ uj

	 

− d − Sj−1
	 
uj−1

Γ uj

	 

+ S

uj−1
j−1

,
Γ uj

	 

−− d − Sj−1
	 
uj−1

Sj − Sj−1
	 
uj−1 − Γ uj

	 

8<:

9=;:

ð40Þ

The proof is completed.

4. Existence and Uniqueness

We now derive the existence result with the aid of Guo-
Krasnoselskii’s result [41]. Before starting, set

f0 = lim
y⟶0+

min
t∈ Sj−1,Sj½ �

f t, yð Þ
y

, f ⋆0 = lim
y⟶0+

max
t∈ Sj−1,Sj½ �

f t, yð Þ
y

,

f∞ = lim
y⟶∞

min
t∈ Sj−1,Sj½ �

f t, yð Þ
y

, f ⋆∞ = lim
y⟶∞

max
t∈ Sj−1,Sj½ �

f t, yð Þ
y

:

ð41Þ

Theorem 14. Let f ðs, yðsÞÞ ∈ Cð½Sj−1, Sj�Þ × ½0,∞Þ. Assuming
one of the below mentioned cases:

(1) f0 =∞ and f∞ = 0 (Sublinear case)

(2) f ⋆0 = 0 and f ⋆∞ =∞ (Superlinear case),

if ΓðujÞ > ðSj − Sj−1Þuj−1, then there is at least positive solution
of the auxiliary BVP of constant order Caputo fractional ther-
mostat model (22).

Proof. Define T : Cð½Sj−1, Sj�Þ⟶ Cð½Sj−1, Sj�Þ as

Ty tð Þ =
ðSj
Sj−1

Gj t, sð Þf s, y sð Þð Þds: ð42Þ
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We now define the cone

P = y \ y ∈ C Sj−1, Sj
� �

, y tð Þ ≥ 0, min
t∈ Sj−1,Sj½ �

y tð Þ ≥ ξ∥y∥

( )
, ð43Þ

where ξ is as in (35).
In the start, we prove that TðPÞ ⊂ P: Since the functions

f and Gj are positive and continuous, it follows that if y ∈ P,
then Ty ∈ Cð½Sj−1, Sj�Þ and TyðtÞ ≥ 0 for all t ∈ ½Sj−1, Sj�. We
reach to the inequality derived below for a fixed y ∈ P for
all t ∈ ½Sj−1, Sj� and that Gjðt, sÞ satisfies (H2)

Ty tð Þ =
ðSj
Sj−1

Gj t, sð Þf s, y sð Þð Þds ≥ ξ
ðSj
Sj−1

φ sð Þf s, y sð Þð Þ

� ds ≥ ξ
ðSj
Sj−1

max
t∈ Sj−1,Sj½ �

Gj t, sð Þf s, y sð Þð Þ

� ds ≥ ξ max
t∈ Sj−1,Sj½ �

ðSj
Sj−1

Gj t, sð Þf s, y sð Þð Þds = ξ∥Ty∥,

ð44Þ

which leads to the first claim. In the next step, we prove the
complete continuity of operator T : P⟶ P. Because of
the continuous behavior of Gj and f , continuity of T : P
⟶ P is followed immediately. Let B ⊂ P be bounded. Define

L = max
Sj−1≤t≤Sj ,0≤y≤M

∣f t, yð Þ∣ + 1: ð45Þ

So for all y ∈ B, we have

∣Ty tð Þ∣ ≤
ðSj
Sj−1

Gj t, sð Þf s, y sð Þð Þds ≤ L
ðSj
Sj−1

Gj t, sð Þds, ð46Þ

for all t ∈ ½Sj−1, Sj�. This defines the boundedness of TðBÞ.
Now, for each y ∈ B and t1, t2 ∈ ½Sj−1, Sj� such that t1 < t2, we
write

∣Ty t2ð Þ − Ty t1ð Þ∣ = ∣ −
ðt2
Sj−1

t2 − sð Þuj−1

Γ uj

	 
 f s, y sð Þð Þ

� ds +
ðt1
Sj−1

t1 − sð Þuj−1

Γ uj

	 
 f s, y sð Þð Þds∣ ≤ 1
Γ uj

	 
 ðt1
Sj−1

t2 − sð Þuj−1	
− t1 − sð Þuj−1Þ∣f s, y sð Þð Þ∣ds + 1

Γ uj

	 
 ðt2
t1

t2 − sð Þuj−1∣f s, y sð Þð Þ

� ∣ds ≤ L

Γ uj

	 
 ðt1
Sj−1

t2 − sð Þuj−1 − t1 − sð Þuj−1	 

ds +

ðt2
t1

t2 − sð Þuj−1ds

 !

= L

ujΓ uj

	 
 − t2 − t1ð Þuj + t
uj

2 − t
uj

1 + t2 − t1ð Þuj

� �
= L

Γ uj + 1
	 
 t

uj

2 − t
uj

1

� �
:

ð47Þ

Tending t1 ⟶ t2 implies that the RHS of the above
inequality goes to 0 and thus TðBÞ is equicontinuous. At the
end, the Arzela-Ascoli theorem confirms complete continuity
of operator T : P⟶ P.

Next, assume that (2) is true. As f0 =∞, a ρ1 > 0 exists
such that f ðt, yÞ ≥ δ1y, ∀0 < y ≤ ρ1, where δ1 satisfies

δ1 1 −
Sj − Sj−1
	 
uj−1

Γ uj

	 
 !
≥ 1: ð48Þ

Taking y ∈ P with ∥y∥ = ρ1, then

Ty =
ðSj
Sj−1

Gj t, sð Þf s, y sð Þð Þds ≥ δ1

ðSj
Sj−1

Gj t, sð Þy sð Þds ≥ δ1∥y∥

� 1 −
Sj − Sj−1
	 
uj−1

Γ uj

	 
 !
≥ ∥y∥:

ð49Þ

Let B1 = fy ∈ Cð½Sj−1, Sj�Þ \ ∥y∥<ρ1g. Hence, we have ∥T
y∥≥∥y∥,y ∈ P ∩ ∂B1:

Due the continuity of f ðt, :Þ on ½0,∞Þ, a function ~f ðt, yÞ
=maxz∈½0,y�f f ðt, zÞg can be defined which is nondecreasing
on ð0,∞Þ by assumption and

lim
y⟶∞

max
t∈ T j−1,T j½ �

~f t, yð Þ
y

( )
= 0: ð50Þ

Therefore, there exists ρ2 > ρ1 > 0 such that ~f ðt, yÞ ≤ δ2y
, ∀y ≥ ρ2, where δ2 satisfies

δ2 1 +
S
uj−1
j−1

Γ uj

	 
 !
≤ 1: ð51Þ

DefineΩ2 = fy ∈ Cð½Sj−1, Sj�Þ \ ∥y∥<ρ2g and let y ∈ P such
that ∥y∥ = ρ2. Then,

Ty =
ðSj
Sj−1

Gj t, sð Þf s, y sð Þð Þds ≤
ðSj
Sj−1

Gj t, sð Þ~f s,∥y∥ð Þds ≤ δ2∥y∥ 1 +
S
uj−1
j−1

Γ uj

	 
 !
≤ ∥y∥:

ð52Þ

Hence, we have ∥Ty∥≤∥y∥,y ∈ P ∩ ∂B2: In conclusion,
there is at least one positive solution by (i) of Theorem 8 for
the auxiliary BVP of constant order Caputo fractional thermo-
stat model (22).

Now, assume that (3) is true. For δ2 > 0 and by assump-
tion, there is r1 > 0 with f ðt, yÞ ≤ δ2y for 0 ≤ y ≤ r1. Let y ∈ P
such that ∥y∥ = r1. Then,

Ty =
ðSj
Sj−1

Gj t, sð Þf s, y sð Þð Þds ≤ δ2

ðSj
Sj−1

Gj t, sð Þy sð Þds ≤ δ2∥y∥ 1 +
S
uj−1
j−1

Γ uj

	 
 !
≤ ∥y∥:

ð53Þ

If we let B1 = fy ∈ C½Sj−1, Sj� \ ∥y∥<r1g, then ∥Ty∥≤∥y∥ for
y ∈ P ∩ ∂B1: Again by assumption, there is r > 0 such that f ðt
, yÞ ≥ δ1u, ∀y ≥ r. Define B2 = fy ∈ Cð½Sj−1, Sj�Þ \ ∥y∥<r2g,
where r2 = max ð2r1, ðr/ξÞÞ. Then, y ∈ P and ∥y∥ = r2 imply
that
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min y tð Þ ≥ ξ∥y∥ = ξr2 ≥ r, ð54Þ

and so we obtain

Ty =
ðSj
Sj−1

Gj t, sð Þf s, y sð Þð Þds ≥ δ1

ðSj
Sj−1

Gj t, sð Þy sð Þ

� ds ≥ δ1∥y∥ 1 −
Sj − Sj−1
	 
uj−1

Γ uj

	 
 !
≥ ∥y∥:

ð55Þ

This shows that ∥Ty∥≥∥y∥ for y ∈ P ∩ ∂B2: In conclusion, it
is found at least one positive solution, by (ii) of Theorem 8, for
the auxiliary BVP of constant order Caputo fractional thermo-
stat model (22) as eyj ∈ P ∩ ðB2 \ B1Þ:

Now, we show the uniqueness of solutions for the auxil-
iary BVP of constant order Caputo fractional thermostat
model (22) based on the Banach contraction principle. We
consider the following assumption:

Let f ∈ CðJ ×ℝ,ℝÞ and there exists a number δ ∈ ð0, 1Þ
such that tδ f ∈ CðJ ×ℝ,ℝÞ and there exists a constant K >
0 such that

tδ f t, y1ð Þ − f t, y2ð Þj j ≤ K y1 − y2j j, for any y1, y2 ∈ℝ and t ∈ J:

ð56Þ

Theorem 15. Let the conditions (H1) and (H3) be satisfied
and the inequality

K S1−δj − S1−δj−1

� �
1 − δ

1 +
S
uj−1
j−1

Γ uj

	 
 !
< 1 ð57Þ

holds. If ΓðujÞ ≥ ðSj − Sj−1Þuj−1, then the thermostat BVP (22)
has a unique positive solution in Ej.

Proof. We shall use the Banach contraction principle to
prove that T has unique fixed point. For xðtÞ, yðtÞ ∈ Ej, by
Lemma 11 and Lemma 12, we obtain

∣Tx tð Þ − Ty tð Þ∣

� ds∣ ≤
ðSj
Sj−1

Gj t, sð Þ∣f s, x sð Þð Þ − f s, y sð Þð Þ

� ∣ds ≤ 1 +
S
uj−1
j−1

Γ uj

	 
 !ðSj
Sj−1

s−δ K ∣ x sð Þ − y sð Þ ∣ð Þ

� ds ≤ K 1 +
S
uj−1
j−1

Γ uj

	 
 !
∥x − y∥Ej

ðSj
Sj−1

s−δds ≤
K S1−δj − S1−δj−1

� �
1 − δ

� 1 +
S
uj−1
j−1

Γ uj

	 
 !
∥x − y∥Ej

:

ð58Þ

Consequently by (57), the operator T is a contraction.

Hence, by Banach’s contraction principal, T has a unique
fixed point eyj ∈ Ej, which is a unique positive solution of
the auxiliary BVP of the constant order Caputo fractional
thermostat model (22).

In the next result, we generalize the existence criteria for
the variable order BVP of the main Caputo fractional ther-
mostat model (4).

Theorem 16. Assuming (H1)-(H2), the variable order BVP of
the main Caputo fractional thermostat model (4) admits at
least one solution in CðJ ,ℝÞ.

Proof. We know that the solution eyj ∈ Ej fulfills the auxiliary
BVP of constant order Caputo fractional thermostat model
(22) by Theorem 14 for any j ∈ f1, 2,⋯, ng. Now, the con-
tinuous function on ½0, Sj� is defined as

yj =
0, t ∈ 0, Sj−1

� �
,

~yj, t ∈ J j,

(
ð59Þ

is a solution of (20) for t ∈ J j, j ∈ f1, 2,⋯, ng.
Therefore, yðtÞ = yjðtÞ, t ∈ J j,j ∈ f1, 2,⋯, ng solves the

variable order BVP of the main Caputo fractional thermostat
model (4). The proof is completed.

5. Ulam-Hyers Stability

In this section, we are going to investigate the Ulam-Hyers sta-
bility for solutions of the given variable model of thermostat.

Definition 17 (see [43]). The variable order Caputo frac-
tional thermostat model (4) is Ulam-Hyers stable if there
exists cf > 0 such that for each ε > 0 and for every solution
z ∈ CðJ ,ℝÞ of the following inequality

∣−cDu tð Þ
0+ z tð Þ − f t, z tð Þð Þ∣ ≤ ε, t ∈ J , ð60Þ

there exists a solution y ∈ CðJ ,ℝÞ of (4) with

∣z tð Þ − y tð Þ∣ ≤ cf ε, t ∈ J: ð61Þ

Theorem 18. Assume that the conditions (H1) and (H2) to
be held. Then, the Caputo fractional thermostat model (4)
is Ulam-Hyers stable.

Proof. Let ε > 0 be an arbitrary number and the function zðtÞ
belonging to CðJ ,ℝÞ satisfies the following inequality

∣−cDu tð Þ
0+ z tð Þ − f t, z tð Þð Þ∣ ≤ ε, t ∈ J: ð62Þ

For any j ∈ f1, 2,⋯, ng, we define the functions z1ðtÞ ≡
zðtÞ, t ∈ ½0, S1� and for j = 2, 3,⋯, n :

zj tð Þ =
0, t ∈ 0, Sj−1

� �
,

z tð Þ, t ∈ J j:

(
ð63Þ
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For any j ∈ f1, 2,⋯, ng and according to the equality (6),
for t ∈ J j, we get

cDu tð Þ
0+ zj tð Þ =

ðt
Sj−1

t − sð Þ1−uj

Γ 2 − uj

	 
 z 2ð Þ sð Þds: ð64Þ

Taking I
uj

S+j−1
on both sides of the inequality (62), we obtain

∣ − zj tð Þ −
ðSj
Sj−1

Gj t, sð Þf s, zj sð Þ
	 


ds∣ ≤ ε
ðt
Sj−1

t − sð Þuj−1

Γ uj

	 

� ds ≤ ε

Sj − Sj−1
	 
uj

Γ uj + 1
	 
 :

ð65Þ

According to Theorem 16, the Caputo fractional thermo-
stat model (4) has a positive solution y ∈ CðJ ,ℝÞ defined by
yðtÞ = yjðtÞ for t ∈ J j, j = 1, 2,⋯, n, where

yj =
0, t ∈ 0, Sj−1

� �
,

~yj, t ∈ J j,

(
ð66Þ

and ~yj ∈ Ej is a positive solution of (22). According to
Lemma 9, the integral equation

~yj tð Þ =
ðSj
Sj−1

Gj t, sð Þf s, ~yj sð Þ
� �

ds, ð67Þ

holds. Let t ∈ J j, j = 1, 2,⋯, n. Then, by Eq (66) and (67) we get

∣z tð Þ − y tð Þ∣ = ∣z tð Þ − yj tð Þ∣ = ∣zj tð Þ − ~yj tð Þ∣

= ∣zj tð Þ −
ðSj
Sj−1

Gj t, sð Þf s, ~yj sð Þ
� �

ds∣ ≤ ∣zj tð Þ −
ðSj
Sj−1

Gj t, sð Þ

� f s, zj sð Þ
	 


ds∣ + ∣
ðSj
Sj−1

Gj t, sð Þf s, zj sð Þ
	 


� ds −
ðt
Sj−1

Gj t, sð Þf s, ~yj sð Þ
� �

ds∣ ≤ ∣ − zj tð Þ

−
ðSj
Sj−1

Gj t, sð Þf s, zj sð Þ
	 


ds∣ + ∣
ðSj
Sj−1

Gj t, sð Þf s, zj sð Þ
	 


� ds −
ðt
Sj−1

Gj t, sð Þf s, ~yj sð Þ
� �

ds∣ ≤ ε
Sj − Sj−1
	 
uj

Γ uj + 1
	 


+ 1 +
S
uj−1
j−1

Γ uj

	 
 !ðSj
Sj−1

∣f s, zj sð Þ
	 


ds − f s, ~yi sð Þð Þ

� ∣ds ≤ ε
Sj − Sj−1
	 
uj

Γ uj + 1
	 
 + 1 +

S
uj−1
j−1

Γ uj

	 
 !ðSj
Sj−1

s−δ

� K ∣ zj sð Þ − ~yj sð Þ ∣ ds ≤ ε
Sj − Sj−1
	 
uj

Γ uj + 1
	 
 

+ 1 +
S
uj−1
j−1

Γ uj

	 
 !

� K∥zi − ~yj∥Ej

� �ðSj
Sj−1

s−δds ≤ ε
Sj − Sj−1
	 
uj

Γ uj + 1
	 
 +

K Sj
1−δ − Sj−1

1−δ	 

1 − δ

� 1 +
S
uj−1
j−1

Γ uj

	 
 !
∥zj − ~yj∥Ej

≤ ε
Sj − Sj−1
	 
uj

Γ uj + 1
	 
 + μ∥z − y∥,

ð68Þ

where

μ = max
j=1,2,⋯,n

K Sj
1−δ − Sj−1

1−δ	 

1 − δ

1 +
S
uj−1
j−1

Γ uj

	 
 !
: ð69Þ

Then,

∥z − y∥ 1 − μð Þ ≤ Sj − Sj−1
	 
uj

Γ uj + 1
	 
 ε: ð70Þ

We obtain, for each t ∈ J j

∣z tð Þ − y tð Þ∣ ≤ ∥z − y∥ ≤
Sj − Sj−1
	 
uj

1 − μð ÞΓ uj + 1
	 
 ε≔ cf ε: ð71Þ

Therefore, by Definition 17, the Caputo fractional thermo-
stat model (4) is Ulam-Hyers stable and the proof is completed.

6. Example

We here simulate the simple form of our variable order BVP
of the main Caputo fractional thermostat model (4) by giv-
ing an example numerically.

Example 2. Consider the nonlinear function

f t, yð Þ = et + 1ffiffiffi
y

p , ð72Þ

on ðt, yÞ ∈ ½0, 2� × ½0,+∞Þ and

u tð Þ =
1:4, t ∈ J1 ≔ 0, 1½ �,
1:5, t ∈ J2≔�1, 2�:

(
ð73Þ

Then, in consistent with (22) and corresponding to the
variable order BVP of fractional differential equation

−cDu tð Þy tð Þ = et + 1ffiffiffiffiffiffiffiffi
y tð Þp , t ∈ J ≔ 0, 2½ �,

y′ 0ð Þ = 0, cDu tð Þ−1y 2ð Þ + y 0ð Þ = 0,

8><>: ð74Þ

the constant order auxiliary BVPs are

−cD1:4
0+ y tð Þ = et + 1ffiffiffiffiffiffiffiffi

y tð Þp , t ∈ J1,

y′ 0ð Þ = 0, cD0:4
0+ y 1ð Þ + y 0ð Þ = 0,

8><>: ð75Þ

cD1:5
1+ y tð Þ = et + 1ffiffiffiffiffiffiffiffi

y tð Þp , t ∈ J2,

y′ 1ð Þ = 0, cD0:5
1+ y 2ð Þ + y 1ð Þ = 0:

8><>: ð76Þ

Clearly, f0 =∞ and f∞ = 0.
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For j = 1, we get Γð1:4Þ − 1 ≈ −0:11274 < 0, we take

ξ1 = min
Γ uj

	 

− d − Sj−1
	 
uj−1

Γ uj

	 

+ S

uj−1
j−1

,
Γ uj

	 

− d − Sj−1
	 
uj−1

Sj − Sj−1
	 
uj−1 − Γ uj

	 

8<:

9=;
= Γ 1:4ð Þ − duj−1

Γ 1:4ð Þ
ð77Þ

and define the cone P1 = fy \ y ∈ C½0, 1�, mint∈½0,1�yðtÞ ≥
ξ1∥y∥g. By Theorem 14, it is deduced that that the auxiliary
BVP of constant order Caputo fractional thermostat model
(75) possesses a positive solution ~y1 ∈ P1.

For j = 2, we get Γð1:5Þ − 1 ≈ −0:11377 < 0, we take

ξ2 = min
Γ uj

	 

− d − Sj−1
	 
uj−1

Γ uj

	 

+ S

uj−1
j−1

,
Γ uj

	 

− d − Sj−1
	 
uj−1

Sj − Sj−1
	 
uj−1 − Γ uj

	 

8<:

9=;
= Γ 1:5ð Þ − d − 1ð Þ1:5

Γ 1:5ð Þ + 1
ð78Þ

and consider the cone P2 = fy \ y ∈ C½1, 2�, mint∈½1,2�yðtÞ
≥ ξ2∥y∥g.

According to Theorem 14, the auxiliary BVP of constant
order Caputo fractional thermostat model (76) admits a pos-
itive solution ~y2 ∈ P2, and by Theorem 16, the BVP for vari-
able order Caputo fractional thermostat model (74) has a
solution

y tð Þ =
~y1 tð Þ, t ∈ J1,
y2 tð Þ, t ∈ J2,

(
ð79Þ

where

y2 tð Þ =
0, t ∈ J1,
~y2 tð Þ, t ∈ J2:

(
ð80Þ

7. Conclusion

In science and technology, fractional differential equations
are utilized to model and describe a variety of natural pro-
cesses. In connection with standard fractional models, vari-
able fractional models appear to be more important for
complex natural phenomena. The focus of this study was
to analyze the BVP of variable order Caputo fractional ther-
mostat model (4) and to explore its solutions’ existence uti-
lizing techniques from fixed point theory on cones. To do
such a method, we first noticed the invalidity of semigroup
property for the Riemann-Liouville fractional integral of var-
iable order. In order to obtain the solution of problem and
solve this issue, we considered a partition of the interval J
and the corresponding auxiliary constant order BVP of the
Caputo fractional thermostat model (22) was derived from
the variable order one. Some properties of relevant Green’s

function were reviewed. For the solutions’ existence, utiliz-
ing fixed point attributed to Guo-Krasnoselskii’s on cones,
the main theorems (Theorem 14 and 16) were deduced.
An example to confirm the validity of theoretical findings
was provided. This technique can be used to consider vari-
ous physical models with variable order fractional operators.
Moreover, with the help of our results in this research paper,
investigations on this open research problem can be also
possible and one can extend the proposed BVP to other
complicated fractional models. In the future, we want to
study these boundary value problems with different condi-
tions involving integral conditions or integroderivative con-
ditions or nonlocal conditions along with infinite delay.
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