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The new outcomes of the present paper are q-analogues (q stands for quantum calculus) of Hermite-Hadamard type inequality,
Montgomery identity, and Ostrowski type inequalities for s-convex mappings. Some new bounds of Ostrowski type functionals
are obtained by using Hölder, Minkowski, and power mean inequalities via quantum calculus. Special cases of new results
include existing results from the literature.

1. Introduction

Integral inequalities provide a notable role in both pure and
applied mathematics in the light of their wide applications in
numerous regular and human sociologies, while convexity
hypothesis has stayed a significant apparatus in the founda-
tion of the theory of integral inequalities. The classical
inequalities are helpful in numerous down-to-earth issues.
In recent years, many authors (see [1–12]) proved numerous
inequalities associated with the functions of bounded varia-
tion, Lipschitzian, monotone, absolutely continuous, convex
functions, s-convex, h-convex, and n-times differentiable
mappings with error estimates. Integral inequalities have
been studied extensively by several researchers either in clas-
sical analysis or in the quantum one. In many practical prob-
lems, it is important to bound one quantity by another
quantity. The classical inequalities including Hermite-
Hadamard and Ostrowski type inequalities are very useful
for this purpose (see [13–24]). Ostrowski type inequalities
are well known to study the upper bounds for approxima-
tion of the integral average by the value of the function. In
[25], Dragomir and Fitzpatrick have constructed Hermite-
Hadamard’s inequality which is specified to s-convex func-
tions in the second sense as follows:

Theorem 1. Suppose Φ : ℝ+ ⟶ℝ is an s-convex function in
second sense, s ∈ ð0, 1Þ, and suppose ℘, υ ∈ℝ+,℘<υ. If Φ′ ∈
L1ð½℘,υ�Þ, then the integral inequality is valid:

2s−1Φ
℘+υ
2

� �
≤

1
υ−℘

ðυ
℘
Φ wð Þdw ≤

Φ ℘ð Þ +Φ υð Þ
s + 1

, ð1Þ

where ℝ+ = fw ∈ℝ ∣w ≥ 0g.

The following Montgomery equality is established by
Alomari (see [26]):

Lemma 2. Assume that Φ : J ⊂ℝ+ ⟶ℝ is differentiable
function on ð℘, υÞ in which ℘, υ ∈ J for ℘<υ. If Φ′ ∈ L½℘,υ�,
then we have the equality:

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þdζ = w−℘ð Þ2

υ−℘

ð1
0
ζΦ′ ζw + 1 − ζð Þ℘ð Þ

� dζ − υ −wð Þ2
υ−℘

ð1
0
ζΦ′ ζw + 1 − ζð Þυð Þdζ,

ð2Þ

for each w ∈ ½℘,υ�.
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By using Lemma 2, Alomari et al. in [26] had proved the
Ostrowski type inequality, which holds for s-convex mappings
in second sense as follows:

Theorem 3. Assume Φ : J ⊂ℝ+ ⟶ℝ is a differentiable on
ð℘, υÞ and Φ′ ∈ L½℘,υ� such that ℘, υ ∈ J for ℘<υ: If jΦ′j is
s-convex mapping in the second sense on ½℘, υ� unique s ∈
ð0, 1� and jΦ′ðwÞj ≤M,w ∈ ½℘,υ�, then the following result
holds:

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þdζ

�����
����� ≤ M

υ−℘
w−℘ð Þ2 + υ −wð Þ2

s + 1

" #
, ð3Þ

for each w ∈ ½℘,υ�.

Theorem 4. Suppose that Φ : J ⊂ℝ+ ⟶ℝ is the differentia-
ble on ð℘, υÞ and Φ′ ∈ L½℘,υ�, where ℘, υ ∈ J with ℘<υ: If
absolute value of ðΦ′Þm is s-convex function in the second
sense in ½℘, υ� for unique s ∈ ð0, 1�, m > 1, n =m/m − 1 and j
Φ′ðwÞj ≤M,w ∈ ½℘,υ�, then following integral inequality
holds:

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þdζ

�����
����� ≤ M

1 + nð Þ1/n
2

s + 1

� �1/m w−℘ð Þ2 + υ −wð Þ2
υ−℘

" #
,

ð4Þ

for each w ∈ ½℘,υ�:

Theorem 5. Suppose that Φ : J ⊂ℝ+ ⟶ℝ is differentiable
on ð℘, υÞ and Φ′ ∈ L½℘,υ�, in which ℘, υ ∈ J for ℘<υ: If the
absolute value of ðΦ′Þm is s-convex function in ½℘, υ� for static
s ∈ ð0, 1�,m ≥ 1 and jΦ′ðwÞj ≤M,w ∈ ½℘,υ�, then the following
integral inequality holds:

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þdζ

�����
����� ≤M

2
s + 1

� �1/m w−℘ð Þ2 + υ −wð Þ2
2 υ−℘ð Þ

" #
,

ð5Þ

for each w ∈ ½℘,υ�:

Theorem 6. Suppose Φ : J ⊂ℝ+ ⟶ℝ be the differentiable
on ð℘, υÞ and Φ′ ∈ L½℘,υ�, in which ℘, υ ∈ J for ℘<υ: If abso-
lute value of ðΦ′Þm is a s-convex mapping in second sense on
½℘, υ� for static s ∈ ð0, 1�,m > 1 and n =m/m − 1, we have

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þdζ

�����
����� ≤ 2 s−1ð Þ/m

1 + nð Þ1/n υ−℘ð Þ
� w−℘ð Þ2 Φ′ w+℘

2

� ���� ��� + υ −wð Þ2 Φ′ υ +w
2

� ���� ���h i
,

ð6Þ

for each w ∈ ½℘,υ�:

The renowned mathematician Euler started the investi-
gation of q-calculus in the eighteenth century by presenting

Newton’s work of limitless series. This subject has gotten
extraordinary consideration by numerous specialists, and
consequently, it is considered an in-corporative subject
among math and material science. In the mid-20th century,
Jackson (1910) has begun a symmetric investigation of cal-
culus and presented q-distinct integrals. The subject of
quantum analytic has various applications in different spaces
of arithmetic and physical science like number hypothesis,
combinatorics, symmetrical polynomials, essential hyper-
mathematical functions, quantum theory, and mechanics
and in the hypothesis of relativity. Quantum calculus can
be seen as a scaffold among arithmetic and material science.
It has been shown that quantum calculus is a subfield of the
more general mathematical field of time scales calculus.
Time scales provide a unified framework for studying
dynamic equations on both discrete and continuous
domains. In [27, 28], q-Bernoulli and dynamic inequalities
associated with Leibniz integral rule on time scales were
studied. In studying quantum calculus, we are concerned
with a specific time scale, called the q-time scale. The study
of q-integral inequalities is also of great importance. Integral
inequalities have been studied extensively by several
researchers either in classical analysis or in the quantum
one.

The following q-Hermite-Hadamard and q-Ostrowski
type integral inequalities were proved by Tariboon and
Ntouyas (see Theorems 3.2 and 3.5 [29]):

Theorem 7. Let Φ : J ⟶ℝ be a q-differentiable function
with DqΦ continuous on ½℘, υ� and 0 < q < 1. Then, we have

Φ
℘+υ
2

� �
≤

1
υ−℘

ðυ
℘
Φ ζð Þ℘dqζ ≤

Φ ℘ð Þ + qΦ υð Þ
q + 1

: ð7Þ

Theorem 8. Suppose Φ : J ⟶ℝ, where ½℘,υ� ⊆ℝ is an
interval, be a q-differentiable in open interval ℘, υ belonging
to interior I for ℘<υ. If jDqΦðwÞj ≤M for all w ∈ ½℘,υ� and
0 < q < 1, then the integral inequality is valid:

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þ℘dqζ

�����
�����

≤M
2q
1 + q

w − 3q − 1ð Þ℘+ 1 + qð Þυð Þ/4qð Þ
υ−℘

� �2

+ −q2 + 6q − 1
� �

8q 1 + qð Þ
� �" #

,

ð8Þ

for all w ∈ ½℘,υ�: The least value of constant on RHS of
inequality (8) is ð−q2 + 6q − 1Þ/8qð1 + qÞ.

The following q-Ostrowski type integral inequalities for
convex functions were proved by Noor et al. (see [30]):

Theorem 9. Let Φ : J ⊂ℝ+ ⟶ℝ be q-differentiable map-
ping for ð℘, υÞ and DqΦ ∈ L½℘,υ�, in which ℘, υ ∈ J for ℘<υ:
If jDqΦj is convex mapping ½℘, υ� for some static q ∈ ð0, 1Þ
and jDqΦðwÞj ≤M,w ∈ ½℘,υ�, then we have the following q
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-integral inequality:

1
q

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þ℘dqζ

 !�����
����� ≤ M

υ−℘
w−℘ð Þ2 + υ −wð Þ2

q + 1

" #
,

ð9Þ

for each w ∈ ½℘,υ�:

Theorem 10. Assume that Φ : J ⊂ℝ+ ⟶ℝ is q-differen-
tiable mapping on ð℘, υÞ and DqΦ ∈ L½℘,υ�, in which ℘, υ ∈
J for ℘<υ: If jDqΦjm is a convex function in second sense
on ½℘, υ� unique q ∈ ð0, 1Þ,m > 1,n =m/m − 1, and jDqΦðwÞj
≤M,w ∈ ½℘,υ�, then we have the q-integral inequality:

1
q

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þ℘dqζ

 !�����
�����

≤
M

n + 1½ �ð Þ1/n
w−℘ð Þ2 + υ −wð Þ2

υ−℘

" #
,

ð10Þ

for each w ∈ ½℘,υ�:

The aim of this work is to find q-analogues of Hermite-
Hadmard and Ostrowski type integral inequalities for func-
tions whose q-derivatives are s-convex in the second sense.
An interesting feature of our results is that they provide
new estimates and good approximation on such types of
inequalities involving q-integrals.

2. Basic Essentials

2.1. Convex Function. Let Φ be the function; it is said to be
convex function on intervalJ if

Φ Ωw + 1 −Ωð Þρð Þ ≤ΩΦ wð Þ + 1 −Ωð ÞΦ ρð Þ ð11Þ

holds for all w, ρ ∈ J and Ω ∈ ½0, 1�.
In [31], s-convex functions in the second sense have

been introduced by Hudzik and Maligranda as follows:

2.2. s-Convex Function. A mapping Φ : ℝ+ ⟶ℝ is said to
be s-convex if

Φ Ωw + 1 −Ωð Þρð Þ ≤ΩsΦ wð Þ + 1 −Ωð ÞsΦ ρð Þ, ð12Þ

for each w, ρ ∈ℝ+, Ω ∈ 0, 1� and for unique s ∈ ð0, 1�:
2.3. q-Derivative [32]. For a continuous mapping Φ : ½℘,υ�
⟶ℝq-derivative at w ∈ ½℘,υ� is

℘Dq
Φ wð Þ = Φ wð Þ −Φ qw + 1 − qð Þ℘ð Þ

1 − qð Þ w−℘ð Þ  w ≠ ℘: ð13Þ

Also, for n ≥ 1, one may find the following evaluations:

w−℘ð Þnq = w−℘ð Þ w − q℘ð Þ w − q2℘
� �

⋯ w − qn−1℘
� �

,

℘−wð Þnq = ℘−qwð Þ ℘−q2w
� �

⋯ ℘−qn−1w
� �

,

Dq w−℘ð Þnq = n½ � w−℘ð Þn−1q ,

Dq ℘−wð Þnq = − n½ � ℘−qwð Þn−1q ,

℘−qwð Þnq = −
1

n+1½ �Dq ℘−wð Þn+1q ,

Dq ℘−wð Þnq = − n½ � ℘−qwð Þn−1q ,
ð

℘−wð Þnqdqw = −
q ℘−q−1w
� �n+1

q

n+1½ �   ℘ ≠ −1ð Þ:

ð14Þ

Here,

n½ � = qn − 1
q − 1 , ð15Þ

and also, we have

1−℘ð Þnq =
Yn
j=0

1 − qj℘
� �

: ð16Þ

2.4. q-Antiderivative [32]. Suppose that Φ : ½℘,υ�⟶ℝ be
the continuous mapping. Then, q-definite integral on ½℘, υ�
is stated as

ðw
℘
Φ ζð Þ℘dqζ = 1 − qð Þ w−℘ð Þ〠

∞

n=0
qnΦ qnw + 1 − qnð Þ℘ð Þ,

ð17Þ

for w ∈ ½℘,υ�.
2.5. The Formula of q-Integration by Parts [29]. Let Φ, g : ½
℘,υ�⟶ℝ be the continuous functions ℘∈ℝ and w, c ∈ ½℘,
υ�, Then, the formula of q-integration by parts is stated asðw

c
Φ ζð Þ℘Dqg ζð Þdqζ =Φ wð Þg wð Þ −Φ cð Þg cð Þ

−
ðw
c
g qζ + 1 − qð Þ℘ð Þ℘DqΦ ζð Þdqζ:

ð18Þ

Theorem 11. q-Hölder Inequality ([4], Theorem 2). Let Φ
and g be q-integrable on ½℘, υ� and 0 < q < 1 and ð1/nÞ + ð1/
mÞ = 1 with m > 1; then, one may obtain the following:

ðυ
℘
Φ ζð Þg ζð Þj j℘dqζ ≤

ðυ
℘
Φ ζð Þj jn℘dqζ

( )1/n ðυ
℘
g ζð Þj jm℘dqζ

( )1/m

:

ð19Þ

Using (19), the following is valid.
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2.6. q-Minkowski’s Inequality. Let ℘, υ ∈ℝ and n > 1 be a real
number then for continuous functions Φ, g : ½℘,υ�⟶ℝ,

ðυ
℘

Φ ζð Þ + g ζð Þð Þj jn℘dqζ
( )1/n

≤
ðυ
℘
Φ ζð Þj jn℘dqζ

( )1/n

+
ðυ
℘
g ζð Þj jn℘dqζ

( )1/n

:

ð20Þ

Proof.

ð℘
υ

Φ + gð Þ ζð Þj jndqζ =
ð℘
υ

Φ + gð Þ ζð Þj jn−1 Φ + gð Þ ζð Þj jdqζ

≤
ð℘
υ

Φ + gð Þ ζð Þj jn−1 Φ ζð Þj jdqζ +
ð℘
υ

Φ + gð Þ ζð Þj jn−1

� g ζð Þj jdqζ≤
ð℘
υ

Φ ζð Þj jndqζ
	 
1/n ð℘

υ

Φ + gð Þ ζð Þj jm n−1ð Þdqζ
	 
1/n

+
ð℘
υ

g ζð Þj jndqζ
	 
1/n ð℘

υ

Φ + gð Þ ζð Þj jm n−1ð Þdqζ
	 
1/m

=
ð℘
υ

Φ ζð Þj jndqζ
	 
1/n

+
ð℘
υ

g ζð Þj jndqζ
	 
1/n

" #

�
ð℘
υ

Φ + gð Þ ζð Þj jm n−1ð Þdqζ
	 
1/m
" #

,

ð21Þ

which gives the required result for positive real numbers
m, n such that ð1/mÞ + ð1/nÞ = 1.

The classical power mean inequality for integrals has the
following form for q-integral.

2.7. q-Power Mean Inequality. Let ð1/nÞ + ð1/mÞ = 1 for real
numbers n,m > 1. Let ℘, υ ∈ℝ and Φ, g : ½℘,υ�⟶ℝ be
continuous functions; then,

ðυ
℘
Φ ζð Þg ζð Þj j℘dqζ ≤

ðυ
℘
Φ ζð Þj j℘dqζ

( )1− 1/mð Þ

�
ðυ
℘
Φ ζð Þj j g ζð Þj jm℘dqζ

( )1/m

:

ð22Þ

Proposition 12. [33]. For each k, r ∈ℕðorℤ q ∈ℝ×Þ, we
have

k + r½ �q = k½ �q + qk r½ �q: ð23Þ

3. Main Results

3.1. q-Hermite-Hadamard Inequality

Theorem 13. Suppose Φ : ℝ+ ⟶ℝ is a s-convex mapping
in the second sense, in which s, q ∈ ð0, 1Þ, and let ℘, υ ∈ℝ+,

℘<υ: If DqΦ ∈ Lð½a, b�Þ, then the integral inequality is valid:

2s−1Φ
℘+υ
2

� �
≤

1
υ−℘

ðυ
℘
Φ ζð Þ℘dqζ ≤

Φ υð Þq 1 − 1 − q−1
� �s+1� �

+Φ ℘ð Þ
s + 1½ � :

ð24Þ

Proof. By definition of s-convex functions,

Φ ζ℘+ 1 − ζð Þυð Þ ≤ ζsΦ ℘ð Þ + 1 − ζð ÞsΦ υð Þð1
0
Φ ζ℘+ 1 − ζð Þυð Þ0dqζ ≤Φ ℘ð Þ

ð1
0
ζs0dqζ +Φ υð Þ

ð1
0
1 − ζð Þs0dqζ,

ð1
0
Φ ζ℘+ 1 − ζð Þυð Þ0dqζ =

1 − qð Þ υ−℘ð Þ
υ−℘ 〠

∞

n=0
qnΦ qn℘+ 1 − qnð Þυð Þ

= 1
υ−℘

ðυ
℘
Φ ζð Þ0dqζ ≤Φ ℘ð Þ

ð1
0
ζs0dqζ +Φ υð Þ

ð1
0
1 − ζð Þs0dqζ

=
Φ ℘ð Þ + q 1 − 1 − q−1

� �s+1� �
Φ υð Þ

s + 1½ � :

ð25Þ

Hence,

1
υ−℘

ðυ
℘
Φ ζð Þ0dqζ ≤

Φ ℘ð Þ + q 1 − 1 − q−1
� �s+1� �

Φ υð Þ
s + 1½ � : ð26Þ

Let w = ζ℘+ð1 − ζÞυ and ζ = ζυ + ð1 − ζÞ℘ in Φððw + ζÞ/
2Þ ≤ ððΦðwÞ +ΦðζÞÞ/2sÞ to get

Φ
ζ℘+ 1 − ζð Þυ + ζυ + 1 − ζð Þ℘

2

� �

≤
Φ ζ℘+ 1 − ζð Þυð Þ +Φ ζυ + 1 − ζð Þ℘ð Þ

2s ,

Φ
℘+υ
2

� �
≤

1
2s

ð1
0
Φ ζ℘+ 1 − ζð Þυð Þ0dqζ +

ð1
0
Φ ζυ + 1 − ζð Þ℘ð Þ0dqζ

� �

= 1
2s

1
℘−υ

ð℘
υ

Φ ζð Þ0dqζ +
1

υ−℘

ðυ
℘
Φ ζð Þ0dqζ

 !
,

ð27Þ

2s−1Φ ℘+υ
2

� �
≤

1
υ−℘

ðυ
℘
Φ ζð Þ0dqζ, ð28Þ

From (26) and (28), the desired result is

2s−1Φ ℘+υ
2

� �
≤

1
υ−℘

ðυ
℘
Φ ζð Þ℘dqζ ≤

Φ ℘ð Þ + q 1 − 1 − q−1
� �s+1� �

Φ υð Þ
s + 1½ � :

ð29Þ

3.2. q-Ostrowski Type Inequalities. To prove some q-
Ostrowski type inequalities, it needs to establish the follow-
ing Montgomery identity for q-integrals:
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Lemma 14. Let Φ : J ⊂ℝ⟶ℝ be a q-differentiable on J∘ in
which ℘, υ ∈ J for ℘<υ. If DqΦ ∈ L½℘,υ�, we have the following
q-integral equality which is valid:

1
q

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þ℘dqζ

" #
= w−℘ð Þ2

υ−℘

ð1
0
ζDqΦ ζw + 1 − ζð Þ℘ð Þ

�0 dqζ −
υ −wð Þ2
υ−℘

ð1
0
ζDqΦ ζw + 1 − ζð Þυð Þ0dqζ,

ð30Þ

for each w ∈ ½℘,υ�:
By using Lemma 14, we have constructed the following

Ostrowski type inequalities, which hold for s-convex functions
in the second sense:

Theorem 15. Let Φ : J ⊂ℝ+ ⟶ℝ is a q-differentiable map-
ping on J∘ and DqΦ ∈ L½℘,υ�, in which ℘, υ ∈ J for ℘<υ: If the
absolute value of DqΦðwÞ is s-convex in second sense on ½℘, υ�
for unique s ∈ ð0, 1� and DqΦðwÞ is bounded by M, w ∈ ½℘,υ�,
we have been seeing that the following q-integral inequality is
valid:

1
q

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þ℘dqζ

" #�����
����� ≤M

w−℘ð Þ2 + υ −wð Þ2
υ−℘

� −
q

s + 1½ � 1 − q−1
� �s+1

q
+
q 1 − q−1
� �s+2

q

s + 2½ � −
q

s + 2½ �

0
@

1
A + 1

s + 2½ �

2
4

3
5,
ð31Þ

for each w ∈ ½℘,υ�:

Proof. Since jDqΦj is s-convex function in the second sense
on ½℘, υ�, therefore, Lemma 14 gives the following:

1
q

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þ℘dqζ

" #�����
�����

≤
w−℘ð Þ2
υ−℘

ð1
0
ζ DqΦ ζw + 1 − ζð Þ℘ð Þ�� ��

0dqζ

+ υ −wð Þ2
υ−℘

ð1
0
ζ DqΦ ζw + 1 − ζð Þυð Þ�� ��

0dqζ

≤
w−℘ð Þ2
υ−℘

ð1
0
ζs+1q DqΦ wð Þ�� ��

0dqζ +
ð1
0
ζ 1 − ζð Þsq DqΦ ℘ð Þ�� ��

0dqζ

+ υ −wð Þ2
υ−℘

ð1
0
ζs+1q DqΦ wð Þ�� ��

0dqζ +
ð1
0
ζ 1 − ζð Þsq DqΦ υð Þ�� ��

0dqζ

= M w−℘ð Þ2
υ−℘

ð1
0
ζs+1q 0dqζ +

ð1
0
ζ 1 − ζð Þsq0dqζ

� �

+ υ −wð Þ2
υ−℘

ð1
0
ζs+1q 0dqζ +

ð1
0
ζ 1 − ζð Þsq0dqζ

� �

=M
w−℘ð Þ2 + υ −wð Þ2

υ−℘

ð1
0
ζs+10dqζ +

ð1
0
ζ 1 − ζð Þsq0dqζ

� �
,

ð1
0
ζs+1q 0dqζ =

1
s + 2½ � , ð32Þ

= −
q

s + 1½ �
ð1
0
ζDq 1 − q−1ζ
� �s+1

q 0
dqζ

= −
1

q s + 1½ � ζ 1 − q−1ζ
� �s+1

q

��� ���1
0
−
ð1
0
1 − ζð Þs+1q :10dqζ

� �

= −
q

s + 1½ � 1 − q−1
� �s+1

q
+
q 1 − q−1
� �s+2

q

s + 2½ � −
q
s+2½ �

2
4

3
5

= −
q

s + 1½ � 1 − q−1
� �s+1

q
+
q 1 − q−1
� �s+2

q

s + 2½ � −
q

s + 2½ �

2
4

3
5 + 1

s + 2½ �

=M
w−℘ð Þ2 + υ −wð Þ2

υ−℘

� −
q

s + 1½ � 1 − q−1
� �s+1

q
+
q 1 − q−1
� �s+2

q

s + 2½ � −
q

s + 2½ �

0
@

1
A + 1

s + 2½ �

2
4

3
5:

ð33Þ

Theorem 16. Suppose that Φ : J ⊂ℝ+ ⟶ℝ is a q-differen-
tiable on J∘ and DqΦ ∈ L½℘,υ�, in which ℘, υ ∈ J for ℘<υ: If
jDqΦjm is a s-convex function in second sense on ½℘, υ� for
some static s ∈ ð0, 1�,m > 1,n =m/m − 1 and DqΦðwÞ is
bounded byM,w ∈ ½℘,υ�, then the q-integral inequality is valid:

1
q

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þ℘dqζ

" #�����
�����

≤
M

n + 1½ �1/n
1 + q 1 − 1 − q−1

� �s+1� �
s + 1½ �

2
4

3
5
1/m

× w−℘ð Þ2 + υ −wð Þ2
υ−℘

" #
,

ð34Þ

for each w ∈ ½℘,υ�:

Proof. From Lemma 14 and keeping in view the well-known
q-analogue of Hölder inequality, we have

1
q

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þ℘dqζ

" #�����
����� ≤ w−℘ð Þ2

υ−℘

ð1
0
ζ DqΦ ζw + 1 − ζð Þ℘ð Þ�� ��

�0 dqζ +
υ −wð Þ2
υ−℘

ð1
0
ζ DqΦ ζw + 1 − ζð Þυð Þ�� ��

0dqζ

≤
w−℘ð Þ2
υ−℘

ð1
0
ζnq0dqζ

� �1/n ð1
0
DqΦ ζw + 1 − ζð Þ℘ð Þ�� ��m

0dqζ
� �1/m

+ υ −wð Þ2
υ−℘

ð1
0

ð1
0
ζnq0dqζ

� �1/n ð1
0
DqΦ ζw + 1 − ζð Þυð Þ�� ��m

0dqζ
� �1/m

,
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ð1
0
DqΦ ζw + 1 − ζð Þ℘ð Þ�� ��m

0dqζ ≤
ð1
0
ζsq DqΦ wð Þ�� ��m

0dqζ

+
ð1
0
1 − ζð Þsq DqΦ ℘ð Þ�� ��m

0dqζ ≤Mm ζs+1q

s + 1½ �

�����
�����
1

0

−
q 1 − q−1ζ
� �s+1

q

s + 1½ �

������
������
1

0

0
@

1
A

=Mm 1
s + 1½ � −

q 1 − q−1
� �s+1

q

s + 1½ � + q
s + 1½ �

0
@

1
A =Mm

1 + q 1 − 1 − q−1
� �s+1

q

� �
s + 1½ �

0
@

1
A,

ð1
0
DqΦ ζw + 1 − ζð Þυð Þ�� ��m

0dqζ ≤
ð1
0
ζsq DqΦ wð Þ�� ��m

0dqζ

+
ð1
0
1 − ζð Þsq DqΦ υð Þ�� ��m

0dqζ ≤Mm ζs+1q

s + 1½ �

�����
�����
1

0

−
q 1 − q−1ζ
� �s+1

q

s + 1½ �

������
������
1

0

0
@

1
A

=Mm 1
s + 1½ � −

q 1 − q−1
� �s+1

q

s + 1½ � + q
s + 1½ �

0
@

1
A =Mm

1 + q 1 − 1 − q−1
� �s+1

q

� �
s + 1½ �

0
@

1
A

≤M
1

1 + n½ �
� �1/n 1 + q 1 − 1 − q−1

� �s+1
q

� �
s + 1½ �

0
@

1
A

1/m
w−℘ð Þ2 + υ −wð Þ2

υ−℘

" #
:

ð35Þ

It completes the proof.

Theorem 17. Let Φ : J ⊂ℝ+ ⟶ℝ is a q-differentiable map-
ping on J∘ such as DqΦ ∈ L½℘,υ�, in which ℘, υ ∈ J for ℘<υ: If
the absolute value of ðDqΦðwÞÞm is a s -convex mapping in
the second sense on ½℘, υ� for unique s ∈ ð0, 1�, m ≥ 1, and j
DqΦðwÞj ≤M, w ∈ ½℘,υ�, we have seen that the q-integral
inequality is valid:

1
q

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þ℘dqζ

" #�����
����� ≤M

w−℘ð Þ2 + υ −wð Þ2
υ−℘

 !

� 1
2½ �

� �1− 1/mð Þ
−

q
s + 1½ � 1 − q−1

� �s+1
q

+
q 1 − q−1
� �s+2

q

s + 2½ � −
q

s + 2½ �

0
@

1
A

2
4

3
5
1/m

,

ð36Þ

for each w ∈ ½℘,υ�:

Proof. Lemma 14 and keeping in view the well-known q
-analogue of power-mean inequality, we have

1
q

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þ℘dqζ

" #�����
����� ≤ w−℘ð Þ2

υ−℘

ð1
0
ζ DqΦ ζw + 1 − ζð Þ℘ð Þ�� ��

0dqζ

+ υ −wð Þ2
υ−℘

ð1
0
ζ DqΦ ζw + 1 − ζð Þυð Þ�� ��

0dqζ ≤
w−℘ð Þ2
υ−℘

ð1
0
ζ0dqζ

� �1− 1/mð Þ

�
ð1
0
ζ DqΦ ζw + 1 − ζð Þ℘ð Þ�� ��m

0dqζ
� �1/m

+ υ −wð Þ2
υ−℘

ð1
0
ζ0dqζ

� �1− 1/mð Þ

�
ð1
0
ζ DqΦ ζw + 1 − ζð Þυð Þ�� ��m

0dqζ
� �1/m

,

ð1
0
ζ DqΦ ζw + 1 − ζð Þ℘ð Þ�� ��m

0dqζ

≤
ð1
0
ζs+1q DqΦ wð Þ�� ��m

0dqζ +
ð1
0
ζ 1 − ζð Þsq DqΦ ℘ð Þ�� ��m

0dqζ

≤Mm
ð1
0
ζ0dqζ

� �1− 1/mð Þ ð1
0
ζs+1q 0dqζ +

ð1
0
ζ 1 − ζð Þsq0dqζ

� �

=M
w−℘ð Þ2 + υ −wð Þ2

υ−℘

�
ð1
0
ζ0dqζ

� �1− 1/mð Þ ð1
0
ζs+10dqζ +

ð1
0
ζ 1 − ζð Þsq0dqζ

� �
,

ð1
0
ζs+1q 0dqζ =

1
s + 2½ � ,

−
q

s + 1½ �
ð1
0
ζDq 1 − q−1ζ
� �s+1

q 0
dqζ = −

q
s + 1½ �

� ζ 1 − q−1ζ
� �s+1

q

��� ���1
0
−
ð1
0
1 − ζð Þs+1q :10dqζ

� �

= −
q

s + 1½ � 1 − q−1
� �s+1

q
+
q 1 − q−1
� �s+2

q

s + 2½ � −
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s + 2½ �

2
4

3
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= −
q

s + 1½ � 1 − q−1
� �s+1

q
+
q 1 − q−1
� �s+2

q

s + 2½ � −
q

s + 2½ �

2
4

3
5

=M
w−℘ð Þ2 + υ −wð Þ2

υ−℘

 !
1
2½ �

� �1− 1/mð Þ

� −
q

s + 1½ � 1 − q−1
� �s+1

q
+
q 1 − q−1
� �s+2

q

s + 2½ � −
q

s + 2½ �

0
@

1
A

2
4

3
5
1/m

:

ð37Þ

It completes the proof.

Theorem 18. Suppose that Φ : J ⊂ℝ+ ⟶ℝ is a q-differ-
entiable mapping on J∘ such that DqΦ ∈ L½℘,υ�, in which
℘, υ ∈ J for ℘<υ: If jDqΦjm is s-convex function in second
sense on ½℘, υ� for some s ∈ ð0, 1�,q > 1 and m > 1 and n =
m/m − 1, then the q-integral inequality is valid:

1
q

Φ wð Þ − 1
υ−℘

ðυ
℘
Φ ζð Þ℘dqζ

" #�����
�����

≤
2 s−1/mð Þ

1 + n½ �1/n υ−℘ð Þ w−℘ð Þ2 DqΦ
w+℘
2

� ���� ���h
+ υ −wð Þ2 DqΦ

υ +w
2

� ���� ����,
ð38Þ

for each w ∈ ½℘,υ�:
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Proof. Lemma 3.1 and keeping in view the familiar q-ana-
logue of Hölder inequality, we have

1
q

Φ wð Þ− 1
℘+υ

ðυ
℘
Φ ζð Þ℘dqζ

" #�����
�����

≤
w−℘ð Þ2
υ−℘

ð1
0
ζ DqΦ ζw + 1 − ζð Þ℘ð Þ�� ��

0dqζ

+ υ −wð Þ2
υ−℘

ð1
0
ζ DqΦ ζw + 1 − ζð Þυð Þ�� ��

0dqζ

≤
w−℘ð Þ2
υ−℘

ð1
0
ζnq0dqζ

� �1/n ð1
0
DqΦ ζw + 1 − ζð Þ℘ð Þ�� ��m

0dqζ
� �1/m

+ υ −wð Þ2
υ−℘

ð1
0

ð1
0
ζnq0dqζ

� �1/n ð1
0
DqΦ ζw + 1 − ζð Þυð Þ�� ��m

0dqζ
� �1/m

,
ð1
0
DqΦ ζw + 1 − ζð Þ℘ð Þ�� ��mdζ ≤ 2s−1 DqΦ

w+℘
2

� ���� ���m
ð1
0
DqΦ ζw + 1 − ζð Þυð Þ�� ��mdζ ≤ 2s−1 DqΦ

υ +w
2

� ���� ���m

≤
2 s−1/mð Þ

1 + n½ �1/n υ−℘ð Þ w−℘ð Þ2 DqΦ
w+℘
2

� ���� ��� + υ −wð Þ2 DqΦ
υ +w
2

� ���� ���h i
:

ð39Þ

Remark 19. In Theorem 13, if we choose q = 1, then (24)
diminishes the inequality (1) of Theorem 1.

Remark 20. In Theorem 13, if we choose s = 1, then (24)
diminishes the inequality (7) of Theorem 7.

Remark 21. In Theorem 15, if we fixed q = 1, then (31)
reduces the inequality (3) of Theorem 3.

Remark 22. In Theorem 15, if we take s = 1, then (31) dimin-
ishes the inequality (9) of Theorem 9.

Remark 23. In Theorem 16, if we take q = 1, then (34)
reduces the inequality (4) of Theorem 4.

Remark 24. In Theorem 16, if we choose s = 1, then (34)
diminishes the inequality (10) of Theorem 10.

Remark 25. In Theorem 17, if we take q = 1, then (36) dimin-
ishes the inequality (5) of Theorem 5.

Remark 26. In Theorem 18, if we take q = 1, then (38) dimin-
ishes the inequality (6) of Theorem 6.

4. Conclusion

By the virtue of q-calculus, some integral inequalities are
proved, which provides a method to study more properties
of q-integrals via other classes of integral inequalities. q-Her-
mite-Hadmard and q-Ostrowski type integral inequalities
have provided new estimates and good approximations in
comparison with existing Hermite-Hadamard and
Ostrowski inequalities. In similar fashion, the same methods

can be applied to other inequalities, including Simpson’s and
trapezoidal inequalities for different classes of s-convex
functions.
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