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In this paper, by means of the concept of completeness in functional analysis, we characterize probability distributions using
several relative measures of residual life of an item at independent sequences of random times. These sequences are the order
statistics and the record statistics of a random sequence of times. The reliability quantities of the mean residual life, the vitality
function, and the survival function are considered to construct the main characteristics of distributions.

1. Introduction

A characterization relation is a certain distributional or sta-
tistical property of a statistic or statistics that uniquely deter-
mines the associated probability distribution. The
characterization properties derived in literature are mostly
based on random samples from common univariate discrete
and continuous distributions, and some multivariate contin-
uous distributions are also considered. The main approach
in such characterizations use the properties of sample
moments, order statistics, record statistics, and reliability
properties. The literature in the context of characterizations
of probability distributions is extensive. We refer the reader
to several review articles, monographs (e.g., Kagan et al. [1]),
Rao and Shanbhag [2], Galambos and Kotz [3], Arnold et al.
[4], and Galambos and Kotz [5]) and encyclopedic books on
distributions by Johnson, Kotz, and their coauthors (John-
son et al. [6] and Kotz et al. [7]) have appeared to be excel-
lent filters in the subject.

There are some characterization properties of standard
distributions using the properties of order statistics (see,
e.g., Pfeifer [8], Bairamov and Ozkal [9], Huang and Su
[10], Beg et al. [11], Kayid and Izadkhah [12], Akbari et al.
[13], Hu and Lin [14], and Betsch and Ebner [15]). Further-

more, there are several characterization results of reputable
probability distributions derived by the properties of record
statistics (see, e.g., Witte [16], Kamps [17], Franco and Ruiz
[18], Wesolowski and Ahsanullah [19], Nagaraja and Bar-
levy [20], Balakrishnan and Stepanov [21], Baratpour et al.
[22], and Ahmadi [23]).

There may be independent characteristics of a single dis-
tribution in different contexts so that when they are given,
the underlying distribution of the associated random vari-
able is characterized uniquely. For instance, in the context
of reliability and survival analysis, the survival function
(s.f.), the hazard rate (h.r.) function, the mean residual life
(m.r.l.) function, and the vitality function (v.f.) determine
the underlying distribution uniquely. In terms of these
unique quantities, by holding particular relations involving
them, one may also characterize a probability distribution
(see, for example, Gupta and Keating [24], Navarro et al.
[25], Nair and Sankaran [26], Szymkowiak [27], and Szym-
kowiak [28]).

The rest of the paper is organized as follows. In Section
2, we state some preliminary definitions and introduce some
concepts in reliability theory and functional analysis. In Sec-
tion 3, fundamental characterizations of distributions using
weighted residual lives at random times which are order
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statistics of a partial subset of a random sequence of times are
obtained. In Section 4, the characterization properties of dis-
tributions are developed using weighted residual lives at
record values of the random sequence of times. Finally, in Sec-
tion 5, we conclude the paper with further detailed remarks
and outline the results that are of potential interest in future.

2. Preliminaries

Suppose that X is a lifetime random variable with c.d.f. F
and s.f. �F ≔ 1 − F. Let us take X as the life length of a lifespan
or any other item that has a lifetime. The residual lifetime of
that lifespan or the item after time point t until which it has
been alive, is denoted by Xt defined by Xt ≔ ðX − tjX > tÞ for
t : FðtÞ < 1. The random variable Xt , as a time-dependent
conditional random variable, has s.f. �FtðxÞ = �Fðt + xÞ/�FðtÞ,
for all t, x ≥ 0. Being dependent on time, the stochastic resid-
ual lifetime process fXt : t ≥ 0g may be of some interest in
different contexts (see, e.g., Chung [29] and Pekalp [30]).
Gathering data in accordance with appearing Xt in time as
it goes by provides a more insightful and also further infor-
mative method to infer about target population. The mean
residual lifetime function is defined as

mX tð Þ≔ E Xtð Þ =
Ð +∞
t

�F xð Þdx
�F tð Þ : ð1Þ

Define the truncated random variable XðtÞ≔ ðXjX > tÞ
according which the vitality function of X is defined as

vX tð Þ≔ E X tð Þð Þ =
Ð +∞
0

�F x∨tð Þdx
�F tð Þ , ð2Þ

where x∨t =max fx, tg. It is notable here and also it leads to
some basic conclusions in the sequel that the mean residual
lifetime function and the vitality function each is a character-
istic of the underlying distribution (cf. Oakes and Dasu [31]
and Ruiz and Navarro [32]). Let Y be another lifetime random
variable with s.f. �FY , the m.r.l. function mY and the v.f. vY .
Then, to compare the residual live of X relative to the residual
live of Y in different times, the following measures can be set:

R1 X, Y ; tð Þ≔ X − t
mY tð Þ X > tj
� �

,

R2 X, Y ; tð Þ≔ X
vY tð Þ X > tj
� �

,

 R3 X, Y ; tð Þ≔ I x > t½ �
�FY tð Þ ,

ð3Þ

where I½x > t� = 1 whenever x > t and I½x > t� = 0 elsewhere.
Due to the fact that each of the m.r.l., v.f., and s.f. deter-
mines the parent distribution uniquely, we can readily
observe that X and Y are equal in distribution iff EðRiðX,
Y ; tÞÞ = 1, for all t ≥ 0, for any i = 1, 2, 3. The random var-
iables RiðX, Y ; tÞ, i = 1, 2, 3 can be considered a three rela-
tive stochastic process.

The residual life at random time has been determined to
be an important measure in reliability, survival analysis, and
life testing (Yue and Cao [33], Li and Zuo [34], Misra
et al.[35], Cai and Zheng [36], and Dewan and Khaledi
[37]). Let X and T be two lifetime random variables with
c.d.f’s F and FT and probability density functions (p.d.f’s)
f and f T , respectively. Denote by XT = d½X − TjX > T�, the
residual life of X at the random time T with distribution
functionFXT

is obtained. It has been shown that the idle time
of the server in a GI/G/1 queuing system can be stated as a
residual life at random time (cf. Dewan and Khaledi [37]).
In the context of reliability, when X is the total random life
of a warm stand by unit with a random age of T , the random
variable XT then stands as the actual working time of the
stand by unit (cf. Yue and Cao [33]). If X and T are statisti-
cally independent having a common support, then

FXT
xð Þ =

Ð +∞
0 F x + tð Þ − F tð Þ½ �f T tð Þdt

P X > Tð Þ : ð4Þ

For ease of reference, before stating the main fundamen-
tal characterization properties, we provide some useful
notions in functional analysis.

Definition 1. The sequence ψ1, ψ2, is complete in a Hilbert
space H if the only element of H which is orthogonal to
every ψn is the null element, that is,

f , ψnh i = 0, ∀n ≥ 1⇒ f = 0, ð5Þ

where 0 stands for the zero element of H.

We recall that h·, · i signifies an inner product of H. In
the present paper, we utilize the Hilbert space L2½a, b�, whose
inner product is determined by

f1, f2h i =
ðb
a
f1 xð Þf2 xð Þdx, ð6Þ

in which f1 and f2 are two real-valued square integrable
functions defined on ½a, b�. Notice that if ψ1, ψ2,⋯ is a
complete sequence in the Hilbert space H, then ∑cnϕn
with cn = h f , ϕni converges in H provided that ∑jcnj2 <
∞, and the limit equal to f . See, for instance, Higgins
[38] for more detailed discussions about the theory of
completeness. The following result which is a key concept
development shows the characterization results in this
paper.

Lemma 2 (see [39]). Let ψ be an absolutely continuous func-
tion defined on ½a, b� with ψðaÞψðbÞ ≥ 0, and let its derivative
satisfy ψ′ðxÞ ≠ 0 a.e. on ða, bÞ. Then, under the assumption

〠
∞

k=1
λ−1k =∞,where 1 ≤ λ1 < λ2 <⋯, ð7Þ
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the sequence ψλ1 , ψλ2 ,⋯ is complete on ða, bÞ iff the function
ψ is monotone on ða, bÞ.

In the continuing part of this paper, we consider the
sequence of random variables fTn, n ∈ℕg constituting
independent and identically distributed (i.i.d.) nonnegative
random variables with p.d.f. f T , c.d.f. FT , and s.f. �FT : The
element Ti, i = 1,⋯, n in the sequence may denote the
time of occurrence of a certain event. Suppose that X
denotes a random lifetime which is independent of the
sequence fTn, n ∈ℕg, and therefore,

P X > ψ ω T1,⋯, Tnð Þ, xð Þjω T1,⋯, Tnð Þ = tð Þ
= P X > ψ ω, xð Þð Þ, for all n = 1, 2,⋯,

ð8Þ

where ψ is an arbitrary nonnegative function and the
equality in the event fωðT1,⋯, TnÞ = ωg is not strict.

3. Reliability Measures on a Time Scale of
Order Statistics

We assume that T1:n ≤ T2:n ≤⋯≤Tn:n be the order statistics
of the partial set fT1, T2,⋯, Tng. The p.d.f. of the ith-order
statistic Ti:n, for i = 1, 2,⋯n, is

f Ti:n
tð Þ = n!

i − 1ð Þ! n − ið Þ! F
i−1
T tð Þ�Fn−i

T tð Þf T tð Þ, for all t > 0:

ð9Þ

Fix i ∈ℕ and consider an integer n = i, i + 1,⋯. Let us
suppose that Ti:n represents the time of occurrence of the i
th event among a series of n events which are occurred con-
secutively at the ordered times T1:n < T2:n <⋯<Tn:n. For
instance, these times may denote the times at which n exter-
nal shocks are absorbed by a system. It is then realized that
the residual life of X at the random time Ti:n, denoted by
XTi:n

= ðX − Ti:njX > Ti:nÞ, represents the residual lifetime of
a device with lifetime X after the time at which the ith event
occurs.

Let X have s.f. �F. We assume throughout the paper that
X, which is used to denote the lifetime of a device, has a
finite mean. For any n = i, i + 1,⋯ it is also assumed that
XTi:n

has a finite mean. It follows that X is independent of
Ti:n. Hence, the s.f. of XTi:n

is derived as

P XTi:n
> x

� �
= P X > Ti:n + xð Þ

P X > Ti:nð Þ =
Ð +∞
0

�F t + xð Þf Ti:n
tð ÞdtÐ +∞

0
�F tð Þf Ti:n

tð Þdt

=
ð+∞
0

�F t + xð Þ
�F tð Þ

�F tð Þf Ti:n
tð ÞÐ +∞

0
�F tð Þf Ti:n

tð Þdt

 !
dt

= E
�F T∗

i,n + x
� �
�F T∗

i,n
� �

 !
, x ≥ 0,

ð10Þ

in which T∗
i,n is a nonnegative random variable having p.d.f.

f T∗
i,n
tð Þ =

�F tð Þf Ti:n
tð ÞÐ +∞

0
�F tð Þf Ti:n

tð Þdt =
�F tð ÞFi−1

T tð Þ�Fn−i
T tð Þf T tð ÞÐ +∞

0
�F tð ÞFi−1

T tð Þ�Fn−i
T tð Þf T tð Þdt

:

ð11Þ

To derive a relative measure on random residual lives,
suppose that Y is random variable denoting the lifetime of
another device. Let Y have s.f. �FY and m.r.l. function mY ,
given by mYðtÞ =

Ð +∞
t

�FYðyÞdy/�FYðtÞ. Then, XTi:n
/mYðTi:nÞ

has s.f.

P
XTi:n

mY Ti:nð Þ > x
� �

= P
X − Ti:n

mY Ti:nð Þ > xjX > Ti:n

� �

= P X > Ti:n + xmY Ti:nð Þð Þ
P X > Ti:nð Þ

=
Ð +∞
0

�F t + xmY tð Þð Þf Ti:n
tð ÞdtÐ +∞

0
�F tð Þf Ti:n

tð Þdt

=
ð+∞
0

�F t + xmY tð Þð Þ
�F tð Þ

�F tð Þf Ti:n
tð ÞÐ +∞

0
�F tð Þf Ti:n

tð Þdt

 !
dt

= E
�F T∗

i,n + xmY T∗
i,n

� �� �
�F T∗

i,n
� �

 !
, x ≥ 0,

ð12Þ

where T∗
i,n is a nonnegative random variable with p.d.f.

(10). Let Y have vitality function vY , given by vYðtÞ =Ð +∞
0

�FYðy∨tÞdy/�FYðtÞ. To obtain another relative measure
by means of the vitality function, we derive

P
X Ti:nð Þ
vY Ti:nð Þ > x
� �

= P
X

vY Ti:nð Þ > xjX > Ti:n

� �

= P X > Ti:n∨xvY Ti:nð Þð Þ
P X > Ti:nð Þ

=
Ð +∞
0

�F xvY tð Þ∨tð Þf Ti:n
tð ÞdtÐ +∞

0
�F tð Þf Ti:n

tð Þdt

=
ð+∞
0

�F xvY tð Þ∨tð Þ
�F tð Þ

�F tð Þf Ti:n
tð ÞÐ +∞

0
�F tð Þf Ti:n

tð Þdt

 !
dt

= E
�F xvY T∗

i,n
� �

∨T∗
i,n

� �
�F T∗

i,n
� �

 !
, x ≥ 0,

ð13Þ

where T∗
i,n follows the p.d.f. given in (10). In the following,

using several measures on X evaluated at the random time
Ti:n, we present some characterization property. The nota-
tion = st is used to show equality in distribution.

Theorem 3. Let fTn, n ∈ℕg be a sequence of i.i.d. nonnega-
tive absolutely continues random variables with s.f. �FT : Let X
be a random lifetime which is independent of Tn, for all
n = 1, 2,⋯: Let Y be another random lifetime. Then,
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(i) X = st Y iff EðXTi:n
/mYðTi:nÞÞ = 1, for all n = i, i + 1,

⋯, for some i ∈ℕ where mY is the m.r.l. function
of Y

(ii) X = st Y iff EðXðTi:nÞ/vYðTi:nÞÞ = 1, for all n = i, i +
1,⋯, for some i ∈ℕ where vY is the vitality function
of Y

(iii) X = st Y iff EððI½X > Ti:n�Þ/�FYðTi:nÞÞ = 1, for all n =
i, i + 1,⋯, for some i ∈ℕ where �FY is the the s.f.
of Y

Proof. To prove (i), first note that T∗
i,n has p.d.f. (10). Since

EðXTi:n
/mYðTi:nÞÞ < +∞, we can write

E
XTi:n

mY Ti:nð Þ
� �

=
ð+∞
0

P
XTi:n

mY Ti:nð Þ > x
� �

dx

=
ð+∞
0

E
�F T∗

i,n + xmY T∗
i,n

� �� �
�F T∗

i,n
� �

 !
dx

= E
ð+∞
0

�F T∗
i,n + xmY T∗

i,n
� �� �

�F T∗
i,n

� � dx

 !

= E
ð+∞
T∗
i,n

�F xð Þ
mY T∗

i,n
� �

�F T∗
i,n

� � dx
 !

= E
mX T∗

i,n
� �

mY T∗
i,n

� �
 !

,

ð14Þ

where the change in the order of expectation and integral is
due to the well-known Fubini theorem. To prove the “only
if” part of the theorem, assume that X and Y have equal dis-
tributions, thus mXðtÞ =mYðtÞ, for all t ≥ 0, i.e., in view of
(13), EðXTi:n

/mYðTi:nÞÞ = 1, for all n = i, i + 1,⋯, for any
given i ∈ℕ: To prove the “if” part, we utilize the concept
of complexness in functional analysis. It can be observed
that, for a fixed i ∈ℕ and for all n = i, i + 1,⋯,

E
XTi:n

mY Ti:nð Þ
� �

− 1 =
ð+∞
0

mX tð Þ
mY tð Þ − 1
� �

f T∗
i,n
tð Þdt

=
ð+∞
0

mX tð Þ
mY tð Þ − 1
� �

�
�F tð ÞFi−1

T tð Þ�Fn−i
T tð Þf T tð ÞÐ +∞

0
�F tð ÞFi−1

T tð Þ�Fn−i
T tð Þf T tð Þdt

 !
dt:

ð15Þ

Let us set m = n − i + 1. It is then plain to see EðXTi:n
/

mYðTi:nÞÞ − 1 = 0, for all n ∈ fi, i + 1,⋯g, if and only if,

ð+∞
0

ϕ tð Þ�Fm
T tð Þdt = 0, for allm ∈ℕ, ð16Þ

where

ϕ tð Þ = mX tð Þ
mY tð Þ − 1
� � �F tð Þf T tð ÞFi−1

T tð Þ
�FT tð Þ , for all t ≥ 0: ð17Þ

Now, if we select ψðxÞ = �FTðxÞ in Lemma 2, it concludes
that the sequence f�Fn

T : n ∈ℕg is complete on ℝ+: From
completeness property, it follows from (15) that ϕðtÞ = 0,
for all t ≥ 0, which means that mXðtÞ/mYðtÞ − 1 = 0, for all
t ≥ 0, i.e., mXðtÞ =mYðtÞ, for all t ≥ 0. This is equivalent to
saying that X and Y are identical in distribution. We prove
the assertion (ii) now. We assume that EðXðTi:nÞ/vYðTi:nÞÞ
< +∞. We have

E
X Ti:nð Þ
vY Ti:nð Þ
� �

=
ð+∞
0

P
X Ti:nð Þ
vY Ti:nð Þ > x
� �

dx

=
ð+∞
0

E
�F xvY T∗

i,n
� �

∨T∗
i,n

� �
�F T∗

i,n
� �

 !
dx

= E
ð+∞
0

�F xvY T∗
i,n

� �
∨T∗

i,n
� �

�F T∗
i,n

� � dx

 !

= E
ð+∞
0

�F x∨T∗
i,n

� �
vY T∗

i,n
� �

�F T∗
i,n

� � dx
 !

= E
vX T∗

i,n
� �

vY T∗
i,n

� �
 !

,

ð18Þ

where the expectations are with respect to T∗
i,n which follows

the p.d.f. (11). To prove the “only if” part, we suppose that X
and Y have identical distributions and, therefore, vXðtÞ =
vYðtÞ, for all t ≥ 0, i.e., in spirit of (17), EðXðTi:nÞ/vYðTi:nÞÞ
= 1, for all n = i, i + 1,⋯, for any given i ∈ℕ: To establish
the “if” part, we proceed as in the proof of assertion (i).
It can be seen that, for a predetermined i ∈ℕ and for all
n = i, i + 1,⋯,

E
X Ti:nð Þ
vY Ti:nð Þ
� �

− 1 =
ð+∞
0

vX tð Þ
vY tð Þ − 1
� �

f T∗
i,n
tð Þdt

=
ð+∞
0

vX tð Þ
vY tð Þ − 1
� �

�
�F tð ÞFi−1

T tð Þ�Fn−i
T tð Þf T tð ÞÐ +∞

0
�F tð ÞFi−1

T tð Þ�Fn−i
T tð Þf T tð Þdt

 !
dt:

ð19Þ

Take m = n − i + 1 and observe that EðXðTi:nÞ/vYðTi:nÞÞ
− 1 = 0, for all n ∈ fi, i + 1,⋯g, if and only if,

ð+∞
0

ϕ∗ tð Þ�Fm
T tð Þdt = 0, for allm ∈ℕ, ð20Þ

where

ϕ∗ tð Þ = vX tð Þ
vY tð Þ − 1
� � �F tð Þf T tð ÞFi−1

T tð Þ
�FT tð Þ , for all t ≥ 0: ð21Þ
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By considering ψðxÞ = �FTðxÞ in Lemma 2, it follows that
the sequence f�Fn

T : n ∈ℕg is complete on ℝ+, according
which Equation (19) implies that ϕ∗ðtÞ = 0, for all t ≥ 0, which
means that vXðtÞ/vYðtÞ − 1 = 0, for all t ≥ 0, i.e., vXðtÞ = vYðtÞ,
for all t ≥ 0. This further implies that X and Y have the same
distribution. We finally prove the assertion (iii). It is implied
by the iterated expectation rule and also using the assumption
that X and Tn are independent for all n ∈ℕ that

E
I X > Ti:n½ �
�FY Ti:nð Þ

� �
= E Eð I X > Ti:n½ �

�FY Ti:nð Þ

����Ti:n

� �
= E

�FX Ti:nð Þ
�FY Ti:nð Þ

� �
:

ð22Þ

The proof of the “only if” part is trivial from (21). To
prove the “if” part, observe that for a fixed i ∈ℕ and for
all n = i, i + 1,⋯,

E
I X > Ti:n½ �
�FY Ti:nð Þ

� �
− 1 =

ð+∞
0

�FX tð Þ
�FY tð Þ − 1

� �
f Ti:n

tð Þdt

=
ð+∞
0

�FX tð Þ
�FY tð Þ − 1

� �
Fi−1
T tð Þ�Fn−i

T tð Þf T tð ÞÐ +∞
0 Fi−1

T tð Þ�Fn−i
T tð Þf T tð Þdt

 !
dt:

ð23Þ

If we take m = n − i + 1 we get EððI½X > Ti:n�Þ/�FYðTi:nÞÞ
− 1 = 0, for all n ∈ fi, i + 1,⋯g, if and only if,

ð+∞
0

ϕ∗∗ tð Þ�Fm
T tð Þdt = 0, for allm ∈ℕ, ð24Þ

where

ϕ∗∗ tð Þ =
�FX tð Þ
�FY tð Þ − 1

� �
f T tð ÞFi−1

T tð Þ
�FT tð Þ , for all t ≥ 0: ð25Þ

By a choice of ψðxÞ = �FTðxÞ in Lemma 2, it is realized that
the sequence f�Fn

T : n ∈ℕg is complete onℝ+, by which Equa-
tion (23) guarantees that ϕ∗∗ðtÞ = 0, for all t ≥ 0. This means
that �FXðtÞ/�FYðtÞ − 1 = 0, for all t ≥ 0, i.e., X and Y are equally
distributed. The proof of the theorem is complete.

In Theorem 3, the times have been scaled in the follow-
ing order Ti:i ≤ Ti:i+1 ≤⋯Ti:n ≤ Ti:n+1≤⋯, in which i is a
fixed natural number and n = i, i + 1,⋯. Therefore, the
result of Theorem 3 can be applied on the first-order statistic
T1:n, so that if EðRiðX, Y , T1:nÞÞ = 1 for all n = 1, 2,⋯ then X
and Y are equal in distribution, where

R1 X, Y ; T1:nð Þ = X − T1:n
mY T1:nð Þ

����X > T1:n

� �
,

R2 X, Y ; T1:nð Þ = X
vY T1:nð Þ

����X > T1:n

� �
,

R3 X, Y ; T1:nð Þ = I X > T1:n½ �
�FY T1:nð Þ

� �
:

ð26Þ

However, when the time is scaled in the order T1:1 ≤

T2:2 ≤⋯≤Tn:n ≤ Tn+1:n+1≤⋯, the result of Theorem 3 is
not applicable. Note that Tn:n =max fT1, T2,⋯, Tng. In this
modified setting, we build the characterization properties.
Note that the probability for survival of XTn:n

/mYðTn:nÞ after
x > 0 is

P
XTn:n

mY Tn:nð Þ > x
� �

= E
�F T∗

n,n + xmY T∗
n,n

� �� �
�F T∗

n,n
� �

 !
, ð27Þ

where T∗
n,n is a nonnegative random variable with the fol-

lowing p.d.f. (see Equation (10)):

f T∗
n,n

tð Þ =
�F tð ÞFn−1

T tð Þf T tð ÞÐ +∞
0

�F tð ÞFn−1
T tð Þf T tð Þdt : ð28Þ

In a similar manner, the probability for XðTn:nÞ/vYðTn:nÞ
being greater than x is

P
X Tn:nð Þ
vY Tn:nð Þ > x
� �

= E
�F xvY T∗

n,n
� �

∨T∗
n,n

� �
�F T∗

n,n
� �

 !
: ð29Þ

Next, we present the relevant characterization proper-
ties. The proof being similar to that of Theorem 3 has been
shortened by omitting repeated steps.

Theorem 4. Let fTn, n ∈ℕg be a sequence of i.i.d. nonnega-
tive absolutely continues random variables with s.f. �FT : Let X
be a random lifetime which is independent of Tn, for all
n = 1, 2,⋯: Let Y be another random lifetime. Then,

(i) X = st Y iff EðXTn:n
/mYðTn:nÞÞ = 1, for all n ∈ℕ

where mY is the m.r.l. function of Y

(ii) X = st Y iff EðXðTn:nÞ/vYðTn:nÞÞ = 1, for all n ∈ℕ
where vY is the vitality function of Y

(iii) X = st Y iff EððI½X > Tn:n�Þ/�FYðTn:nÞÞ = 1, for all n
∈ℕ where �FY is the s.f. of Y

Proof.We prove assertion (i). Notice note that T∗
n,n has p.d.f.

(27) and we assume that EðXTn:n
/mYðTn:nÞÞ < +∞. It can be

seen in a similar way as in the proof of Theorem 3 that

E
XTn:n

mY Tn:nð Þ
� �

= E
mX T∗

n,n
� �

mY T∗
n,n

� �
 !

, ð30Þ

The “only if” part is trivial. To prove the “if” part, we
observe that

E
XTn:n

mY Tn:nð Þ
� �

− 1 =
ð+∞
0

mX tð Þ
mY tð Þ − 1
� �

f T∗
n,n

tð Þdt

=
ð+∞
0

mX tð Þ
mY tð Þ − 1
� � �F tð ÞFn−1

T tð Þf T tð ÞÐ +∞
0

�F tð ÞFn−1
T tð Þf T tð Þdt

 !
dt:

ð31Þ
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By assumption EðXTn:n
/mYðTn:nÞÞ − 1 = 0, for all n ∈ℕ,

which holds iff

ð+∞
0

ϕ1 tð ÞFn
T tð Þdt = 0, for all n ∈ℕ, ð32Þ

where

ϕ1 tð Þ = mX tð Þ
mY tð Þ − 1
� � �F tð Þf T tð Þ

FT tð Þ , for all t ≥ 0: ð33Þ

Let us take ψðxÞ = FTðxÞ in Lemma 2. We know that the
sequence fFn

T : n ∈ℕg is complete on ℝ+: Hence, it follows
from (31) that ϕ1ðtÞ = 0, for all t ≥ 0, which further implies
that mXðtÞ/mYðtÞ − 1 = 0, for all t ≥ 0, i.e., X and Y are iden-
tical in their distribution. To establish the assertion (ii) we
suppose that EðXðTn:nÞ/vYðTn:nÞÞ < +∞. Thus, analogously
as in the proof of Theorem 3 (ii), we get

E
X Tn:nð Þ
vY Tn:nð Þ
� �

= E
vX T∗

n,n
� �

vY T∗
n,n

� �
 !

: ð34Þ

The proof for the “only if” part is straightforward. To
establish the “if” part, we write for all n = 1, 2,⋯,

E
X Tn:nð Þ
vY Tn:nð Þ
� �

− 1 =
ð+∞
0

vX tð Þ
vY tð Þ − 1
� �

f T∗
n,n

tð Þdt

=
ð+∞
0

vX tð Þ
vY tð Þ − 1
� � �F tð ÞFn−1

T tð Þf T tð ÞÐ +∞
0

�F tð ÞFn−1
T tð Þf T tð Þdt

 !
dt:

ð35Þ

From assumption EðXðTn:nÞ/vYðTn:nÞÞ − 1 = 0, for all
n ∈ℕ, if and only if,

ð+∞
0

ϕ∗1 tð ÞFn
T tð Þdt = 0, for all n ∈ℕ, ð36Þ

in which

ϕ∗1 tð Þ = vX tð Þ
vY tð Þ − 1
� � �F tð Þf T tð Þ

FT tð Þ , for all t ≥ 0: ð37Þ

By choosing ψðxÞ = FTðxÞ in Lemma 2, it is found that
the sequence fFn

T : n ∈ℕg is complete on ℝ+, by which
Equation (35) implies that ϕ∗1 ðtÞ = 0, for all t ≥ 0, which
means that vXðtÞ/vYðtÞ − 1 = 0, for all t ≥ 0, i.e., X and
Y are identical in distribution. We now prove the asser-
tion (iii). We have

E
I X > Tn:n½ �
�FY Tn:nð Þ

� �
= E

�FX Tn:nð Þ
�FY Tn:nð Þ

� �
: ð38Þ

The proof of the “only if” part is obvious from (37).
To prove the “if” part, observe that for all n = 1, 2,⋯,

E
I X > Tn:n½ �
�FY Tn:nð Þ

� �
− 1 =

ð+∞
0

�FX tð Þ
�FY tð Þ − 1

� �
f Tn:n

tð Þdt

=
ð+∞
0

�FX tð Þ
�FY tð Þ − 1

� �
Fn−1
T tð Þf T tð ÞÐ +∞

0 Fi−1
T tð Þf T tð Þdt

 !
dt:

ð39Þ

By assumption, it holds that EððI½X > Tn:n�Þ/�FYðTn:nÞÞ −
1 = 0, for all n ∈ℕ which stands true iff

ð+∞
0

ϕ∗∗1 tð Þ�Fn
T tð Þdt = 0, for all n ∈ℕ, ð40Þ

where

ϕ∗∗1 tð Þ =
�FX tð Þ
�FY tð Þ − 1

� �
f T tð Þ
FT tð Þ , for all t ≥ 0: ð41Þ

When we take ψðxÞ = �FTðxÞ, the Lemma 2 is applicable by
which Equation (39) yields ϕ∗∗1 ðtÞ = 0, for all t ≥ 0. This means
that �FXðtÞ/�FYðtÞ − 1 = 0, for all t ≥ 0, i.e., X and Y have equal
distributions and hence the proof.

4. Reliability Measures on a Time Scale of
Record Values

The observation Ti is called an upper record, if the value it
takes exceeds that of all previous observations. Thus, T j is
an upper record if T j > Ti for every i < j. Analogously, the
observation Ti is called a lower record, if the value it
takes falls behind all previous observations. The times at
which the upper record values appear are given by the
random variables Ui, which are called upper record times
and are defined by U0 with probability 1 and, for j ≥ 1,
U j =min fi : Ti > TUi−1

g. Then, the upper record value
sequence fTUn

: n = 0, 1, 2,⋯g is considered. Similarly,
the times at which the lower record values appear are
the random variables Li, which are called lower record
times defined by L0 with probability 1 and, for j ≥ 1, Lj =
min fi : Ti < TLi−1

g. Then, the lower record value sequence
fTLn

: n = 0, 1, 2,⋯g is considered. Then, the random vari-
able TUn

, as the nth upper record, has p.d.f.

f TUn
tð Þ = −log �FT tð Þ� �� �n

n!
f T tð Þ, ð42Þ

and the random variable TLn
, as the nth lower record has

p.d.f.

f TLn
tð Þ = −log FT tð Þð Þð Þn

n!
f T tð Þ: ð43Þ

It may be of interest to evaluate and measure the excess
amount of future records of observations. Let us consider
the r.v. X which denotes the lifetime of a unit which is
independent of Tn, n = 1, 2,⋯, and hence, it is also inde-
pendent of TUn

and TLn
. The random variable XTUn

= ðX
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− TUn
jX > TUn

Þ measures the excess amount of observa-
tions on X which are greater than the nth upper record
of Ti’s. The random variable XTLn

= ðX − TLn
jX > TLn

Þ mea-

sures the excess amount of observations on X which are
greater than the nth lower record of Ti’s.

We give here other relative measures on random residual
live. Let Y be the lifetime of a device to be compared with
another device with lifetime X. Then, XTUn

/mYðTUn
Þ has s.f.

P
XTUn

mY TUn

� � > x

 !
= P

X − TUn

mY TUn

� � > xjX > TUn

 !

=
P X > TUn

+ xmY TUn

� �� �
P X > TUn

� �
=
Ð +∞
0

�F t+xmY tð Þð Þf TUn
tð ÞdtÐ +∞

0
�F tð Þf TUn

tð Þdt

=
ð+∞
0

�F t+xmY tð Þð Þ
�F tð Þ

�F tð Þf TUn
tð ÞÐ +∞

0
�F tð Þf TUn

tð Þdt

 !
dt

= E
�F T∗∗

n,n + xmY T∗∗
n,n

� �� �
�F T∗∗

n,n
� �

 !
,

ð44Þ

where T∗∗
n,n is a nonnegative random variable with the fol-

lowing p.d.f.:

f T∗∗
n,n

tð Þ =
�F tð Þf TUn

tð ÞÐ +∞
0

�F tð Þf TUn
tð Þdt =

�F tð Þ −log �FT tð Þ� �� �n f T tð ÞÐ +∞
0

�F tð Þ −log �FT tð Þ� �� �n f T tð Þdt :

ð45Þ

Correspondingly, the relative measure XTLn
/mYðTLn

Þ has
s.f.

P
XTLn

mY TLn

� � > x

 !
= E

�F T∗∗∗
n,n + xmY T∗∗∗

n,n
� �� �

�F T∗∗∗
n,n

� �
 !

, ð46Þ

where T∗∗∗
n,n follows the p.d.f.

f T∗∗∗
n,n

tð Þ =
�F tð Þ −log FT tð Þð Þð Þn f T tð ÞÐ +∞

0
�F tð Þ −log FT tð Þð Þð Þn f T tð Þdt : ð47Þ

By an analogous method, the relative measure XðTUn
Þ/

vYðTUn
Þ is greater than x with probability

P
X TUn

� �
vY TUn

� � > x

 !
= E

�F xvY T∗∗
n,n

� �
∨T∗∗

n,n
� �

�F T∗∗
n,n

� �
 !

, ð48Þ

and also the relative measure XðTLn
Þ/vYðTLn

Þ is greater than
x with probability

P
X TLn

� �
vY TLn

� � > x

 !
= E

�F xvY T∗∗∗
n,n

� �
∨T∗∗∗

n,n
� �

�F T∗∗∗
n,n

� �
 !

: ð49Þ

Now, other characterization properties based on random
residual life after subsequent (upper and lower) records are
given.

Theorem 5. Let fTn, n ∈ℕg be a sequence of i.i.d. nonnega-
tive absolutely continues random variables with s.f. �FT : Let X
be a random lifetime which is independent of Tn, for all
n = 1, 2,⋯: Let Y be another random lifetime. Then,

(i) X = st Y iff EðXTUn
/mYðTUn

ÞÞ = 1, for all n ∈ℕ
where mY is the m.r.l. function of Y

(ii) X = st Y iff EðXðTUn
Þ/vYðTUn

ÞÞ = 1, for all n ∈ℕ
where vY is the vitality function of Y

(iii) X = st Y iff EðI½X > TUn
�/�FYðTUn

ÞÞ = 1, for all n ∈ℕ
where �FY is the s.f. of Y

Proof. We give the proof of assertion (i). Note note that T∗∗
n,n

has p.d.f. (44) and assume that EðXTUn
/mYðTUn

ÞÞ < +∞. As

in the proof of Theorem 3, we have

E
XTUn

mY TUn

� �
 !

= E
mX T∗∗

n,n
� �

mY T∗∗
n,n

� �
 !

, ð50Þ

The “only if” part is trivial. To prove the “if” part, we
observe that

E
XTUn

mY TUn

� �
 !

− 1 =
ð+∞
0

mX tð Þ
mY tð Þ − 1
� �

f T∗∗
n,n

tð Þdt

=
ð+∞
0

mX tð Þ
mY tð Þ−1
� � �F tð Þ −log �FT tð Þ� �� �n f T tð ÞÐ +∞

0
�F tð Þ −log �FT tð Þ� �� �n f T tð Þdt

 !
dt:

ð51Þ

In view of assumption EðXTUn
/mYðTUn

ÞÞ − 1 = 0, for all
n ∈ℕ, which is satisfied iff

ð+∞
0

ϕ2 tð Þ −log �FT tð Þ� �� �ndt = 0, for all n ∈ℕ, ð52Þ

where

ϕ2 tð Þ = mX tð Þ
mY tð Þ − 1
� �

�F tð Þf T tð Þ, for all t ≥ 0: ð53Þ

We can take ψðxÞ = −log ð�FTðxÞÞ in Lemma 2 from
which we realize that the sequence fð−log ð�FTðtÞÞÞn : n ∈
ℕg is complete on ℝ+: It thus follows from (51) that ϕ2ðtÞ
= 0, for all t ≥ 0, which provides that mXðtÞ/mYðtÞ − 1 = 0,
for all t ≥ 0, i.e., X and Y are identical in distribution. To give
credit to the assertion (ii), we assume that EðXðTUn

Þ/vY
ðTUn

ÞÞ < +∞. Therefore, similarly as in the proof of
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Theorem 3 (ii), we obtain

E
X TUn

� �
vY TUn

� �
 !

= E
vX T∗∗

n,n
� �

vY T∗∗
n,n

� �
 !

: ð54Þ

The proof of the “only if” part is very simple. To
prove the “if” part for all n = 1, 2,⋯, we can write

E
X TUn

� �
vY TUn

� �
 !

− 1 =
ð+∞
0

vX tð Þ
vY tð Þ − 1
� �

f T∗∗
n,n

tð Þdt

=
ð+∞
0

vX tð Þ
vY tð Þ−1
� � �F tð Þ −log �FT tð Þ� �� �nf T tð ÞÐ +∞

0
�F tð Þ −log �FT tð Þ� �� �nf T tð Þdt

 !
dt:

ð55Þ

By assumption EðXðTUn
Þ/vYðTUn

ÞÞ − 1 = 0, for all n ∈ℕ
if

ð+∞
0

ϕ∗2 tð Þ −log �FT tð Þ� �� �ndt = 0, for all n ∈ℕ, ð56Þ

where

ϕ∗1 tð Þ = vX tð Þ
vY tð Þ − 1
� �

�F tð Þf T tð Þ, for all t ≥ 0: ð57Þ

It is found by Lemma 2 that the sequence f
ð−log ð�FTðtÞÞÞn : n ∈ℕg is complete on ℝ+, from which
Equation (55) gives ϕ∗2 ðtÞ = 0, for all t ≥ 0, that is vXðtÞ/vYðtÞ
− 1 = 0, for all t ≥ 0, i.e., X and Y are identical in distribution.
To prove the assertion (iii), we write

E
I X > TUn

	 

�FY TUn

� �
 !

= E
�FX TUn

� �
�FY TUn

� �
 !

: ð58Þ

The proof of the “only if” part is plain to follow from (57).
To prove the “if” part, note that for all n = 1, 2,⋯, we have

E
I X > TUn

	 

�FY TUn

� �
 !

− 1 =
ð+∞
0

�FX tð Þ
�FY tð Þ − 1

� �
f TUn

tð Þdt

=
ð+∞
0

�FX tð Þ
�FY tð Þ − 1

� � −log �FT tð Þ� �� �n
n!

f T tð Þdt:

ð59Þ

It holds by assumption that EððI½X > TUn
�Þ/�FYðTUn

ÞÞ −
1 = 0, for all n ∈ℕ which holds true iff

ð+∞
0

ϕ∗∗2 tð Þ −log �FT tð Þ� �� �ndt = 0, for all n ∈ℕ, ð60Þ

where

ϕ∗∗2 tð Þ =
�FX tð Þ
�FY tð Þ − 1

� �
f T tð Þ, for all t ≥ 0: ð61Þ

Equation (59) together with Lemma 2 provides that
ϕ∗∗2 ðtÞ = 0, for all t ≥ 0. This concludes that �FXðtÞ/�FYðtÞ −
1 = 0, for all t ≥ 0, i.e., X and Y are equally distributed,
and hence, the proof is completed.

The following result will be similarly as Theorem 5 can
be proved.

Theorem 6. Let fTn, n ∈ℕg be a sequence of i.i.d. nonnega-
tive absolutely continues random variables with s.f. �FT : Let X
be a random lifetime which is independent of Tn, for all
n = 1, 2,⋯: Let Y be another random lifetime. Then,

(i) X = st Y iff EðXTLn
/mYðTLn

ÞÞ = 1, for all n ∈ℕ where

mY is the m.r.l. function of Y

(ii) X = st Y iff EðXðTLn
Þ/vYðTLn

ÞÞ = 1, for all n ∈ℕ
where mY is the m.r.l. function of Y where vY is the
vitality function of Y

(iii) X = st Y iff EððI½X > TLn
�Þ/�FYðTLn

ÞÞ = 1, for all n ∈
ℕ where �FY is the s.f. of Y

It must be mentioned here that the results obtained in
this work differ from the characterization properties in
Kayid and Izadkhah [12]. In fact, the characterization prop-
erties in this work represent a further development of the
results obtained by Kayid and Izadkhah [12], since in our
approach the distribution of Y can be any lifetime distribu-
tion. However, if Y is chosen to be an exponential r.v., then
our characterization results in Theorems 3(i), 4(i), and 5(i)
reduce to Theorems 3.1 and 3.2 in Kayid and Izadkhah
[12], respectively.

5. Conclusion

In this paper, we have studied several characterization prob-
lems using the residual lifetime of an original item relative to
the mean residual lifetime, the vitality function, or the sur-
vival function of another item. The ages at which the resid-
ual lifetimes applied have been considered to be
independent random times as they are the order statistics
of a partial set of a sequence of random lifetimes or the
record statistics arising from the infinite version of the
sequence of random lifetimes. The main idea for proving
the results has been a technical Lemma (Lemma 2) which
is a basic result in functional analysis. The random residual
lives are applicable to model the remaining useful life of
high-quality products with respect to frailer products. Fur-
ther strategies and descriptions using the introduced concept
in reliability theory and survival analysis could be given.

Recently, many researchers have focused on the relating
aging properties of two lifespan by the monotonicity of ratio
of their associated reliability quantities (see, e.g., Finkelstein
[40], Kayid et al. [41], and He and Xie [42]). The authors
believes that using the measures R1ðX, Y ; tÞ = ðX − t/mXðtÞ
jX > tÞ and R2ðX, Y ; tÞ = ðX/vXðtÞjX > tÞ, further perspec-
tives on the relative behaviour of a system with lifetime X
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in comparison with another system in the same environ-
ment with lifetime Y may be produced. The relative measure
R1ðX, Y ; tÞ is the scaled residual live of X in which the recip-
rocal m.r.l. function of Y adjusts the scale. In contrast, the
relative measure R2ðX, Y ; tÞ is the scaled right tail of the live
of X where the reciprocal vitality function of Y regulates the
scale. The random quantities R1 and R2 are indeed scale-free
measures. For example, the moments of R1 and R2 may be of
some interest when X and Y are equally distributed, as in
this case EðR2

1ðX, Y ; tÞÞ = EðXtÞ2/E2ðXtÞ (resp. EðR2
2ðX, Y ;

tÞÞ = EðXðtÞÞ2/E2ðXðtÞÞ) is closely related with coefficient
of variation of Xt (resp. XðtÞ) which is a basic tool in the
study of aging phenomenon or the vitality of the systems.
However, extensions to the case where the age is random
makes the study more dynamic and further the conclusions
become quite broader. In situations where R1 and R2 are
regarded as two stochastic processes, observation of the pro-
cess will be sequentially in some random time not continu-
ally with time. In fact, it has been widely acknowledged
that a stochastic process is partially observable. For example,
in degradation models in which the lifetime is considered to
be the first-passage time of some stochastic process (see, for
example, Bordes et al. [43]). Therefore, the random relative
residual lives and their averages measured in some
sequences of random time such as order statics or record
values may be practically beneficial. There are various situa-
tions where the times of occurrence of events are record
values of a sequence or order statistics of a sample. For
example, in the context of reliability engineering, a coherent
system fails with the the failure of the consecutive order sta-
tistics of the lifetime of its components. The residual lifetime
aftershocks arrived to a system may be an important quan-
tity where the shocks which make further degradation in a
highly reliable system are the ones which are record values.

In the future of this study, the problem of characteriza-
tions of distributions in the cases when the lifetime depends
on random ages will be studied. The question may be
whether the current characterization properties remain valid
and hold at the disposal of dependencies between lifetime
and random ages. Constructing similar relative measures as
Ri, i = 1, 2 to contribute in the area of relative aging of sys-
tems and also further characterization properties will be
sought.
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