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This article focuses on finding the numerical solution of the nonlinear time–fractional partial integro–differential equation. For
this purpose, we use the operational matrices based on Pell polynomials to approximate fractional Caputo derivative,
nonlinear, and integro–differential terms; and by collocation points, we transform the problem to a system of nonlinear
equations. This nonlinear system can be solved by the fsolve command in Matlab. The method’s stability and convergence
have been studied. Also included are five numerical examples to demonstrate the veracity of the suggested strategy.

1. Introduction

Nowadays, fractional partial differential equations (FPDEs)
have emerged as one of themost crucial issues due to their vast
applications in various branches of science, such as medicine
[1, 2], control theory [3–5], engineering [6, 7], viscoelasticity
[8], mathematical physics [9], geo–hydrology [10], signals
[11], stochastic models [12], electrical engineering, [13], and
financial economics [14]. Due to the fact that analytical solu-
tions of FPDEs are rarely available, the use of numerical
methods is inevitable. Hitherto, a number of numerical
methods for FPDEs have been suggested, such as finite differ-
ence [15, 16], spectral methods [17–21], homotopy methods
[22, 23], and finite element [24, 25]. The nonlinear FPDEs
have been extensively analyzed using numerical methods.
Dehghan et al. used the homotopy analysis method to con-
struct a scheme for solving the fractional KdV equation [26].
Nikan et al. proposed a meshless technique in order to solve

the nonlinear fractional fourth–order diffusion equation
[27]. Safari and Azarsa introduced a meshless method based
on Muntz polynomials to solve nonlinear and linear space
fractional partial differential equations [28]. Yaslan applied
the Legender collocation method for solving nonlinear frac-
tional partial differential equations [29].

When it comes to solving differential equations, spectral
approaches are extremely effective. The solution to the dif-
ferential equation is sought as a series of basis polynomials
using this method. The Galerkin, Tao, and collocation
approximations are the most common spectral methods
[30, 31]. For example, Samiee et al. [20] designed a Pet-
rov–Galerkin spectral method for distributed–order PDEs.
Agarwal et al. [32] suggested a spectral collocation approach
for variable–order fractional integro–differential equations.
In [33], the authors used the polynomial–sinc collocation
method for solving distributed order fractional differential
equations. Abbaszadeh et al. proposed a Crank–Nicolson
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Galerkin spectral method for distributed order weakly singu-
lar integro–partial differential equations [34].

In the present paper, we offer a numerical technique for
solving the nonlinear time–fractional partial integro–differ-
ential equation (TFPIDEs) with a weakly singular kernel

C
0D

α
ηV ξ, ηð Þ +V ξ, ηð ÞV ξ ξ, ηð Þ

=
ðη
0
η − sð Þβ−1V ξξ ξ, sð Þds +G ξ, ηð Þ, ξ ∈ 0, L½ �, η ∈ 0, T½ �,

ð1Þ

with initial and boundary conditions

V 0, ηð Þ =Φ1 ηð Þ,V L, ηð Þ =Φ2 ηð Þ, 0 < η ≤ T , ð2Þ

V ξ, 0ð Þ =Ψ ξð Þ, 0 < ξ ≤ L, ð3Þ
where 0 < α, β < 1, gðξ, ηÞ ∈ Cð½0, L� × ½0, T�Þ, and C

0D
α
η

signify the fractional operator. This problem appears in the
modeling of heat transfer materials with memory, popula-
tion dynamics [35], and nuclear reaction theory [36].

To the best of the author’s knowledge, little work has been
done on problem (1). For example, Guo et al. [37] proposed a
numerical technique for solving (1)–(3). In the case of α = 1,
Zheng et al. [35] described three semi–implicit compact finite
difference schemes for problem (1)–(3). This encourages us to
suggest a numerical scheme for the problem (1)–(3). The finite
difference schemes are the easiest methods for solving these
equations. It is, however, difficult to apply the mathematical
study of finite difference methods to nonlinear TFPIDEs.
Polynomial spectral techniques are effective tools for solving
PDEs. To build spectral methods, many polynomials have
been developed (see [38–41]). The coefficients of Pell polyno-
mials are integers, and the number of terms increases slowly.
This leads to less CPU time and fewer computational errors.
Because of this, the Pell polynomials with both of these two
characteristics will be employed.

In this paper, we will focus on the spectral collocation
method based on two–variable Pell polynomials. We use them
as the basis polynomials to solve the main problem numerically.
With the use of operational matrices, the problem is turned into
a system of nonlinear equations in the approach based on these
polynomials. The error analysis is presented. Several test prob-
lems are provided to illustrate the method’s efficacy.

The following is the body of the article: Section 2 intro-
duces a number of key themes. To remedy the main problem,
we suggest a polynomial spectral technique in Section 3. The
error analysis is investigated in Section 4. Section 5 contains
the experiments. The conclusion is addressed in Section 6.

2. Definitions

Definition 1 (see [15]). The Riemann–Liouville integral of a
function zðξ, ηÞ on ð0, LÞ × ð0, TÞ is defined as follows

RL
0 I α

ηz ξ, ηð Þ = 1
Γ αð Þ

ðη
0
η − τð Þα−1z ξ, τð Þdτ, 0 < α < 1: ð4Þ

Definition 2 (see [15]). The Riemann–Liouville derivative of
a function zðξ, ηÞ on ð0, LÞ × ð0, TÞ is defined as follows

RL
0 Dα

ηz ξ, ηð Þ = 1
Γ 1 − αð Þ

d
dη

ðη
0
η − τð Þ−αz ξ, τð Þdτ, 0 < α < 1:

ð5Þ

Definition 3 (see [15]). The Caputo derivative of a function
zðξ, ηÞ on ð0, LÞ × ð0, TÞ is defined as follows

C
0D

α
ηz ξ, ηð Þ = 1

Γ 1 − αð Þ
ðη
0
η − τð Þ−αz′ ξ, τð Þdτ, 0 < α < 1: ð6Þ

With respect to these definitions, we have the following
properties

RL
0 I α

η
C
0
Dα

ηz ξ, ηð Þ = z ξ, ηð Þ − z ξ, 0ð Þ, 0 < α < 1,0:4cm, ð7Þ

C
0D

α
ηc = 0, c = constant, ð8Þ

C
0D

α
ηη

m =
0, m = 0,
Γ m + 1ð Þ

Γ m + 1 − αð Þ η
m−α,m = 1, 2,⋯:

0B@ ð9Þ

The following relation can be used to construct Pell poly-
nomials: [42]:

P l+2 ξð Þ = 2ξP l+1 ξð Þ +P l ξð Þ,P 0 ξð Þ = 0,P 1 ξð Þ = 1: ð10Þ

According to [42], P nðξÞ has the following form

P l ξð Þ = 〠
l−1/2b c

k=0

l − k − 1

k

 !
2ξð Þl−2k−1: ð11Þ

We can represent a continuous function V ðξÞ via the
Pell polynomials as follows:

V ξð Þ ≈V K ξð Þ = 〠
K

i=0
�vi+1P i+1 ξð Þ =V TP K ξð Þ, ð12Þ

where

V = �v1, �v2,⋯, �vK+1½ �T ,P K ξð Þ = P 1 ξð Þ,P 2 ξð Þ,⋯,P K+1 ξð Þ½ �T :
ð13Þ

Analogously, a function V ðξ, ηÞ defined on ½0, L� × ½0, T�
may be described as follows:

V ξ, ηð Þ ≈V KJ ξð Þ = 〠
K

i=0
〠
J

j=0
�vi+1,j+1P i+1 ξð ÞP j+1 ηð Þ

=P K ξð ÞTWP J ηð Þ =V TP KJ ξ, ηð Þ,
ð14Þ
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and W denotes a matrix of suitable dimensions, as well
as V and P K Jðξ, ηÞ are the following:

V = �v11, �v12,⋯, �v1J+1, �v21,⋯, �u2J+1,⋯, �vK1,⋯, �vK+1J+1
� �T ,

ð15Þ

P KJ ξ, ηð Þ = P 11 ξ, ηð Þ,⋯,P 1J+1 ξ, ηð Þ,P 21 ξ, ηð Þ,⋯,P 2J+1
�
� ξ, ηð Þ,⋯,P K+11 ξ, ηð Þ,⋯,P K+1J+1 ξ, ηð Þ�T :

ð16Þ

We may also rephrase P KðξÞ,P JðηÞ in the following
way:

P K ξð Þ =QξT ξð Þ, ð17Þ

P J ηð Þ =QηT ηð Þ, ð18Þ

T ξð Þ = 1, ξ,⋯, ξK
h iT

,T ηð Þ = 1, η,⋯, ηJ
� �T, ð19Þ

where

Qξ =

a0,0 0 0 0 ⋯ 0

0 a1,1 0 0 ⋯ 0

a2,0 0 a2,2 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

aK ,1 0 aK ,3 ⋯ 0 aK ,K

0BBBBBBBB@

1CCCCCCCCA
,

Qη =

a0,0 0 0 0 ⋯ 0

0 a1,1 0 0 ⋯ 0

a2,0 0 a2,2 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

aJ ,1 0 aJ ,3 ⋯ 0 aJ ,J

0BBBBBBBB@

1CCCCCCCCA
, ð20Þ

with

ai,j
� �

=

i −
i − j
2

� �
i − j
2

� �
0BBB@

1CCCA2i−2
i− j
2b c, if i ≥ j, i, j = odd or i, j = even

0, otherwise:

8>>>>>><>>>>>>:
ð21Þ

3. Analysis of the Numerical Method

Here, we find several operational matrices with the help of
Pell polynomials, which are useful in developing the sug-
gested technique.

To begin, we estimate the fractional operator as follows:

C
0D

α
ηV ξ, ηð Þ ≈ C

0D
α
ηV KJ ξ, ηð Þ

= C
0D

α
ηP K ξð ÞTWP J ηð Þ =P K ξð ÞTW C

0D
α
ηP J ηð Þ

� 	
=P K ξð ÞTW C

0D
α
ηQηT ηð Þ

� 	
,

ð22Þ

=P K ξð ÞTWQη
C
0D

α
ηT ηð Þ

� 	
: ð23Þ

Thanks to using relation (9), we obtain

C
0D

α
ηV KJ ξ, ηð Þ =P K ξð ÞTWQη 0,

Γ 2ð Þ
Γ 2 − αð Þ η

1−α,
Γ 3ð Þ

Γ 3 − αð Þ η
2−α,⋯,

Γ J + 1ð Þ
Γ J + 1 − αð Þ η

J−α

 �T

, ð24Þ

=P K ξð ÞTWQη

0 0 0 ⋯ 0

0
Γ 2ð Þ

Γ 2 − αð Þ η
−α 0 ⋯ 0

0 0
Γ 3ð Þ

Γ 3 − αð Þ η
−α ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 ⋯
Γ J + 1ð Þ

Γ J + 1 − αð Þ η
−α

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA

1

η

η2

⋮

ηJ

0BBBBBBBB@

1CCCCCCCCA
, ð25Þ

=P K ξð ÞTWQηMαQ
−1
η P J ηð Þ, ð26Þ
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where

Mα = diag 0,
Γ 2ð Þ

Γ 2 − αð Þ η
−α,

Γ 3ð Þ
Γ 3 − αð Þ η

−α,⋯,
Γ J + 1ð Þ

Γ J + 1 − αð Þ η
−α

� 

:

ð27Þ

C
0D

α
ηV ξ, ηð Þ ≈P K ξð ÞTWQηMαQ

−1
η P J ηð Þ: ð28Þ

Next, we approximate the nonlinear and integro–differ-
ential terms in equation (1). First, we compute P K ′ðξÞ and
P K ′′ðξÞ.

P K′ ξð Þ =QξT ′ ξð Þ =Qξ

0

1

2ξ

⋮

KξK−1

0BBBBBBBBB@

1CCCCCCCCCA

=Qξ

0 0 0 0 ⋯ 0 0 0

1 0 0 0 ⋯ 0 0 0

0 2 0 0 ⋯ 0 0 0

0 0 3 0 ⋯ 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 0 ⋯ 0 N 0

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA

1

ξ

ξ2

⋮

ξK

0BBBBBBBBBB@

1CCCCCCCCCCA
,

ð29Þ

=QξD′T ξð Þ =QξD′Q−1
ξ P K ξð Þ, ð30Þ

where

D′ =

0 0 0 0 ⋯ 0 0 0

1 0 0 0 ⋯ 0 0 0

0 2 0 0 ⋯ 0 0 0

0 0 3 0 ⋯ 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 0 ⋯ 0 N 0

0BBBBBBBBBBB@

1CCCCCCCCCCCA
: ð31Þ

Similarly, we obtain

P K′ ′ ξð Þ =QξT ′′ ξð Þ =QξD′′Q−1
ξ P K ξð Þ, ð32Þ

where D′′ = ðdi,jÞ1≤i,j≤K+1.

di,j
� �

=
i − 1ð Þ i − 2ð Þ, i ≥ 3 , j = i − 2,

0, otherwise:

 
ð33Þ

If we use (30), we get

V ξ, ηð ÞV ξ ξ, ηð Þ ≈V KJ ξ, ηð ÞV K Jx ξ, ηð Þ
=P K ξð ÞTWP J ηð ÞP K ξð ÞTQ−T

ξ D′TQT
ξWP J ηð Þ:

ð34Þ

For integro–differential term, using (32), we have

ðη
0
η − sð Þβ−1V ξξ ξ, sð Þds ≈

ðη
0
η − sð Þβ−1P K′ ′ ξð ÞTWP J sð Þds

=
ðη
0
η − sð Þβ−1 QξD′′Q−1

ξ P K ξð Þ
� 	T

WP J sð Þds,
ð35Þ

=P K ξð ÞTQ−T
ξ D′′TQT

ξW

ðη
0
η − sð Þβ−1QηT sð Þds, ð36Þ

=P K ξð ÞTQ−T
ξ D′′TQT

ξWQη

ðη
0

1, s,⋯,sJ
� �T
η − sð Þ1−β

ds: ð37Þ

On the other hand, the following relationship is valid:ðη
0

ξk

η − ξð Þ1−β
dξ =

Γ k + 1ð ÞΓ βð Þ
Γ k + β + 1ð Þ η

k+β, 0 < β < 1, k = 0, 1, 2,⋯:

ð38Þ

So, by substituting (38) into (37), we have

ðη
0
η − sð Þβ−1V ξξ ξ, ηð Þds ≈P K ξð ÞTQ−T

ξ D′′TQT
ξWQη

Γ βð Þ
Γ β + 1ð Þ η

β,
Γ 2ð ÞΓ βð Þ
Γ β + 2ð Þ η

β+1,⋯,
Γ J + 1ð ÞΓ βð Þ
Γ β + J + 1ð Þ η

β+J

 �T

, ð39Þ

=P K ξð ÞTQ−T
ξ D′′TQT

ξWQη

Γ βð Þ
Γ β + 1ð Þ 0 0 ⋯ 0

0
Γ 2ð ÞΓ βð Þ
Γ β + 2ð Þ 0 ⋯ 0

0 0
Γ 3ð ÞΓ βð Þ
Γ β + 3ð Þ ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 ⋯
Γ J + 1ð ÞΓ βð Þ
Γ β + J + 1ð Þ

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA

ηβ

ηβ+1

ηβ+2

⋮

ηβ+J

0BBBBBBBB@

1CCCCCCCCA
, ð40Þ

=P K ξð ÞTQ−T
ξ D′′TQT

ξWQηST
β ηð Þ, ð41Þ
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where

S = diag
Γ βð Þ

Γ β + 1ð Þ ,
Γ 2ð ÞΓ βð Þ
Γ β + 2ð Þ ,⋯,

Γ J + 1ð ÞΓ 1 − βð Þ
Γ β + J + 1ð Þ

� 

,

ð42Þ

T β ηð Þ = ηβ, ηβ+1,⋯,ηβ+J
h i

: ð43Þ

Hence, using relations (28), (34), and (41), as a result, we
get

Now, from relation (44), we create the nonlinear system
below.

R1 ξi, ηj
� 	

≈ 0 0 ≤ i ≤ K − 2, 0 ≤ j ≤ J − 1,

R2 ξið Þ ≈ 0 i = 0, 1,⋯, K ,R4 ηj

� 	
≈ 0

R3 ηj

� 	
≈ 0 j = 0, 1,⋯, J − 1, j = 0, 1,⋯, J − 1,

8>>>>><>>>>>:
ð45Þ

where ξi = ð2i + 1Þ/2K + 2 and ηj = ð2j + 1Þ/2J + 2.
By solving this system, the unknown matrix W can be

determined. It is worth noting that we have used the fsolve
command in Matlab.

4. Convergence

Here, we prove that the numerical scheme for solving
(1)–(3) is convergent, and we follow references [43, 44].
We assume that

G = span P 1 ξð Þ,P 2 ξð Þ,⋯,P K+1 ξð Þf g, ð46Þ

Q = span P 1 ηð Þ,P 2 ηð Þ,⋯,P J+1 ηð Þ� �
, ð47Þ

Gx = span P 1′ ξð Þ,P 2′ ξð Þ,⋯,P K+1′ ξð Þ
n o

, ð48Þ

Gxx = span P 1′′ ξð Þ,P 2′′ ξð Þ,⋯,P K+1′ ′ ξð Þ
n o

: ð49Þ

V ξ, ηð Þ −V K J ξ, ηð Þ�� ��
2 ≤

H1LT L + Tð ÞK+J+1
K + J + 1ð Þ! , ð50Þ

V ξ ξ, ηð Þ −V KJξ ξ, ηð Þ�� ��
2 ≤

H2LT L + Tð ÞK+J+1
K + J + 1ð Þ! , ð51Þ

V ξξ ξ, ηð Þ −V KJξξ ξ, ηð Þ�� ��
2 ≤

H3LT L + Tð ÞK+J+1
K + J + 1ð Þ! , ð52Þ

Theorem 4. Let V ðξ, ηÞ ∈ CK+J+3ð½0, L� × ½0, T�Þ and V K Jðξ
, ηÞ, V KJξðξ, ηÞ, and V KJξξðξ, ηÞ be the best approximations
of V ðξ, ηÞ, V ξðξ, ηÞ, and V ξξðξ, ηÞ in the spaces G ×Q, Gξ

×Q, and Gξξ ×Q, respectively. The following inequalities
are true.

where Hi =maxk=0,⋯,J+K+ijV kðξ, ηÞj.

V ξ, ηð Þ =V 0, 0ð Þ +V ξ 0, 0ð Þξ +V η 0, 0ð Þη + 1
2!

� V ξξ 0, 0ð Þξ2 + 2V ξη 0, 0ð Þξη +V ηη 0, 0ð Þη2
� 	

+⋯,

ð53Þ

+
1
n!

〠
i+j=J+K

n

j

 !
V ξiη j 0, 0ð Þξiη j + RJ+K , 0,0ð Þ ξ, ηð Þ

= PJ+K , 0,0ð Þ ξ, ηð Þ + RJ+K , 0,0ð Þ ξ, ηð Þ,
ð54Þ

where

RJ+K , 0,0ð Þ ξ, ηð Þ = 1
J + Kð Þ! 〠

i+j=J+K+1

J + K + 1

j

 !
ξiηj

�
ð1
0
V ξiη j mξ,mηð Þ 1 −mð ÞJ+Kdm:

ð55Þ

Proof. Using Taylor expansion, we have [45].

R1 ξ, ηð Þ =P K ξð ÞTWQηMαQ
−1
η P J ηð Þ +P K ξð ÞTWP J ηð ÞP K ξð ÞTQ−T

ξ D′TQT
ξWP J ηð Þ −

P K ξð ÞTQ−T
ξ D′′TQT

ξWQηST
β ηð Þ −G ξ, ηð Þ ≈ 0,

R2 ξð Þ =P K ξð ÞTWP J 0ð Þ −Ψ ξð Þ ≈ 0,

R3 ηð Þ =P K 0ð ÞTWP J ηð Þ −Φ1 ηð Þ ≈ 0,

R4 ηð Þ =P K Lð ÞTWP J ηð Þ −Φ2 ηð Þ ≈ 0:

8>>>>>>>>>><>>>>>>>>>>:
ð44Þ
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According to the best approximation theorem

V ξ, ηð Þ −V JK ξ, ηð Þ�� ��
2 ≤ V ξ, ηð Þ − PJ+K , 0,0ð Þ ξ, ηð Þ

��� ������ ���
2
,

ð56Þ

=
1

J + Kð Þ! 〠
i+j=J+K+1

J + K + 1

j

 !
ξiηj
ð1
0
V ξiη j mξ,mηð Þ 1 −mð ÞK+Kdm

�����
�����
2

,

ð57Þ

=
ðT
0

ðL
0

1
J + Kð Þ! 〠

i+j=J+K+1

J + K + 1

j

 !
ξiηj

  

�
ð1
0
V ξiη j mξ,mηð Þ 1 −mð ÞJ+Kdm


2

dξdη

!1/2

≤
ðT
0

ðL
0

H1
J + K + 1ð Þ! 〠

i+j=J+K+1

J + K + 1

j

 !
ξiηj

 !2

dξdη

0@ 1A1/2

=
H1

J + K + 1ð Þ!
ðT
0

ðL
0
ξ + ηð Þ2K+2J+2dξdη

� 
1/2

≤
H1LT L + Tð ÞJ+K+1

J + K + 1ð Þ! :

ð58Þ
Similarly, other inequalities can also be proved.

Theorem 5. Let V K Jðξ, ηÞ is the exact solution and ~V KJðξ,
ηÞ = ~V

T
PK Jðξ, ηÞ is the approximation solution of equations

(45). Then, one has

V NM ξ, ηð Þ − ~V NM ξ, ηð Þ
��� ���

2
≤ V − ~V
��� ���

2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LT〠

K

r=0
〠
J

s=0
〠
r
2b c

k=0

r − k

k

 !
2Lð Þr−2k

0@ 1A2

〠
s
2b c

k=0

s − k

k

 !
2Tð Þs−2k

0@ 1A2
vuuut :

ð59Þ

Proof. We have

V KJ ξ, ηð Þ − ~V KJ ξ, ηð Þ
��� ���2

2

=
ðT
0

ðL
0
V KJ ξ, ηð Þ − ~V KJ ξ, ηð Þ
��� ���2dξdη = ðT

0

ðL
0

= 〠
K

r=0
〠
J

s=0
�vr+1,s+1 −e�vr+1,s+1� 	

P r+1 ξð ÞP s+1 ηð Þ
�����

�����
2

dξdη,

ð60Þ

≤
ðT
0

ðL
0

〠
K

r=0
〠
J

s=0
�vr+1,s+1 −e�vr+1,s+1�� ��2 !

� 〠
K

r=0
〠
J

s=0
P r+1 ξð ÞP s+1 ηð Þj j2

 !
dξdη,

ð61Þ

= 〠
K

r=0
〠
J

s=0
�vr+1,s+1 −e�vr+1,s+1�� ��2 〠K

r=0
〠
J

s=0

ðT
0

ðL
0

� P r+1 ξð ÞP s+1 ηð Þj j2dξdη,
ð62Þ

= V − ~V
��� ���2

2
〠
K

r=0
〠
J

s=0

ðT
0

ðL
0
〠
r
2b c

k=0

r − k

k

 !
2r−2kξr−2k

������
������
2

� 〠
s
2b c

k=0

s − k

k

 !
2s−2kηs−2k

������
������
2

dξdη

≤ V − ~V
��� ���2

2
〠
K

r=0
〠
J

s=0

ðT
0

ðL
0
〠
i
2b c

k=0

r − k

k

 !
2r−2kLr−2k

������
������
2

� 〠
s
2b c

k=0

s − k

k

 !
2d−2kTs−2k

������
������
2

dξdη

= V − ~V
��� ���2

2
LT〠

K

r=0
〠
J

s=0
〠
r
2b c

k=0

r − k

k

 !
2r−2kLr−2k

������
������
2

� 〠
s
2b c

k=0

s − k

k

 !
2s−2kTs−2k

������
������
2

:

ð63Þ

So that

V K J ξ, ηð Þ − ~V K J ξ, ηð Þ
��� ���

2
≤ V − ~V
��� ���

2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LT 〠

K

r=0
〠
J

s=0
〠
r
2b c

k=0

r − k

k

 !
2Lð Þr−2k

0@ 1A2

〠
s
2b c

k=0

s − k

k

 !
2Tð Þs−2k

0@ 1A2
vuuut :

ð64Þ

Now, we prove that the presented numerical method is
convergent.

Theorem 6. Let SKJðξ, ηÞ be the perturbation term and
V KJðξ, ηÞ be the approximate solution to the main problem
derived using the proposed approach. Then, the perturbation
term tends to zero as K , J ⟶∞.

Proof. Thanks to (9), we deduce that

V ξ, ηð Þ =Ψ ξð Þ−RL
0 I α

ηV ξ, ηð ÞV ξ ξ, ηð Þ

+RL
0 I α

η

ðη
0
η − sð Þβ−1V ξξ ξ, sð Þds+RL

0 I α
ηG ξ, ηð Þ:

ð65Þ

Assume that V NMðξ, ηÞ is an approximate solution of
the above equation. It means that
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V K J ξ, ηð Þ =Ψ ξð Þ−RL
0 I α

ηV KJ ξ, ηð ÞV K Jξ ξ, ηð Þ

+RL
0 I α

η

ðη
0
η − sð Þβ−1V K Jξξ ξ, sð Þds

+RL
0 I α

ηG ξ, ηð Þ + SK J ξ, ηð Þ,

ð66Þ
where SKJ is the perturbation term. From equations (65) and
(66), we have

Table 1: Numerical reports in Example 1.

ξi, ηið Þ α = 0:5, K = 11 α = 0:5, K = 11 α = 0:5, K = 9 α = 0:5, K = 9
β = 0:1, J = 4 β = 0:3, J = 4 β = 0:7, J = 4 β = 0:9, J = 4

0:1,0:1ð Þ 5:2665e − 11 7:5026e − 11 9:4157e − 10 1:5935e − 09
0:2,0:2ð Þ 8:8713e − 10 7:0142e − 10 1:7084e − 09 4:5505e − 09
0:3,0:3ð Þ 4:6062e − 09 3:6713e − 09 5:8173e − 08 1:3764e − 09
0:4,0:4ð Þ 1:4766e − 08 1:2353e − 08 3:6620e − 07 1:2902e − 07
0:5,0:5ð Þ 3:6426e − 08 3:1853e − 08 1:2736e − 06 6:7104e − 07
0:6,0:6ð Þ 7:6243e − 08 6:9345e − 08 3:4065e − 06 2:2596e − 06
0:7,0:7ð Þ 1:4258e − 07 1:3432e − 07 7:7630e − 06 6:0393e − 06
0:8,0:8ð Þ 2:4555e − 07 2:3833e − 07 1:5689e − 05 1:3673e − 05
0:9,0:9ð Þ 3:8165e − 07 3:7801e − 07 2:5814e − 05 2:4145e − 05
1, 1ð Þ 7:3344e − 15 1:1944e − 16 1:6793e − 15 2:1690e − 14

EK J ξ, ηð Þ = −RL
0 I α

η V ξ, ηð ÞV x ξ, ηð Þ −V KJ ξ, ηð ÞV K Jξ ξ, ηð Þ� �
+RL
0 I α

η

ðη
0
η − sð Þβ−1 V ξξ ξ, ηð Þ −V KJξξ ξ, sð Þ� �

ds − SK J ξ, ηð Þ

= −RL
0 I α

η V K J ξ, ηð Þ V ξ ξ, ηð Þ −V K Jξ ξ, ηð Þ� �
+V ξ ξ, ηð Þ V ξ, ηð Þ −V K J ξ, ηð Þ� �� �

+RL
0 I α

η

ðη
0
η − sð Þβ−1 V ξξ ξ, ηð Þ −V K Jξξ ξ, sð Þ� �

ds − SK J ξ, ηð Þ

= −RL
0 I α

η V K J ξ, ηð ÞEK Jξ ξ, ηð Þ +V ξ ξ, ηð ÞEKJ ξ, ηð Þ� �
+RL
0 I α

η

ðη
0
η − sð Þβ−1EK Jξξ ξ, ηð Þds − SK J ξ, ηð Þ

= −RL
0 I α

η V K J ξ, ηð ÞEK Jξ ξ, ηð Þ + V ξ ξ, ηð Þ −V K Jξ ξ, ηð Þ +V KJξ η, ηð Þ� �
EK J ξ, ηð Þ� �

+RL
0 I α

η

ðη
0
η − sð Þβ−1EKJξξ ξ, ηð Þds − SK J ξ, ηð Þ

= −RL
0 I α

η V K J ξ, ηð ÞEK Jξ ξ, ηð Þ +V K Jξ ξ, ηð ÞEK J ξ, ηð Þ +EK Jξ ξ, ηð ÞEKJ ξ, ηð Þ� �
+RL
0 I α

η

ðη
0
η − sð Þβ−1EK Jξξ ξ, ηð Þds − SK J ξ, ηð Þ,

ð67Þ
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Figure 1: Pictorial results in Example 1 with α = 0:5, β = 0:1, and N = 11,M = 4.

Table 2: Norm of errors for α = β = 0:5 and CPU time in Example 1.

J = 4, K = 6 J = 4, K = 7 J = 4, K = 8 J = 4, K = 9 J = 4, K = 10
ek k∞ ek k∞ ek k∞ ek k∞ ek k∞

1:7427e − 03 1:7093e − 03 3:7497e − 05 3:7046e − 05 5:5452e − 07

CPU 0:7787s 1:3037s 1:4066s 1:5607s 1:9541s

Table 3: Numerical results in Example 2.

ξi, ηið Þ α = 0:5 α = 0:7 α = 0:9 α = 1
β = 0:5 β = 0:5 β = 0:5 β = 0:5

0, 0ð Þ 1:3878e − 17 1:3878e − 17 1:3878e − 17 6:9389e − 17
0:1,0:1ð Þ 2:9677e − 15 2:4715e − 15 2:1732e − 15 2:4820e − 15
0:2,0:2ð Þ 1:3601e − 14 1:0819e − 14 8:4386e − 15 8:1749e − 15
0:3,0:3ð Þ 4:2369e − 14 3:3196e − 14 2:4869e − 14 2:1178e − 14
0:4,0:4ð Þ 1:0748e − 13 8:5140e − 14 6:4282e − 14 5:2874e − 14
0:5,0:5ð Þ 2:2699e − 13 1:8235e − 13 1:4061e − 13 1:1730e − 13
0:6,0:6ð Þ 4:0491e − 13 3:2892e − 13 2:5840e − 13 2:2102e − 13
0:7,0:7ð Þ 6:1083e − 13 5:0086e − 13 3:9917e − 13 3:4946e − 13
0:8,0:8ð Þ 7:5499e − 13 6:2282e − 13 5:0181e − 13 4:4802e − 13
0:9,0:9ð Þ 6:5503e − 13 5:4298e − 13 4:4097e − 13 4:0014e − 13
1, 1ð Þ 7:5493e − 16 3:3867e − 16 1:0991e − 15 1:0437e − 15

Table 4: Norm of errors for α = β = 0:5 and CPU time in Example 2.

J = 3, K = 3 J = 3, K = 4 J = 3, K = 5 J = 3, K = 6 J = 3, K = 7
ek k∞ ek k∞ ek k∞ ek k∞ ek k∞

1:9604e − 12 4:9638e − 12 8:0466e − 11 1:3686e − 13 1:4568e − 12

CPU 0:7492s 0:9354s 1:1262s 1:2330s 1:2589s
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where EKJðξ, ηÞ =V ðξ, ηÞ −V K Jðξ, ηÞ. So that

SK J ξ, ηð Þ�� ��
2 ≤

RL

0
I α

ηV K J ξ, ηð ÞEKJξ ξ, ηð Þ +V KJξ ξ, ηð ÞENM ξ, ηð Þ
�����
+EKJξ ξ, ηð ÞENM ξ, ηð Þ��2 + EKJ ξ, ηð Þ�� ��

2

+
RL

0
I α

η

ðη
0
η − sð Þβ−1ENMξξ ξ, ηð Þds

�����
�����
2

= I1k k2 + ENM ξ, ηð Þk k2 + I2k k:
ð68Þ

Now, we compute kI1k2 and kI2k2.

I2k k22 =
1

Γ αð Þ2
ðT
0

ðL
0

ðη
0

ðτ
0
η − τð Þα−1 τ − sð Þβ−1EKJξξ ξ, sð Þdsdτ

���� ����2dξdη
≤

1
Γ αð Þ2

ðT
0

ðL
0

ðη
0

ðτ
0
η − τð Þα−1 τ − sð Þβ−1 eKJξξ ξ, sð Þ�� ��dsdτ� 
2

dξdη

≤
1

Γ αð Þ2
ðT
0

ðL
0

ðη
0

ðτ
0
η − τð Þ2α−2 τ − sð Þ2β−2dsdτ

� 

·
ðη
0

ðτ
0
EK Jξξ ξ, sð Þ�� ��2dsdτ� 


dξdη ≤
T

Γ αð Þ2
ðT
0

ðL
0

·
ðη
0

ðτ
0
η − τð Þ2α−2 τ − sð Þ2β−2dsdτ

� 
ðT
0
EK J ξ, ηð Þ�� ��2dsdξdη

≤
T

Γ αð Þ2
ðT
0

ðL
0

T2β−1 × t2α−1
� 	ðT

0
EKJ ξ, ηð Þ�� ��2dsdξdη

=
T2β

Γ αð Þ2
ðT
0
η2α−1dη

� 
 ðT
0

ðL
0
EK Jξξ ξ, sð Þ�� ��2dξds� 


=
T2β+2α

Γ αð Þ2 2αð Þ EK Jξξ ξ, ηð Þ�� ��2
2:

ð69Þ

Similarly

I1k k22 ≤
T2α

Γ αð Þ2 2αð Þ V KJ ξ, ηð ÞEK Jξ ξ, ηð Þ +V KJξ ξ, ηð ÞEK J ξ, ηð Þ +EKJξ η, ηð ÞEKJ ξ, ηð Þ�� ��2
2:

ð70Þ

Therefore, we conclude

SK J ξ, ηð Þ�� ��
2 ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2α

Γ αð Þ2 2αð Þ

s
V K J ξ, ηð ÞEK Jξ ξ, ηð Þ��

+V K Jξ ξ, ηð ÞEKJ ξ, ηð Þ +EK Jξ ξ, ηð ÞEK J ξ, ηð Þ��2
+ EK J ξ, ηð Þ�� ��

2 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2β+2α

Γ αð Þ2 2αð Þ

s
EK Jξξ ξ, ηð Þ�� ��

2

≤ C1 V K J ξ, ηð Þ�� ��
2 EK Jξ ξ, ηð Þ�� ��

2

+ C1 V KJξ ξ, ηð Þ�� ��
2 EK J ξ, ηð Þ�� ��

2

+ C1 EK Jξ ξ, ηð Þ�� ��
2 EK J ξ, ηð Þ�� ��

2 + EK J ξ, ηð Þ�� ��
2

+ C2 EK Jξξ ξ, ηð Þ�� ��
2 ≤

C1H2LT L + Tð Þn+1
n + 1ð Þ! V K J ξ, ηð Þ�� ��

2

+
C1H1LT L + Tð Þn+1

n + 1ð Þ! V K Jx ξ, ηð Þ�� ��
2

+
C1H1H2L

2T2 L + Tð Þ2n+2
n + 1ð Þ2 +

H1LT L + Tð Þn+1
n + 1ð Þ

+
C2H3LT L + Tð Þn+1

n + 1ð Þ ,

ð71Þ

where n = K + J . Now SK Jðξ, ηÞ⟶ 0 as K , J ⟶∞.
Finally, we provide a theorem about the convergence of

the series of Pell polynomials. We follow Atta et al. [38,
40], Abd-Elhameed and Youssri [43, 44], and Youssri [46].
According to [47, 48], a square-integrable function V ðξÞ
on ½0, 1� has the following Pell expansion

V ξð Þ = 〠
∞

m=0
�vm+1P m+1 ξð Þ, ð72Þ

where

�vm =m〠
∞

s=0

−1ð Þsb2s+m−1
22s+m−1 s +mð Þ

2s +m − 1

s

 !
, bs =

V s 0ð Þ
s!

:

ð73Þ

Lemma 7 (see [46]). Let IuðzÞ denote the modified Bessel
function of order u of the first kind. The following identity
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Figure 2: Pictorial results in Example 2 for α = 0:5, β = 0:5 and N =M = 3.
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holds:

〠
∞

s=0

zs

s! s +m + 1ð Þ! = t−m+1/2Im+1 2
ffiffiffi
z

p� �
: ð74Þ

Lemma 8 (see [46]). The modified Bessel function of the first
kind Iuz satisfies the following inequality:

Iu zð Þj j ≤ zu cos h zð Þ
2uΓ u + 1ð Þ : ð75Þ

2.5
×10–11
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Figure 3: Pictorial results in Example 3 for J = 4, K = 5: (a) (α = 0:1, β = 0:1), (b) (α = 0:4, β = 0:4), (c) (α = 0:6, β = 0:6), and (d)
(α = 0:8, β = 0:8).

Table 5: Numerical results in Example 3.

ξi, ηið Þ α = 0:1 α = 0:4 α = 0:6 α = 0:8
β = 0:1 β = 0:4 β = 0:6 β = 0:8

0, 0ð Þ 4:7184e − 14 3:4972e − 15 5:5511e − 15 3:9191e − 14
0:1,0:1ð Þ 3:0197e − 14 1:8513e − 17 9:9751e − 13 5:3904e − 14
0:2,0:2ð Þ 9:1656e − 14 1:8249e − 15 3:8079e − 12 1:1759e − 12
0:3,0:3ð Þ 1:9482e − 13 2:8203e − 15 8:9047e − 12 3:4628e − 12
0:4,0:4ð Þ 4:2674e − 13 7:0777e − 15 1:8213e − 11 6:6157e − 12
0:5,0:5ð Þ 9:4080e − 13 1:0436e − 14 3:9364e − 11 1:0878e − 11
0:6,0:6ð Þ 1:9982e − 12 3:2196e − 14 8:7362e − 11 1:6063e − 11
0:7,0:7ð Þ 3:9228e − 12 4:3965e − 14 1:7459e − 10 1:9690e − 11
0:8,0:8ð Þ 6:4684e − 12 8:2379e − 14 2:8359e − 10 1:6850e − 10
0:9,0:9ð Þ 7:9272e − 12 6:1506e − 14 3:2058e − 10 5:0651e − 12
1, 1ð Þ 5:7618e − 12 8:9421e − 14 5:1744e − 11 3:9714e − 12
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Theorem 9. Suppose V ðxÞ ∈ L2½0, 1�, V ðiÞð0Þ ≤ Li,i ≥ 0,
where L is a positive constant and V ðxÞ =∑∞

m=0�vm+1P m+1ðx
Þ. Then

�vm+1j j ≤ Lm cos hL
2mm!

, ð76Þ

and the approximate solution series converges abso-
lutely. Also, if EKðξÞ =∑∞

m=K+1�vm+1P m+1ðξÞ, the following

error estimation is satisfied

EK ξð Þj j ≤ cos h Lð ÞeL/2 L
2
� �K+1

K + 1ð Þ! : ð77Þ

Proof. From (73), Lemma (7), and Lemma (8), we have

�vm+1j j = m + 1ð Þ 〠
∞

s=0

−1ð ÞsV 2s+mð Þ 0ð Þ
22s+m s +m + 1ð Þ 2s +mð Þ

2s +m

s

 !�����
�����

= m + 1ð Þ 〠
∞

s=0

−1ð ÞsV 2s+mð Þ 0ð Þ
22s+m s +m + 1ð Þs s +mð Þ

�����
����� = m + 1ð Þ 〠

∞

s=0

−1ð ÞsV 2s+mð Þ 0ð Þ
22s+ms s +m + 1ð Þ

�����
�����

≤ m + 1ð Þ〠
∞

s=0

L2s+m

22s+ms s +m + 1ð Þ = s + 1ð Þ × L
2

� 
m

〠
∞

s=0

L2/22
� �s

s s +m + 1ð Þ

≤ m + 1ð Þ × L
2

� 
m

×
L2

22

� 
−m+1/2

× Im+1
2L
2

� 

=
2 m + 1ð Þ

L
Im+1 Lð Þ

≤
2 m + 1ð Þ

L
×

Lm+1 cos hL
2m+1Γ m + 2ð Þ =

Lk cos hL
2mm

:

ð78Þ

Table 8: Norm of errors for α = β = 0:5 and CPU time in Example 4.

J = 4, K = 5 J = 4, K = 6 J = 4, K = 7 J = 4, K = 8 J = 4, K = 9
ek k∞ ek k∞ ek k∞ ek k∞ | ek k∞

5:4599e − 05 3:6853e − 06 2:2397e − 07 1:1841e − 08 1:2327e − 09

CPU 0:6648s 1:3185s 1:2689s 1:3789s 1:5100s

Table 9: Norm of errors for α = 0:5, β = 0:5 in Example 4.

J K ek k2
4 5 3:0728e − 05
4 6 2:0621e − 06
4 7 1:1742e − 07
4 8 6:0069e − 09
4 9 7:7425e − 10

Table 7: Numerical reports in Example 4.

ξi, ηið Þ J = 4 J = 4 J = 4 J = 4
K = 6 K = 7 K = 8 K = 9

0, 0ð Þ 3:9549e − 20 1:9230e − 22 6:7320e − 20 1:1194e − 18
0:1,0:1ð Þ 1:0519e − 10 5:3038e − 12 4:6608e − 13 2:8112e − 12
0:2,0:2ð Þ 2:7128e − 09 1:4373e − 10 7:5190e − 12 8:1029e − 12
0:3,0:3ð Þ 2:6072e − 08 1:4112e − 09 6:8470e − 11 1:6060e − 11
0:4,0:4ð Þ 1:0383e − 07 5:6159e − 09 2:7027e − 10 3:5035e − 11
0:5,0:5ð Þ 2:8045e − 07 1:5208e − 08 7:3186e − 10 8:5052e − 11
0:6,0:6ð Þ 6:1575e − 07 3:3347e − 08 1:6119e − 09 1:9935e − 10
0:7,0:7ð Þ 1:2047e − 06 6:5140e − 08 3:1553e − 09 4:1556e − 10
0:8,0:8ð Þ 2:1149e − 06 1:1777e − 07 5:7928e − 09 7:3660e − 10
0:9,0:9ð Þ 2:8168e − 06 1:7066e − 07 8:9641e − 09 9:7501e − 10
1, 1ð Þ 1:3234e − 14 2:6645e − 15 1:0658e − 14 3:5527e − 15

Table 6: Norm of errors for α = β = 0:5 and CPU time in Example 3.

J = 5, K = 4 J = 5, K = 5 J = 5, K = 6 J = 5, K = 7 J = 5, K = 8
ek k∞ ek k∞ ek k∞ ek k∞ ek k∞

1:7474e − 13 4:6830e − 10 5:1812e − 10 2:2715e − 09 3:7225e − 08

CPU 0:6941s 1:4075s 1:4990s 1:7516s 2:1537s
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As a result, the first portion of the theorem is established.

We now go on to the second section.

�vm+1P m+1 ξð Þj j ≤ Lm cos hL
2mm

P m+1 1ð Þ, ð79Þ

additionally

〠
∞

m=0

Lm

2mm
P m+1 1ð Þ = 〠

∞

m=0

Lm

2mm
×

1 +
ffiffiffi
2

p� 	m+1
− 1 −

ffiffiffi
2

p� 	m+1

2
ffiffiffi
2

p

= 〠
∞

m=0

1 +
ffiffiffi
2

p� 	
2
ffiffiffi
2

p
L 1 +

ffiffiffi
2

p� 	
/2

� 	m
m

− 〠
∞

m=0

1 −
ffiffiffi
2

p� 	
2
ffiffiffi
2

p
L 1 −

ffiffiffi
2

p� 	
/2

� 	
m!

m

=
1 +

ffiffiffi
2

p� 	
2
ffiffiffi
2

p eL 1+ ffiffi
2

pð Þ/2 −
1 −

ffiffiffi
2

p� 	
2
ffiffiffi
2

p eL 1− ffiffi2pð Þ/2:

ð80Þ

As a result, we can conclude that the series is absolutely
convergent using the comparison test.

For the third part, we have

EK ξð Þj j ≤ cos h Lð Þ 〠
∞

m=K+1

Lm

2mm
= cos h Lð Þ 〠

∞

m=K+1

L/2ð Þm
m

= cos h Lð Þ γ K + 1, L/2ð Þð Þ
Γ K + 1ð Þ eL/2,

ð81Þ

where γðK + 1, L/2Þ is the lower incomplete gamma function
[49], then

EK ξð Þj j ≤ cos h Lð Þ eL/2

Γ K + 1ð Þ
ðL/2
0
ηKe−ηdη ≤

cos h Lð ÞeL/2 L
2
� �k+1

Γ K + 1ð Þ :

ð82Þ

5. Numerical Experiments

Five test problems are offered in this part to demonstrate the
correctness and validity of the presented method. On a Win-
dows 10 (64 bit) Intel(R) Core(TM) i7-7500U CPU operat-
ing at 2.70GHz with 8.0GB of RAM, all computations are
done with Matlab R2020b software. In all examples, we use
the L∞ error norm and L2 error norm

ek k∞ = max
0≤r≤K
0≤s≤J

V ξr , ηsð Þ −V K J ξr , ηsð Þ�� ��, ek k2 = h〠
n

s=0
emsð Þ2

 !1/2

,

ð83Þ

Example 1. Consider the following nonlinear time–fractional
partial integro–differential equation on ½0, 1� × ½0, 1� with the
exact solution V ðξ, ηÞ = η3 sin ðπξÞ

C
0D

α
ηV ξ, ηð Þ +V ξ, ηð ÞV ξ ξ, ηð Þ =

ðη
0
η − sð Þβ−1V ξξ ξ, sð Þds +G ξ, ηð Þ,

ð84Þ

3

2
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1.5

0.5
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,t)

|e
 (x

,t)
|
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Numerical solution Pointwise errors

0.4 0.6 0.5

0
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x t
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1
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1

1

1
0 0

×10–9

Figure 4: Pictorial results in Example 4 for α = 0:5, β = 0:5 and K = 9, J = 4.

Table 10: Norm of errors for α = 0:5, β = 0:5 in Example 5.

α = β = 0:3 α = β = 0:5 α = β = 0:7 α = β = 0:9
J K ek k2 ek k2 ek k2 ek k2
3 5 7:2576e − 05 7:1011e − 05 7:1448e − 05 6:0514e − 05
3 6 1:5363e − 05 1:5000e − 05 1:4978e − 05 1:3806e − 05
3 7 3:8656e − 07 3:7824e − 07 3:7609e − 07 3:4637e − 07
3 8 5:1965e − 08 5:0757e − 08 5:0432e − 08 3:9225e − 08
3 9 1:1091e − 09 2:4799e − 09 1:6532e − 08 6:7070e − 08
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with conditions (2), (3), and

G ξ, ηð Þ = 6η3−α

Γ 4 − αð Þ +
6π2Γ βð Þη3+β
Γ 4 + βð Þ πη6 cos πξð Þ

� 

sin πξð Þ:

ð85Þ

We solved this problem numerically using the polyno-
mial spectral scheme provided in this paper. We employed
fsolve in Matlab to solve a nonlinear system of equations
(45). Table 1 shows the absolute errors for α = 0:5 and vari-
ous β values. We can observe from this table that the recom-
mended strategy is effective. Also, we portrayed the
numerical solution and absolute error surfaces in Figure 1.
Furthermore, the norm of errors and CPU times is reported
in Table 2. Table 1, Table 2, and Figure 1 show that the
numerical method provides acceptable results.

Example 2. Consider the following equation

C
0D

α
ηV ξ, ηð Þ +V ξ, ηð ÞV ξ ξ, ηð Þ =

ðη
0
η − sð Þβ−1V ξξ ξ, sð Þds + G ξ, ηð Þ,

ð86Þ

with conditions (2) and (3). The source term is taken as

G ξ, ηð Þ = 2ξ 1 − ξð Þη2−α
Γ 3 − αð Þ + ξ 1 − 2ξð Þ 1 − ξð Þη4 + 4ηβ+2

β3 + 3β2 + 2β
,

ð87Þ

and V ðξ, ηÞ = η2ξð1 − ξÞ.
The absolute errors for equal values of α, β, and K = J = 3

are illustrated in Table 3. This table shows quite revealingly

that the expressed method has good precision. In addition,
we can observe from the table that only a small number of
basis functions have produced the necessary outcomes. The
CPU times and the norm of errors are provided in Table 4.
Figure 2 shows a visualization of the approximate solution
as well as absolute errors.

Example 3. Consider the following equation on ½0, 1� × ½0, 1�:

C
0D

α
ηV ξ, ηð Þ +V ξ, ηð ÞV ξ ξ, ηð Þ =

ðη
0
η − sð Þβ−1V ξξ ξ, sð Þds +G ξ, ηð Þ,

ð88Þ

with conditions (2) and (3). The source term is taken as

G ξ, ηð Þ = 600ξ3 1 − ξð Þη3−α
Γ 4 − αð Þ −

24η4−α

Γ 5 − αð Þ
+ 10000η6 1 − ηð Þ2 3 − 4ξð Þ ξ2 ξ3 − ξ4

� 	
− 600ξ 1 − 2ξð Þ 6Γ βð Þηβ+3

Γ 4 + βð Þ −
24Γ βð Þηβ+4
Γ 5 + βð Þ

� 

:

ð89Þ

The exact solution is V ðξ, ηÞ = 100ξ3η3ð1 − ξÞð1 − ηÞ.
The numerical results are reported in Table 5. We have

chosen K = 4, J = 5, and for equal α and β, the obtained
results are fruitful. This table confirms that the presented
method has high performance and produces accurate results.
For α = β = 0:5 and different J and K , the norm of errors and
the CPU times are provided in Table 3. The absolute error
functions for equal α and β are sketched in Figure 3. These

Table 11: Norm of errors for α = β = 0:5 and CPU time in Example 5.

J = 3, K = 5 J = 3, K = 6 J = 3, K = 7 J = 3, K = 8 J = 3, K = 9
ek k∞ ek k∞ ek k∞ ek k∞ | ek k∞

1:1228e − 04 2:3945e − 05 6:0186e − 07 8:0155e − 08 4:0315e − 09

CPU 0:5944s 1:0808s 1:1061s 1:1594s 1:2277s
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Figure 5: Pictorial results in Example 5 for α = 0:5, β = 0:5 and K = 9, J = 3.
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figures show that the numerical and exact solutions are
almost identical (Table 6).

Example 4. Consider the following equation:

C
0D

α
ηV ξ, ηð Þ +V ξ, ηð ÞV ξ ξ, ηð Þ =

ðη
0
η − sð Þβ−1V ξξ ξ, sð Þds + G ξ, ηð Þ,

ð90Þ

with conditions (2), (3), and

G ξ, ηð Þ = 6eξη3−α

Γ 4 − αð Þ + η6e2ξ −
6eξΓ βð Þηβ+3
Γ 4 + βð Þ : ð91Þ

The exact solution is V ðξ, ηÞ = η3eξ.
The absolute errors for α = β = 0:5 are presented in

Table 7. Table 8 illustrates the norm of errors and CPU
times for α = β = 0:5 with various J and K values. Table 9
also contains data on L2 errors. Numerical solutions and
pointwise error graphs are demonstrated in Figure 4. This
figure shows the behavior of the numerical solution and
the error function. Numerical results are in good settlement
with theoretical results.

Example 5. Finally, we investigate the following equation on
½0, 1� × ½0, 1�

C
0D

α
ηV ξ, ηð Þ +V ξ, ηð ÞV ξ ξ, ηð Þ =

ðη
0
η − sð Þβ−1V ξξ ξ, sð Þds + G ξ, ηð Þ,

ð92Þ

with conditions (2) and (3). The source term is taken as

G ξ, ηð Þ = 2 1 − ξð Þcosξη2−α
Γ 3 − αð Þ + η4 1 − ξð Þ cos ξ −sin ξ − cos ξ + ξ sin ξð Þ

− 2 sin ξ + ξ − 1ð Þ cos ξð Þ 2Γ βð Þηβ+2
Γ 3 + βð Þ ,

ð93Þ

and V ðξ, ηÞ = η2ð1 − ξÞ cos ξ.
In Table 10, the L2 error is computed for α = β = 0:5 and

different N and M. Table 11 also shows the norm of errors
and CPU times. Figure 5 shows the numerical solution and
absolute error plots. This figure shows that for K = 9 and J
= 4, the numerical solution is close to the exact solution.
Table 10, Table 11, and Figure 5 affirm the validity and effi-
cacy of the presented method.

6. Conclusions

The purpose of this study was to suggest a collocation
approach for solving a nonlinear TFPIDE based on Pell
polynomials. In the Caputo sense, the fractional derivative
is considered. The equation’s solution was expressed as a
series of Pell polynomials with two variables. An algebraic
system of nonlinear equations is obtained using the numer-
ical technique. We proved that the method is convergent.
Five test problems are provided to show that the method is

efficacious. In numerical results, a small number of basis Pell
polynomials is used to obtain good accuracy. In all examples,
the CPU time was about one second. All of the tables and
graphs demonstrated that the strategy is effective.

Data Availability

All results have been obtained by conducting the numerical
procedure and the ideas can be shared for the researchers.
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