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The current article discusses the fuzzy new iterative transform approach, which is a combination of a fuzzy hybrid methodology
and an iterative transformation technique. We establish the consistence of our strategy by obtaining fractional fuzzy Helmholtz
equations with the initial fuzzy condition using the Caputo derivative under generalized Hukuhara differentiability. The series
obtained result was calculated and compared to the proposed equations of the actual result. Three challenges were provided to
validate our method, and the outcomes were approximated in fuzzy form. In each of the three examples, the upper and bottom
halves of the fuzzy solution were approximated utilizing two various fractional order between 0 and 1. Due to the fact that it
globalizes the dynamical behavior of the specified equation, it produces all forms of fuzzy results at any fractional order
between 0 and 1. Due to the fact that the fuzzy numbers presents the result in a lower and upper branches fuzzy type, the
unknown quantity incorporates fuzziness as well. It is critical to emphasize that the purpose of the proposed fuzziness
approach is to demonstrate the efficiency and superiority of numerical solutions to nonlinear fractional fuzzy partial
differential equations that arise in complex and physical structures.

1. Introduction

Modeling uncertain issues with the theory of fuzzy sets are a
great technique. As a result, fuzzy concepts have been used
to model a broad variety of natural events. The fuzzy frac-
tional differential equation, in particular, is frequent models
in several scientific domains, such as assessing weapon sys-
tems, population models, electrohydraulics, and civil engi-
neering models. As a solution, the fuzzy calculus idea of
the fractional derivative is critical [1-4]. As a solution, frac-
tional fuzzy in the domains of mathematics and engineering,
differential equations have gotten a lot of attention. The very
first is the study by Agarwal et al. [5] devoted to fuzzy frac-
tional differential equations. They established the Riemann-
Liouville differentiability concept under the Hukuhara dif-
ferentiability to analysis fractional fuzzy differential equa-
tions [6-8].

Recently, fractional calculus has been offered as a valu-
able topic to produce precise outcomes of engineering and

mathematics issues like signal processing, aerodynamics
and control [9-12] systems, biomathematical difficulties,
and others. Furthermore, several writers have researched
fractional differential equations in fuzzy situations [5],
solved using various approaches [13-16]. Hoa investigated
fractional fuzzy differential equation under Caputo gH-
differentiability in [17]. At the same time, Agarwal et al. con-
ducted a study on the same subject in [18] to highlight its
connection to optimal control issues. Long et al. [19] dem-
onstrated the solvability of fractional fuzzy differential prob-
lems, while Salahshour et al. [20] solved the issue using
Laplace fuzzy transformation.

The Helmholtz equation (HE) is an elliptic partial differ-
ential equation (PDE) developed from a wave model. It is
also known as the reduced wave equation. The HE is a par-
tial differential equation representing mechanical growth
that is time-independent throughout the cosmos. The HE
is fundamental in applied physics and mathematics
[21-24]. The HE findings, which are commonly obtained
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by separating variables, deal with crucial scientific phenom-
ena [25]. Equations include magnetic fields in plates, fluid,
wall, vibrating lines, nuclear power reactors, electromagnetic
field, geology’s Lamb equation, and acoustics. Consider a
nonhomogeneous isotropic material in three dimensions
with a velocity of ¢ in Euclidean space [26, 27]. The resulting
wave is p(g,{) in phase with the harmonic origin. The HE
for the given field R is satisfied when ¢(g,{) vibrates at the
recognized fixed frequency w > 0:

I*v(pp) , V()

37 oz TXvee)=-glpe) (1)

where v(g,p) is an appropriately differentiable function at
the boundary of R, g(g,¢) is a specified function, y >0 is a
constant value, and ,/x = w/c is a wave number with a wave
length of 272/,/x . If ¢(g,¢) = 0 is necessary, then equation
(1) the HE is homogeneous. When the positive sign (in front
of the y term) is improved to a negative sign, most steady-state
oscillations (thermoelectric, acoustic, hydraulic, electromag-
netic) lead to a two-dimensional HE describing mass transport
systems using chemical mixtures of first-order volume. In lin-
ear acoustics, for example, ¢(,p) might represent a disrup-
tion of the reference state pressure (Thompson and Pinsky,
1995). Conservation equations, also known as HEs, are used
to solve a wide range of physical issues, including fluid
restricted or shear viscosity streams inside thermophysical
barriers [26-29], such as Laplace variational iteration method
[30], homotopy perturbation method [31], g-homotopy anal-
ysis transform method [32], reduced differential transform
method [33], He’s variational iteration method [34], and a
spectral method [35] have all been used to solve fractional-
order HEs in recent years [36, 37].

2. Basic Definition

Definition 1. Consider a continuous function fuzzy v on [0
, B] € R, we express fractional fuzzy Riemann-Liouvilli inte-
gral in the presence of J as

—n)*"o(n)
=| —————~"2dn,0,1n¢€(0,00). 2
LT menc ) 2)

Moreover, if 0 € CF[0, ] n LT[0, B], where CF[0, B] is the
universe of fuzzy continuous function, and LF[0, B] is the
space of continuous fuzzy functions. If the functions are

Lebesgue integrable, then the fuzzy fractional integral is
given as

[1%(S)], = 1%, 10, ], 0<y <11, (3)

such that
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Definition 2. For a function v € CF[0, ] N L;[0, B], such that
0=[w,(3),0,(])],y€[0,1] and 3 € (0, B), then the frac-
tional Caputo fuzzy derivative is given as

[Dg2(B0)], = [De2(So), De2(S0)], 0<e< 1, (5)

S (S —n)" N (d™ 1dy™ v
- [ S

in such a way that the integrating on the right sides conver-
gence and m = [q]. Since @ € (0, 1]m = 1.

Definition 3. The Laplace fuzzy transformation for f(p),
where f(g) is value fuzzy term, is define as

:O(exp)_Ps £(3)dS, S>0.  (7)

Gle) = Lif(p) = |

Definition 4. In terms of fuzzy convolution, a fuzzy Laplace
transformation is described as

Lify = £ =LIA] = Lif): (8)

where f; * f, define the fuzzy convolution between f, and f,,
ie.,

foofy= J:f1<8>*f2<@—5>ds. 9)

Definition 5. The “Mittag-Leffler function” Ep(p) is
expressed as

E,(J)= Zm (10)

where p > 0.

Definition 6. Let k : R — [0, 1] be a number of fuzzy which
have the specified properties

« is an upper semicontinuous number

cfu(xy) +u(xy)} 2 min {x(x, ), x(x,)}
3x, € R such that x(x,) = 1, i.e,, v is normal
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cd{x e R, x(x) >0} is compact

The set of all fuzzy numbers is represented by the nota-
tion E.

Definition 7. The aforementioned number can be written in
parametric form as [k(y), (y)], so that y € [0, 1] combined
with the values

x(y) from left is continuous and bounded function
increasing over [0, 1]

x(y) from right is continuous and bounded function
decreasing over [0, 1]

(iii) k< k.
3. Main Work with Applications

Do(p,3) = DéD(@,S) +0(p,3) +(y),0<e<1, (11)
with the initial fuzzy condition
0(:0) = g(g)- (12)
In this case, we use the Laplace transform on (12) as
z [Dgf)(p,S)} - [D;a(p,S) +B(d) + k} , (13)
with initial condition using, and we get

SLZ0(9,3)] = 59*1!*](@) +& [Déf}(p,ﬁ) +0(,3) + ,}} ,
Z[o(p.S)] = @ + 5%3[1)% B(0.5) + 7.

Suppose that the result as 0(p,3) = Yoo, U,(0,3), then

(15) defines

3
On both sides terms comparisons, we get
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Using inverse Laplace transformation, we get
) [ - —1 1 =
Oo(:3) =9(p) + £ | S LI |5
- b - -
0(0%) =7 [ 2 [Dne®) + p9)] |
- |1 -
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As a consequence, the needed series result is obtained by
0(0:3) = 0o (©:3) + 01 (©0:3) + 0y (03) + -+ (18)
3.1. Examples

Example 1. Consider fuzzy fractional homogeneous Helm-
holtz equation with x-space with the fuzzy initial condition

D20(p,3) + D3o(, ) - 0(.3) =0,0< < 1,5 >0,
0(0,3) =k(y)T,0<F <1,

(19)

where k(y) = [k(y), ®(y)] = [y — 1,1 —y],0 <y < 1. Using the
abovementioned procedure as described in (18), we obtain
the following results.

V(:33) = ()00 (0:3) = k() S,

Q Q
0(69) =50 pre 3y 01 09) =K)S s
- pZQ e ng
1‘)2(@"5) =K(Y)‘S F(ZQ + 1) > 2(@’ ) = K(Y) 1—-(29 + 1) >
o~ ~ p?’Q (a3 [ p3Q
23(0:3) =03 ragry S =K raeTy
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FiGurek 1: The first graph depicts a two-dimensional fuzzy upper and bottom branch graph of an analytic series result, while the second

depicts various fractional of p.

and so forth, and more terms can be determined in this
manner. As a result of (19), we can write the needed series
result as an infinite series.

0(0,F) = 0y (0,3) + 01 (0:3) + 0,(F) + -+,

such that
L(:3) = 0 (0:5) +; (0:53) 40, (053) + -+ (22)
0(0,3) = 0y (03)+0, (9,5) 40, (9,3) + -+,
In general, we can write as follows:
0(.3) = k(1)F + £(1)F —E— + k()3 o
HEX) = RS BV To+) T Y T+ 1)
3Q
~ P
v ATPROUIY o
3Q
e B
"3 TaerT)
(23)
The exact result is
0(,3) = k() cosh g. (24)

Figure 1 shows the fuzzy result comparison for lower and
upper branches of Example 1 by Laplace decomposition
method. The red color shows that the exact solution of lower
and upper branch of fuzzy solution at integer order and sec-
ond cure shows the analytical solution of example 1. In
Figure 1, second graph shows two dimensional figure of
fuzzy result at four other various fractional order of p of

Example 1. The two similar color legends represent lower
and upper portions of fuzzy solution, respectively.

Example 2. Consider fuzzy fractional homogeneous Helm-
holtz equation with x-space with the fuzzy initial condition

0,0<0<1,8>0,

by o3 2
Dgo(g:3) + Dgo(
o(0,

©-y) + 50(,3) =
3)=k(y)S,0<F <1,

(25)
where (y) = [(y), k(y)] = [y - 1,1 = 9], 0 <y < 1. Using the

abovementioned procedure as described in (18), we obtain
the following results:

[ard n X

©*
Ir(20+1)’

3Q

(26)

=25%(y)J

U3(,3) = —125(y) ] 03 (0-3)

I'(3g+1
3Q
. ©
=-125k()S —,
WS taer
and so forth, and more terms can be determined in this
manner. As a result of (19), we can write the needed series
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FiGURrk 2: The first graph depicts a two-dimensional fuzzy upper and bottom branch graph of an analytic series result, while the second

depicts various fractional of p.

result as an infinite series.

0(0:3) = Vg (0:33) + 01 (0>35) + 02 (0>35) + -+, (27)
such that
U(:3) = Lo (0:3)+0, (0:3) +02(0:3) + > (28)
0(0:33) = 0o (0,53) 01 (9,3) 0, (0:3) +
In general, we can write as follows:
¢ ™
™
-12 S ey
V)3 T Ee+ 1)
e, (
H )C"’ — % (o3 5* (o — 5* [ar3
UeS) =K+ 5508 Ty ~ 2 S g
™
—125%()S ————~
k)3 (30+1) i
(29)
The exact result is
(0,3) = k(y)S cos V5. (30)

Figure 2 shows the fuzzy result comparison for lower
and upper branches of Example 1 by Laplace decomposition
method. The red color shows that the exact solution of lower
and upper branch of fuzzy solution at integer order and sec-
ond cure shows the analytical solution of Example 2. In
Figure 2, second graph shows two dimensional figure of
fuzzy result at four other various fractional order of p of
Example 2. The two similar color legends represent lower
and upper portions of fuzzy solution, respectively.

Example 3. Consider fuzzy fractional homogeneous Helm-
holtz equation with x-space with the fuzzy initial condition

Db (,3) + D5d(S) - 20(,3)
- (12° - 3p") sin S =
5(0, F) = k(y), and 8, (0, 5) =

0,1<0<2,3>0,
x(y)O0,

(31)

where k(y) = [x(y), k(y)] = [y — 1,1 —y],0 <y < 1. Using the
abovementioned procedure as described in (18), we obtain
the following results:

6
=x(y) <p4 - %) sin S,
~ 72% 216p%CN
i(e:3) =£(7) [e+5) TI(e+7))"" S0 eS)
_ 720%  2160%C\
:K(y)<r( 75 Te+7)) %
et5) I'(e+7)
216K‘JZQ+4 648‘OZQ+6 B
Qz(p’y)zﬁ())) (F(2Q+5 ZQ+7 ) U
216 20+4 648 2Q+6
=k(y) F(ZP L sin S,
0+5) TI'(20+7)
6480% 19447
09 =50) ({5 ~ 1wy ) S0 S0l
_ 6480% " 1944¢%"
= in <3,
K I'(3g+5) TI'(30+7) sin

(32)

and so forth, and more terms can be determined in this
manner. As a result of (19), we can write the needed series
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FiGure 3: The first graph depicts a two-dimensional fuzzy upper and bottom branch graph of an analytic series result, while the second

depicts various fractional of p.

result as an infinite series.

U(:3) = Uy (:3) + 01 (9,3) + 0, (9,3) + -+ (33)
such that
L(:3) = 0o (0:3)+, (0:3) 40, (0,3) +23 (90,3) + -+,
U(g0:3) = 0o (0,3) 40, (0:3) 0, (,3) +03 (9,3 +
(34)
In general, we can write as follows:
6 +4
%\ 4 80_ s Y 72KJQ
u(e-3) =x(y) (KJ 10) sin -+ x(y) (—F(Q 5
21 Q+6 21 20+4
_ & sin § + E(Y L
I'(e+7) I'(2g+5)
648@29+6 e 648@3Q+4
" T(20+ 7)) Sin S+ £(y) <F(3Q +5)
19446\
- —————— ] sin §+--,
I'(30+7)
6 72 o+4 (35)
e - 4 P\ ol ¢
t(09) = 1(y) (' = 5 ) sin 50500 (7o
Q+6 20+4
206070\ o X 216
I'(e+7) I'(20+5)
648 2Q+6 648 30+4
- 28 sin S &) (e
I'(20+7) I'(30+5)
19440770\
- —————— ] sin J+---.
I'(30+7)
The exact result is
0(,3) =&(y)p" sin S. (36)

Figure 3 shows the fuzzy result comparison for lower
and upper branches of Example 1 by the Laplace decompo-
sition method. The red color shows that the exact solution of
lower and upper branch of fuzzy solution at integer order
and second cure shows the analytical solution of Example
3. In Figure 3, second graph shows two dimensional figure
of fuzzy result at four other various fractional order of p of
Example 3. The two similar color legends represent lower
and upper portions of fuzzy solution, respectively.

4. Conclusion

The aim of this paper was to propose a semianalytic solution
to the fractional fuzzy Helmholtz equations using the
Caputo derivative. An significant example has verified the
solution achieved. We have also included plots of the analyt-
ical solution at various fractional orders. As seen in the
graphs, when the fractional order nu approachs its integer
value, the graphs will similar with the curve at integer order
1. Our study has shown that fractional calculus can identify
the global nature of equations that are associated with fuzzy
concepts. As future research continues, we will apply this
approach to models with more dynamic features. In the
future, this technique can be used to derive analytic and
approximation solutions to perturbed fractional differential
equations with fractional and classical initial conditions in
the sense of the Caputo operator.
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