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The g-rung orthopair fuzzy environment is an innovative tool to handle uncertain situations in various decision-making
problems. In this work, we characterize the idea of a g-rung orthopair fuzzy subgroup and examine various algebraic attributes
of this newly defined notion. We also present g-rung orthopair fuzzy coset and g-rung orthopair fuzzy normal subgroup along
with relevant fundamental theorems. Moreover, we introduce the concept of g-rung orthopair fuzzy level subgroup and proved
related results. At the end, we explore the consequence of group homomorphism on the g-rung orthopair fuzzy subgroup.

1. Introduction

In classical fuzzy set theory, a fuzzy subset of a crisp set S is
represented by a function from S to [0, 1] € R. The inequal-
ities and equations are used to define operations and charac-
teristic. The original notion of the fuzzy set was proposed in
1965 by Zadeh [1]. Since then, it has been used in almost
every field of science especially where mathematical logic
and set theory are significantly involved. A fuzzy subset %
of a crisp set S is an object {s, iy (s): s € S} such that u,,
:§— [0, 1] is called membership mapping of % and p, (s
) is known as a degree of membership of s in &%. One can
see that fuzzy sets are the extensions of characteristic func-
tions of classical sets, by expanding the range of the function
from {0, 1} to [0, 1]. After the proposal of fuzzy sets, a lot of
theories have been put forward to handle uncertain and
imprecision circumstances. Some of these theories are
expansions of fuzzy sets, whereas others strive to cope with
uncertainties in another appropriate manner. Atanassov
[2] introduced an intuitionistic fuzzy set (IFS) which is the
generalization of fuzzy set. An intuitionistic fuzzy subset %
of a crisp set S is an object {s, t,(s), v (s): s € S}, where
Yo : S—[0,1] and v : S— [0, 1] are membership and
nonmembership functions, respectively, such that y,(s) +
vg(s) <1 for all s€S. Compared with classical fuzzy sets,

the positive and negative membership functions of intuitio-
nistic fuzzy sets ensure its effective handling of uncertain
and vague situations in physical problem, especially in the
field of decision-making [3-6]. In 2013, Yager [7] general-
ized intuitionistic fuzzy sets by presenting the idea of
Pythagorean fuzzy set (PFS). The Pythagorean fuzzy subset
R of a crisp set S is an object {s, t4(s), v (s): s € S}, where
Yoy 1 S—[0,1] and vy : S— [0,1] are membership and
nonmembership functions, respectively, such that (p(s))’

+(vg(s))> <1 for all s € S. This concept is designed to con-
vert uncertain and vague environment in the form of math-
ematics and to find more effective solutions of such real-
world problems [8-11]. Although Pythagorean fuzzy subsets
solve different types of real-life problems in an efficient way
but even then, there is a room for improvement because
there exists so many cases where Pythagorean fuzzy subsets
fail to work. For example, if positive and negative member-
ship values proposed by a decision-maker are 0.75 and
0.85, respectively, then (0.75)*+ (0.85)°>1; therefore,
Pythagorean fuzzy subsets fail to deal with such problems.
In order to find a reasonable solution of such kinds of situ-
ations, Yager defines the notion of g-rung orthopair fuzzy
set (q-ROEFS), where g is a natural number [12]. The ¢
-rung orthopair fuzzy subset & of a crisp set S is an
object {s, s (s), v (s): s €S}, where pg : S—[0,1] and
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Vg :S—[0,1] are positive and negative membership
functions, respectively, such that (¢, (s))? + (v4(s))? <1 for
all s € S. In order to find real-world applications of g-ROFSs,
we suggest reading [13, 14].

Theory of groups is one of the prominent branches of
mathematics with numerous applications in physics [15],
chemistry [16], cryptography [17-19], differential equations
[20], and graph theory [21, 22]. Rosenfeld [23] initiated the
study of fuzzy subgroups. Since then, many mathematicians
studied classical group theoretic results in different fuzzy
environments. In [24], Das presented a comprehensive study
of level subgroups of a fuzzy subgroup. Sherwood defined
products of fuzzy subgroups and proved important results
related to this notion [25]. Bhattacharya and Mukherjee
[26] presented the idea of fuzzy relations on fuzzy subgroups
and presented some new results in this direction. Choudh-
ury et al. presented a study on fuzzy subgroups and fuzzy
homomorphism in [27]. Some new results on normal fuzzy
subgroups have been proven in [28]. Kumar [29] discussed
some properties of fuzzy cosets and fuzzy ideals. In [30],
some problems related to equivalence relation on fuzzy sub-
groups have been studied. Biswas [31] initiated the work on
intuitionistic fuzzy subgroups in 1989. Hur et al. [32]
defined the notion of intuitionistic fuzzy coset and discussed
some of its algebraic characteristics. In [33], Sharma defined
direct product of intuitionistic fuzzy subgroups. To find
more about intuitionistic fuzzy subgroups, we recommend
reading [34-38]. Recently, Bhunia et al. [39] defined Pythag-
orean fuzzy subgroups and explored different attributes of
this concept.

Considering the above literature and the significance of g
-rung orthopair fuzzy sets and theory of groups, this article
reveals the study of g-rung orthopair fuzzy subgroups (q-
ROFSGs). The basic purpose and the principal contribution
of this work are to

(1) discuss various important algebraic attributes of g
-rung orthopair fuzzy subgroups

(2) define the concepts of g-rung orthopair fuzzy
coset and g-rung orthopair fuzzy normal subgroup
along with the study of relevant fundamental
theorems

(3) introduce the idea of g-rung orthopair fuzzy level
subgroup and prove some important results of this
notion

2. The g-Rung Orthopair Fuzzy Subgroups

In this section, some important algebraic attributes of g-rung
orthopair fuzzy subgroups will be discussed. We start this
section with the definition of g-rung orthopair fuzzy sub-
group (q-ROFSG).

Definition 1. Let G be a group; then, a g-ROFS % = {s, p, (
5),vg(s)} of G is called a g-rung orthopair fuzzy subgroup
(q-ROFSQG) of G if the following conditions hold:
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(i) (gp(s15,))? = min {(ug(s))) % (ugp(s)))} and
(ng(sész))q <max {(vg(s)))?, (va(sy)?} for all s,
,S, €

(ii) (ugp(s))? 2
allse G

(g (5)? and (v (s7))" < (g (s))* for

Theorem 2. Let R ={s,1y(s),vy(s): s€G, (ugy(s))?+
(v (s))T < 1} be a g-ROFSG of G. Then, the following condi-
tions are true:

(i) (ug(e)?=
seG

(ii) (pg(s7))" = (pgy(s))? and (v (s7))" = (v
allse G

(1 (5))" and (vip(e))” < (vp(5))" for all

a(s))? for

Proof.

(i) Let seG; then,

q
(1 ()"} = (g (€))* me{
(#(9))"} = (5(5))" = (e

q
ilarly, we can show that (vg(e))? < (v, s

(i) Since  (u ()7 > (up())? and
(vg(s))? for all seG, therefore (pg((s

(1a(s™))" and (vg((s)7)" < (v (s7)
means that (pg(s))? > (ug(s))? and (vg4(s))? <
(va(s)" Thus, (pg(s™))"=(ug(s))" and
(Vs = (vgy(s)? forall se G

O

The following theorem shows that every Pythagorean
tuzzy subgroup (PFSG) of G is g-ROFSG of G.

Theorem 3. Let G be a group and P = {s, up(s), vp(s): s€ G
s (up(s))’ + (vp(s))’ < 1} be a PFSG of G. Then, P is a g-
ROFSG of G.

Proof. Let s,,s, € G; then

This implies that
(up((s152)))" = min {(pp(s1))? (pp(s2)) "} (2)
(Vp((s152)))" <max {(vp(s1))% (Va(52)) "} (3)
(u(s)" = ((s))%, (4)
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(ve(s™))" < (ve(s))". (5)

Since (Hp(sl)) (!”p(Sz))z (up(s ))2 (VP(Sl)) > (VP(Sz))Z’

(vp(s))* € [0, 1], therefore for all g > 2, we have (up(s;))? <
(.‘"P(Sl)) (up(s,))7 < (!"P(Sz)) (up())7 < (pp(s ))2>

(ve(s1))? < (Vi) (ve(2))T < (vp(s,))%, and (vp(s))? <

(ve(s))*. Thus,

(up(s1))+ (vp(s1)) < 1, (6)

(bp(s2))7 + (vp(s,)) < 1, (7)

(up(9))7 + (vp(s))? < 1. (8)

The inequalities (2)-(8) reveal that P is a g-ROFSG of G.

O

The next example provides evidence of invalidity of the
converse of the above theorem.

Example 1. Consider dihedral group D,, that is,

D= <51>52 : (51)2 = (52)4 = (5152)2 = e>

= {e, S1>52» (52)2’ (52)3> 251 (52)251’ (52)351 }

©)

One can easily verify that

e (€,0.95,0.10), ((s)*, 0.80,0.45), (5,,0.80,0.75), ((s,)*, 0.80,0.75),
5,51, 0.80,0.78), ((s,)%s1,0.80,0.78), ((s,)s;, 0.80,0.78), (s,, 0.80,0.78
2”1 2 1 2 1 1

(10)

is 3-ROFSG of D,, but it is not a PFSG of D, as
(0.80)% +(0.78)* > 1

Theorem 4. A g-ROFS R = {s, pp(s), vg(s) } of group G is a q-
ROFSG of G if and only if (up(st™))? >min {(ug(s))?,
(g (D)} and (vg(st™))" < max {(vi(s))", (v (1))} for

all s, t € G.

Proof. Let R= {s, p(s), vr(s): s € G, (g (s $))T+ (ve(s))? < }
be a g-ROFSG of G. Then, for all s, € G, (up( )>m

st™h)
{(1 (), (g (t71))"} = min {(pgy (s))", (pgp ()"} and
(var(st™)? < max {(vy(s))h, (v (t7))"} = max {(vg(s))*
s (va ()7
Conversely, suppose that (pp(st™

(1 (t)"} and (vg(st™!))" < max {(v gz(
all s,te€G. Then, (pp(st))? (‘up(s
(1 ()% (g (t71))"} = !

(#p(s1))" 2 min { (p55(5))" (w2 (1))} (11)
Similarly,
(var (s1))T < max { (vig ()", (v (1))} (12)

Next, (#p(s7))" = (p(es™))" 2 min { (5 (e))",

3
(2(s))"} = (g (5))7, that is,
(R (s)) "2 (g (5)"- (13)
Similarly,
(va (™))" < (va(s)™: (14)
. The inequalities (11)-(14) show that R is a g-ROFSG on

Theorem 5. Let R; = {s, p (s), v, (s)} and Ry ={s, iy, (),
Vg, (s)} be two q-ROFSGs of G; then, R, N R, is a ¢-ROFSG
of G.

Proof. Suppose that R, and R, are two g-ROFSGs of G. Then,
for all 5,5, € G, we have

(o )" = min (s 15)" t 55 ]
in (o 50)" (e, 5)") i (i 5))" (. 2) )]
in (50" (. 50)) i (i 5)" (. 2))]
i [t 9) (i) ]

(15)

\\/

min

mi

5

That is,

(leruz2 (51551))‘1 = min [(.“RlnR2 (%))q’ (!/‘leR2 (%))q}-
(16)

Similarly,

(!/‘leR2 (51551))q < max [(!‘leRz (51))q’ (HRlnRz (52))q] :
(17)

The application of (16) and (17) together with the theo-
rem give R, N R, which is a g-ROFSG of G. O

Theorem 6. Let R = {s, iy (s), v (s)} be

Then, (pg(s™))? 2 (pg(s))" and (vyp(s™))" <
seGand me N,

4-ROFSG of G.
(vr(s))? for all

Proof. We will use mathematical induction to prove this the-
orem. Suppose s€G; then, (up(s*))?= (pg(ss))?>min {
(Hn (5))"s (b1 (5} = (5 ()",

Therefore, the inequality is valid for m =2. Assume that
the inequality holds for m=n—1, that is, (pg(s""))? >
(gl5))". Then, (s(s")) = (ig(ss")" > min {(s5(5))"
(15 (s"™1))7} = (g(s))?. Thus, by mathematical induction,
we have (pp(s™))? > (ug(s))? for all m e N.

Similarly, we can show (vg(s™))? < (vg(s))? for all me
IN. O

Theorem 7. Let & = {s, iz, (s), v4(s)} be a g-ROFSG of G. If
g (51) # 1y (5,) and Vi) £ vig52) for some 5,5, €G,



then — (ug(s;s2))" =min [(ug(s)% (g (s5))7]  and
(v (s152))T = max [(viz (s,))", (via (52))]-

Proof. Suppose that for some s,s, € G, we have p(s,) >

Hep(s,); then, obviously (pg,(s)))7 > (g(s,))".
Consider

(Ha(s))? = (l‘@ (5115152))q = min [(#93 (Sfl))q’ (Ha(5152))1
=min [(pg(51))% (U (s152))7]-

(18)

Since (pg(s1))? > (ug(sy))?, therefore from relation
(18), we obtain

(B (52))" = (b (5152))*- (19)

Also, (H@(Slsz))q = min [(P‘gz(%))q’ (l‘@(sz»q] =
(1g(sy))%, that is,

(B (52))"- (20)

From (19) and (20), we have

(ta(s152))7 2

= (a(5,))" = min [(pg(s1))", (b (52))7]-
(21)

Similarly, the result can be proven if p,(s,) > pg, (s;).
Next, assume that v, (s,) < vg(s,); therefore, (vg(s;))?
< (vg(sy))?. Then,

(vap(2))7 = (vip (7"152)) " < max [ (v (571)) " (Vin(5152))']

=max [(Vg (s, (v (5152))q]'

(Mg (515))1

(22)

Since (vg(s))? < (vg(s,))?, therefore from relation

(22), we obtain
(Va(s2))? <

(Ve (515,))T < max (v (s1))7, (veg (5,))7] =
, that is,

(va(s152))? < (var(s2))"- (24)
From (23) and (24), we have

(var(52))" = max [(vep(s1))h (Ve (52))]-

(va(s15,))" (23)

Also,
(v (s2))?

(Va(s15,))! <

(25)
Similarly, (vg(s;5,))7 = max [(vg(s)))?, (vig(s,))], if
Va(s1) <vg(sy)- O

Theorem 8. Let e denote the identity element of G and R
={s, uy(s),vx(s) } be a g-ROFSG of G. Then,
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@) if (pg(s)" = (ug(e)
(g (5152))T = (z(s2))

(ii) if  (va(s)))" = (vg(e))*
(v (s182))" = (v ( 2)!

)1 for some s, €G, then
T foralls,eG

for some
foralls,eG

s;€G, then

Proof. Suppose that R = {s, 4 (s), v4(s)} is a ¢-ROFSG of

G.
(1) Let (pg(s;))? = (ug(e))Hor some s, € G. Then,
(en ()7 = (o1 (51"5152)) 2 min [ (1 (571)) " (1a(5152))7]
=min [(pg(s1))" (e (5152))7]
=min [(pg(e))% (g (515,))"]-
(26)
Since (pg(e))? > (ug(sy))?, therefore from relation (26),
we obtain
(B (52))" 2 (g (5152))". (27)

Also, (g (5,5,))" = min (U (s1)% (4a (s,))7] =
(tg(sy))%, that is,

(b (5152))" 2 (B (s2)) " (28)
From (27) and (28), we have
(b (5152))T = (1 (s2))". (29)

(ii) The proof is similar to that of (i).

O

Theorem 9. Let e denote the identity element of G and R
={s,uy(s),vu(s)} be a ¢-ROFSG of G. Then, H={se G
: (15 (9)" = (5 (€))T and (vig(9))" = (vip(e))T} is @ sub-
group of G.

Proof. By definition of H, we have e € H. Therefore, H is

nonempty subset of G.
Let s;,5, € H; then, (pg(s)))"=(ugz(e)’ = (ug(sy))?

and (v (5,))" = (v5())" = (Vi (5,))".
Now,
(Hp (s15"))" 2 min |G (51))", (tp (557)”]

=min [(pg(51))% (Hap(s2))?
in (g (e))? (Hg(€))?] = (Hg(e))™.
(30)

Also, by Theorem 2, we have (ug(e))? > (pug(s;s;")) "

Therefore, (pg,(s;5;"))? = (p4(e))?. Similarly, we can show
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that (v, (s;5;1))? = (v4(e))?. Thus, s;s,' € H, which com-
pletes the proof. O

3. g-Rung Orthopair Fuzzy Coset and g-Rung
Orthopair Fuzzy Normal Subgroup

In this section, we define g-rung orthopair fuzzy coset and ¢q
-rung orthopair fuzzy normal subgroup. Moreover, we prove
some important results regarding g-rung orthopair fuzzy
normal subgroup (g-ROFNS).

Definition 10. Let R = {s, p,(s), v (s)} be a g-ROFSG of G.
Then, for x € G,

(@) a g-ROFS xR ={s, .4 (5), vy5(s)} of G, where
(e (5)! = (g (x'9))"  and  (vey(s)!=
(v (x71s5))%, is called g-rung orthopair fuzzy left
coset of # in G determined by x

(b) a q-ROFS Rx={s, 14y (5),vg(s)} of G, where
(tp(9))" = (g (sx71))" and (Vae(9))? =
(v (sx™1))%, is called g-rung orthopair fuzzy right
coset of % in G determined by x

Definition 11. A q-ROFSG % = {s, u,(s),v4(s)} of G is
called g-rung orthopair fuzzy normal subgroup (g-ROFNS)
of Gif xR =Rx for all x e G.

Theorem 12. Let R = {s, iz, (s), v (s)} be a g-ROFSG of G.
Then, & is q-ROFNS of G if and only if (pg(s;s,))? =
(g (s251))" and (v (s;5,))" = (Vg (s25,))? for all s;,s, € G.

Proof. Assume that R = {5, 1, (5), v (s) } is a g-ROFNSG of
G. Then, x%& = %x for all x € G; it means that (u,g(s))? =
(B ()T and (v, (5))? = (v (s))? for all s € G. Therefore,
(e (x7'5))T = (g (sx7))! and (v (x7'5))" = (vgy(sx™"))*
for all x,s € G.

Now,

q

(Mg (515))1 = (P‘@, (51 (551)_1>> = (!"9@ ((551)_151»{1 = (B (551))%

ats)= (va (51 (5)7)) = (va () 751)) vl
(31)

Conversely, suppose that (pg(s;s,))? = (45 (s,5,))? and
(va(515)1=(vg(s,s;))?  for all  s,s,€G.  Then,
(Ha(s1(53) ™))" = (pa () 50)" and (vl (55")7)" =
(v ((551)'s1))”. Using s, =s and ;" = x gives (s, (sx7))?
= (pgy(x715))? and (v (sx7))? = (v4(x7's))% This means

that (ji.5,(5))" = (t5(5))" and (vig,(5))" = (vycp(5))'s there-
fore, x# = Rx. Hence, % is ¢-ROENS of G. O

Theorem 13. Let R = {s, iy (s), v5(s)} be a ¢-ROFSG of G.
Then, R is g-ROFNS of G if and only if (ug(sxs™!))?=
(g (x))T and (vg(sxs1))? = (vy(x))? for all s,x € G.

5
Proof. Let % be a g-ROFNS of G and s, x € G. Then,
(s (sx571))" = (waa ((s)s71))" = (aa (57" ()"
= (t ((57)%))" = (g (e0)) = (py (x))"
(32)

(by Theorem 12).

Similarly, we can prove (v (sxs™))? = (v (x))%.

Conversely, suppose that (pg(sxs™))? = (ug(x))? and
(v (sxs™1)) T = (vg(x))? for all s, x € G. Let s, s, € G; then,

(B (519))" = (a (5 52)51)) = (ma ((2'2)s1 (1) ) )
(ﬂgz (521(5251) (551)_1))q = (Hg(551))"

(33)
Similarly,

(v (s152))1 = (vp(s251)) - (34)

Then, the application of (33) and (34) together with The-
orem 12 gives X which is g-ROFNS of G. O

Theorem 14. Let R = {s, i1, (s), v (s)} be a ¢-ROENSG of G

Then, H={s€G: (ugy(s)" = (ug(e))? and (vg(s))" =
(vg(e))} is a normal subgroup of G.

Proof. The application of Theorem 9 gives H which is a sub-
group of G. Let h € H and s € G; then,

(g (shs™))? = (pgy (h))? (by Theorem 3.2) = (u, (e))? (since h € H).
(35)

Similarly,
(va (shs‘l))q = (vg(e)L (36)

Thus, shs™! € H, which implies that % is a normal sub-
group of G. O

4. g-Rung Orthopair Fuzzy Level Subgroup

This section reveals the idea of g-rung orthopair fuzzy level
subgroup. We also prove some relevant results.

Definition 15. Let R ={3,uy(4),v4(4)} be a g-ROFS of
crisp set G and y,8 €[0,1] such that 0<(y)?+(8)7<1.
Then R(,5={3€G: (uy(3))!2yand (vy(s)) <8} is
called g-rung orthopair fuzzy level subset (g-ROFLS) of g-
ROFS £ of G.

Theorem 16. Let £ ={3, (), v4(3)} be a g-ROFS of G
and y,8,y',8" €0, 1). Then,

(D) R(y6) SRy ify' <yand 5<¢'



(ii) Ry5) S Ryg) if RER'

Proof.

(i) Let 3 € R(,4); then, (ug(3))? 2y and (vg(s))?
Since y' <y and § <8, therefore (p(4))? >y
and (vg(4))7<8<8’. It means that 5e Ry 5y
hence, %5 € R,/ 5

<84.
>y

(i) Let 3 € R(,4); then, (15 (4))T 2y and (vg(3))? < 6.
Since % C R', therefore (py(4))7 < (g (4))? and
(497> (v () S0t (4))7= Gy ()7 27
and (v (2))? < (v4(2))? <8, which implies that 4

! !
€ (%(,y)a). ThuS, ‘%()/,5) C %(7,5)

O

Theorem 17. A g-ROFS R of a group G is g-ROFSG of G if
and only if -ROFLS R, 5) of G is a subgroup of G.

Proof. We know R ={3€G:(uy(s))?>yand
(v (9))T <8} Since for all y,8 €[0,1], we have (ug(e))?
>y and (vg(e))? <. Therefore, at least e € %, ), which
implies that 2, ) is nonempty.

Suppose 4,7 € R(,5), which means that (ug(4))%
(by(2))1=y and (vg4(9))% (vy(2))1<8. Since X is g-
ROFSG of G, therefore

(a (3271))" 2 min { (ua (9))", (2 (27))"}
=min {(4g(4))% (4g(2))"} 2 min {y,y} =7,

(va(927))" < max { (v (9))", (v (¢ 7))}
= max {(v4())", (v(¢))"} < max {8,8} =0
(37)

Thus, 427" € R (y.5) therefore, X, ) is a subgroup of G.

Conversely, let # be a g-ROFS of G, and for all y,6 € |
0,1], R, is a subgroup of G. Suppose s;,s, € G such that
(Ha(s)' =y (g())' =y (va(s))?=6;, and
(va(sy))1=8,. Then, s,,s,€ R, ; since
P min (y,.3,)max (6,,))
R (min (y,.y,).max (6,,8,))- Lhis implies that (pg,(s;s,))? > min (
Y1 ¥,) =min ((pg(s1))% (gp(s,))?) and (vg(s;s,))? < max
(61,8,) = max (v (1)), (v (5))")-

Next, let s € G such that (ug(s))? =y and (vg4(s))? =46.
Then, s € R, ) since K5 is a subgroup of G, therefore

s;' € R, p)- It means that (g (s7)) 2y and (vg(s)h)) <

min (y,,y,).min (8,,6,))
is a subgroup of G, therefore s;s, €

y.0
8, which implies that (s, (571))? > (g (s))? and (v (s;))?
< (va(s)".
Hence, & is a g-ROFSG of G. O
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Theorem 18. If % is a g-ROFNSG of G, then q-ROFLS R 5,
of G is a normal subgroup of G.

Proof. By Theorem 17, &, 5 is a subgroup of G. Let x €
Ry, and s € G. Then, (ug(x))? 2y and (vg4(x))? < 8. Since
x € R (,45) G, therefore by using Theorem 13, we have
(#gp(5x57))" = (gy (x)) and (v (sxs7))T = (vip (x))*. Ulti-
mately, it gives (ug(sxs™))T>y and (ug(sxs'))?<é,
which means that sxs™! € R(ye)- Thus, R, s) is a normal
subgroup of G. O

5. Homomorphism on g-Rung Orthopair
Fuzzy Subgroups

This section is devoted to explore the impact of group
homomorphism on g-rung orthopair fuzzy subgroups.

Theorem 19. Suppose 0 : G — G' is an onto group homo-
morphism and R = {s, g (s), vg(s): s€ G} is a q-ROFAG
of G. Then, 8(R) = {s’,y9<@)(s/),v9(@)(s/): s'eG'Yisaq-
ROFSG of G'.

Proof. Since 6 : G— G’ is an onto homomorphism, there-
fore 8(G) =G'.

Let s, s, € G'; then, there exists s,,s, € G such that 6(s,
) =51, 0(s;) =5, and 6(s;5,) = 0(5,)6(s,) =515,

- (B ishomomorphism)
min ((pg(s1))% (Ha(52))):
> max
51,5, €G,0(s;)) =51, 0(s,) =5,
- (Risaq-ROFSGof G)

max { (g (s1))" : 51 € G,0(s) =51,

=min

max {(!4573(52))q 15, €G,0(s,) :Sé}

=min ( (s (51) )" (o (3))"):

(38)

50, (g (5153))" 2 min ( (pgiar (51))", (g (52))" ) For

all s1,s,€G’. In a similar way, it can be shown that
(Vo) (s155))" = min ( (Vo (D) (Vo (52))” )
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Again, suppose that s € G'; then,

(39)
Similarly, we have (v9<%>(s/_l))q = (Vo) (s')? for all s

I6 GI
Thus, 8(2) :{s',y(,(@)(s'),ve(@)(s'): s'eG'} is a g-
ROFSG of G'. O

Theorem 20. Supposed : G— G' is a bijective homomor-
phism and T ={s', u(s'),v5(s'): s' € G'} is a g-ROFSG
of G'. Then, 07'(T) = {s, Ho1(7)(5), Vo1 () (s): s€GYisaq
"ROFSG of G.

Proof. Let s,, s, € G; then, 55, € G.
Next,

(1) (6192))" = (17 O515,)))"
= (pg(0(s1)0(s,))) (6 is homomorphism)
> min {(ug (0(s1)))"% (45 (0(52)))"}
: (J isag-ROFSG of G )
(52))q}-

= min { ([4971(57) (51))q’ (1"9’1(9)
(40)

In a similar fashion, we can show (vgig(s;5,))? <

7 ()L (Vg () (52)) ), for all s, 5, € G.
Again, suppose that s € G; then,

max {(vg-1(

Similarly, we can prove (vgi(g)(s™))" = (v (o) (5)).
Thus, 67'(7) is a ¢-ROFSG of G. O

Theorem 21. Suppose 0 : G— G' is an onto group homo-
morphism and R = {s, g (s), v(s): s € G} is a ¢-ROFNSG
of G. Then, (&) = {s',/,tﬁ,@)(s'),v@(@)(s'): s'eG'}isaq-
ROFNSG of G'.

Proof. The application of Theorem 19 yields that (%) is a g
-ROFSG of G'. Let s),s, € G'; then, there exists s,,s, € G

such that 6(s,) =s., 0(s,) = s5, and 0(s;s,) = 0(s,)0(s,) =S5,

(o) (s153) )" = (max {u(2): € G.0(2) = {51 } )
= max { (up(2))" : 2 € G,0(2) =515} }
o { (Ha(12))" + 515 =2 € G.O(s1) =1,0(s2) =) }
and6(s,s,) =0(51)0(s2) = 5153

- (B ishomomorphism)
{ (o (s250))" 5 55 =2 € G 0(s1) =], }
= max
0(s,) =5 and0(sys,) = 0(s,)0(s,) = s]

- (R isa ¢-ROFNSG of G)
=max { (pl% (z'))q 12 €G, 9<z’> = s;s;}
= <max {(A@ (z'): z'e G,9<z'> :s;si}y
= </49(92)(5;5;>)q~

(42)

So, (M9<@>(S;S£))q = (M) (sys1))? for all 5], s, € G'. In a

similar way, it can be shown that (ve(@)(sis;))q:

(Vo) (sys)) for all s}, sh € G'.
Hence, by Theorem 12, (%) = {s', [,49(93)(5'), ve(@>(s')
:s' €G'} is a ¢-ROFNSG of G'. O

Theorem 22. Suppose6 : G— G’ is a bijective homomor-
phism and T ={s', us(s"),v4(s"): s' € G'} is a g-ROFNSG
of G'. Then, 071(T) = {s, He1(5)()s Voi(g) (s): s€ G} is a g-
ROENSG of G.

Proof. By using Theorem 13, we have 6 (7
of G. Let s, 5, € G; then, 55, € G.
Now,

T) is a ¢-ROFSG

= (pg(6(s1)0(s,)))%(0 is homomorphism)
= (45 (6(2)6(51)))* (9‘ isaq-ROFNSG of ')
Jo(ss)

(43)

Therefore, (,btg (S 5,))1 (.“9

€ G. In a similar way, it can be shown that (v

(5251))q for all s, s,

0*1(57)(5152))‘1
= (Vg () (5251))" for all s, 5, € G.

Hence, by Theorem 12, 67 () = {s, Ho () (8)s Vo1 () (

s): s€ G} is a g-ROFNSG of G. O

6. Conclusion

This article aims to initiate the study of g-rung orthopair
fuzzy group theory.

We have introduced the notion of g-ROFSG and many
algebraic characteristics of this newly defined concept. We



have proven that every PFSG is g-ROFSG, but the converse
is not true. We presented the idea of g-rung orthopair fuzzy
coset and g-ROFNSG and found a necessary and sufficient
condition for ROFSG to be a ROFNSG. In addition, we
found that g-ROFLS g-rung orthopair fuzzy level subset of
a group G is a normal subgroup of G. Lastly, we have
explored the impact of group homomorphism on g-ROFSG.
We are working on some other classical group theoretic
topics like quotient groups, Lagrange’s theorem, isomor-
phism theorems, conjugate subgroups, Caley’s theorem, sub-
groups of nilpotent, solvable, Hamiltonian, and P-Hall
groups under g-rung orthopair fuzzy environment. We will
share this work in our upcoming papers.
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