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The q-rung orthopair fuzzy environment is an innovative tool to handle uncertain situations in various decision-making
problems. In this work, we characterize the idea of a q-rung orthopair fuzzy subgroup and examine various algebraic attributes
of this newly defined notion. We also present q-rung orthopair fuzzy coset and q-rung orthopair fuzzy normal subgroup along
with relevant fundamental theorems. Moreover, we introduce the concept of q-rung orthopair fuzzy level subgroup and proved
related results. At the end, we explore the consequence of group homomorphism on the q-rung orthopair fuzzy subgroup.

1. Introduction

In classical fuzzy set theory, a fuzzy subset of a crisp set S is
represented by a function from S to ½0, 1� ⊆ℝ. The inequal-
ities and equations are used to define operations and charac-
teristic. The original notion of the fuzzy set was proposed in
1965 by Zadeh [1]. Since then, it has been used in almost
every field of science especially where mathematical logic
and set theory are significantly involved. A fuzzy subset R
of a crisp set S is an object fs, μRðsÞ: s ∈ Sg such that μR
: S⟶ ½0, 1� is called membership mapping of R and μRðs
Þ is known as a degree of membership of s in R. One can
see that fuzzy sets are the extensions of characteristic func-
tions of classical sets, by expanding the range of the function
from f0, 1g to ½0, 1�. After the proposal of fuzzy sets, a lot of
theories have been put forward to handle uncertain and
imprecision circumstances. Some of these theories are
expansions of fuzzy sets, whereas others strive to cope with
uncertainties in another appropriate manner. Atanassov
[2] introduced an intuitionistic fuzzy set (IFS) which is the
generalization of fuzzy set. An intuitionistic fuzzy subset R
of a crisp set S is an object fs, μRðsÞ, νRðsÞ: s ∈ Sg, where
μR : S⟶ ½0, 1� and νR : S⟶ ½0, 1� are membership and
nonmembership functions, respectively, such that μRðsÞ +
νRðsÞ ≤ 1 for all s ∈ S. Compared with classical fuzzy sets,

the positive and negative membership functions of intuitio-
nistic fuzzy sets ensure its effective handling of uncertain
and vague situations in physical problem, especially in the
field of decision-making [3–6]. In 2013, Yager [7] general-
ized intuitionistic fuzzy sets by presenting the idea of
Pythagorean fuzzy set (PFS). The Pythagorean fuzzy subset
R of a crisp set S is an object fs, μRðsÞ, νRðsÞ: s ∈ Sg, where
μR : S⟶ ½0, 1� and νR : S⟶ ½0, 1� are membership and
nonmembership functions, respectively, such that ðμRðsÞÞ2
+ ðνRðsÞÞ2 ≤ 1 for all s ∈ S. This concept is designed to con-
vert uncertain and vague environment in the form of math-
ematics and to find more effective solutions of such real-
world problems [8–11]. Although Pythagorean fuzzy subsets
solve different types of real-life problems in an efficient way
but even then, there is a room for improvement because
there exists so many cases where Pythagorean fuzzy subsets
fail to work. For example, if positive and negative member-
ship values proposed by a decision-maker are 0.75 and
0.85, respectively, then ð0:75 Þ2 + ð0:85 Þ2 > 1; therefore,
Pythagorean fuzzy subsets fail to deal with such problems.
In order to find a reasonable solution of such kinds of situ-
ations, Yager defines the notion of q-rung orthopair fuzzy
set (q-ROFS), where q is a natural number [12]. The q
-rung orthopair fuzzy subset R of a crisp set S is an
object fs, μRðsÞ, νRðsÞ: s ∈ Sg, where μR : S⟶ ½0, 1� and
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νR : S⟶ ½0, 1� are positive and negative membership
functions, respectively, such that ðμRðsÞÞq + ðνRðsÞÞq ≤ 1 for
all s ∈ S. In order to find real-world applications of q-ROFSs,
we suggest reading [13, 14].

Theory of groups is one of the prominent branches of
mathematics with numerous applications in physics [15],
chemistry [16], cryptography [17–19], differential equations
[20], and graph theory [21, 22]. Rosenfeld [23] initiated the
study of fuzzy subgroups. Since then, many mathematicians
studied classical group theoretic results in different fuzzy
environments. In [24], Das presented a comprehensive study
of level subgroups of a fuzzy subgroup. Sherwood defined
products of fuzzy subgroups and proved important results
related to this notion [25]. Bhattacharya and Mukherjee
[26] presented the idea of fuzzy relations on fuzzy subgroups
and presented some new results in this direction. Choudh-
ury et al. presented a study on fuzzy subgroups and fuzzy
homomorphism in [27]. Some new results on normal fuzzy
subgroups have been proven in [28]. Kumar [29] discussed
some properties of fuzzy cosets and fuzzy ideals. In [30],
some problems related to equivalence relation on fuzzy sub-
groups have been studied. Biswas [31] initiated the work on
intuitionistic fuzzy subgroups in 1989. Hur et al. [32]
defined the notion of intuitionistic fuzzy coset and discussed
some of its algebraic characteristics. In [33], Sharma defined
direct product of intuitionistic fuzzy subgroups. To find
more about intuitionistic fuzzy subgroups, we recommend
reading [34–38]. Recently, Bhunia et al. [39] defined Pythag-
orean fuzzy subgroups and explored different attributes of
this concept.

Considering the above literature and the significance of q
-rung orthopair fuzzy sets and theory of groups, this article
reveals the study of q-rung orthopair fuzzy subgroups (q-
ROFSGs). The basic purpose and the principal contribution
of this work are to

(1) discuss various important algebraic attributes of q
-rung orthopair fuzzy subgroups

(2) define the concepts of q-rung orthopair fuzzy
coset and q-rung orthopair fuzzy normal subgroup
along with the study of relevant fundamental
theorems

(3) introduce the idea of q-rung orthopair fuzzy level
subgroup and prove some important results of this
notion

2. The q-Rung Orthopair Fuzzy Subgroups

In this section, some important algebraic attributes of q-rung
orthopair fuzzy subgroups will be discussed. We start this
section with the definition of q-rung orthopair fuzzy sub-
group (q-ROFSG).

Definition 1. Let G be a group; then, a q-ROFS R = fs, μRð
sÞ, νRðsÞg of G is called a q-rung orthopair fuzzy subgroup
(q-ROFSG) of G if the following conditions hold:

(i) ðμRðs1s2ÞÞq ≥min fðμRðs1ÞÞq, ðμRðs1ÞÞqg and
ðνRðs1s2ÞÞq ≤max fðνRðs1ÞÞq, ðνRðs2ÞÞqg for all s1
, s2 ∈G

(ii) ðμRðs−1ÞÞq ≥ ðμRðsÞÞq and ðνRðs−1ÞÞq ≤ ðνRðsÞÞq for
all s ∈ G

Theorem 2. Let R = fs, μRðsÞ, νRðsÞ: s ∈G, ðμRðsÞÞq +
ðνRðsÞÞq ≤ 1g be a q-ROFSG of G: Then, the following condi-
tions are true:

(i) ðμRðeÞÞq ≥ ðμRðsÞÞq and ðνRðeÞÞq ≤ ðνRðsÞÞq for all
s ∈G

(ii) ðμRðs−1ÞÞq = ðμRðsÞÞq and ðνRðs−1ÞÞq = ðνRðsÞÞq for
all s ∈G

Proof.

(i) Let s ∈G; then, ðμRðs−1sÞÞq ≥min fðμRðs−1ÞÞq,
ðμRðsÞÞqg⟹ ðμRðeÞÞq ≥min fðμRðs−1ÞÞq,
ðμRðsÞÞqg = ðμRðsÞÞq ⟹ ðμRðeÞÞq ≥ ðμRðsÞÞq. Sim-
ilarly, we can show that ðνRðeÞÞq ≤ ðνRðsÞÞq

(ii) Since ðμRðs−1ÞÞq ≥ ðμRðsÞÞq and ðνRðs−1ÞÞq ≤
ðνRðsÞÞq for all s ∈G, therefore ðμRððs−1Þ−1ÞÞ

q
≥

ðμRðs−1ÞÞq and ðνRððs−1Þ−1ÞÞ
q
≤ ðνRðs−1ÞÞq which

means that ðμRðsÞÞq ≥ ðμRðsÞÞq and ðνRðsÞÞq ≤
ðνRðs−1ÞÞq. Thus, ðμRðs−1ÞÞq = ðμRðsÞÞq and
ðνRðs−1ÞÞq = ðνRðsÞÞq for all s ∈G

The following theorem shows that every Pythagorean
fuzzy subgroup (PFSG) of G is q-ROFSG of G.

Theorem 3. Let G be a group and P = fs, μPðsÞ, νPðsÞ: s ∈G
, ðμPðsÞÞ2 + ðνPðsÞÞ2 ≤ 1 g be a PFSG of G. Then, P is a q-
ROFSG of G.

Proof. Let s1, s2 ∈G; then

μP s1s2ð Þð Þð Þ2 ≥min μP s1ð Þð Þ2, μP s2ð Þð Þ2� �
,

νP s1s2ð Þð Þð Þ2 ≤max νP s1ð Þð Þ2, νP s2ð Þð Þ2� �
,

μ s−1
� �� �2 ≥ μ sð Þð Þ2,

ν s−1
� �� �2 ≤ ν sð Þð Þ2:

ð1Þ

This implies that

μP s1s2ð Þð Þð Þq ≥min μP s1ð Þð Þq, μP s2ð Þð Þqf g, ð2Þ

νP s1s2ð Þð Þð Þq ≤max νP s1ð Þð Þq, νP s2ð Þð Þqf g, ð3Þ
μ s−1
� �� �q ≥ μ sð Þð Þq, ð4Þ
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νP s−1
� �� �q ≤ νP sð Þð Þq: ð5Þ

Since ðμPðs1ÞÞ2, ðμPðs2ÞÞ2, ðμPðsÞÞ2, ðνPðs1ÞÞ2, ðνPðs2ÞÞ2,
ðνPðsÞÞ2 ∈ ½0, 1�, therefore for all q > 2, we have ðμPðs1ÞÞq ≤
ðμPðs1ÞÞ2, ðμPðs2ÞÞq ≤ ðμPðs2ÞÞ2, ðμPðsÞÞq ≤ ðμPðsÞÞ2,
ðνPðs1ÞÞq ≤ ðνPðs1ÞÞ2,ðνPðs2ÞÞq ≤ ðνPðs2ÞÞ2, and ðνPðsÞÞq ≤
ðνPðsÞÞ2. Thus,

μP s1ð Þð Þq + νP s1ð Þð Þq ≤ 1, ð6Þ

μP s2ð Þð Þq + νP s2ð Þð Þq ≤ 1, ð7Þ
μP sð Þð Þq + νP sð Þð Þq ≤ 1: ð8Þ

The inequalities (2)–(8) reveal that P is a q-ROFSG of G.

The next example provides evidence of invalidity of the
converse of the above theorem.

Example 1. Consider dihedral group D4, that is,

D4 = s1, s2 : s1ð Þ2 = s2ð Þ4 = s1s2ð Þ2 = e
� �

= e, s1, s2, s2ð Þ2, s2ð Þ3, s2s1, s2ð Þ2s1, s2ð Þ3s1
� �

:
ð9Þ

One can easily verify that

R =
e, 0:95,0:10ð Þ, s2ð Þ2, 0:80,0:45� �

, s2, 0:80,0:75ð Þ, s2ð Þ3, 0:80,0:75� �
,

s2s1, 0:80,0:78ð Þ, s2ð Þ2s1, 0:80,0:78
� �

, s2ð Þ3s1, 0:80,0:78
� �

, s1, 0:80,0:78ð Þ

( )

ð10Þ

is 3-ROFSG of D4, but it is not a PFSG of D4 as
ð0:80Þ2 + ð0:78Þ2 > 1.

Theorem 4. A q-ROFS R = fs, μRðsÞ, νRðsÞg of group G is a q-
ROFSG of G if and only if ðμPðst−1ÞÞq ≥min fðμRðsÞÞq,
ðμRðtÞÞqg and ðνRðst−1ÞÞq ≤max fðνRðsÞÞq, ðνRðtÞÞqg for
all s, t ∈ G.

Proof. Let R = fs, μRðsÞ, νRðsÞ: s ∈G, ðμRðsÞÞq + ðνRðsÞÞq ≤ 1 g
be a q-ROFSG of G. Then, for all s, t ∈G, ðμPðst−1ÞÞq ≥min
fðμRðsÞÞq, ðμRðt−1ÞÞqg =min fðμRðsÞÞq, ðμRðtÞÞqg and
ðνRðst−1ÞÞq ≤max fðνRðsÞÞq, ðνRðt−1ÞÞqg =max fðνRðsÞÞq
, ðνRðtÞÞqg.

Conversely, suppose that ðμPðst−1ÞÞq ≥min fðμRðsÞÞq,
ðμRðtÞÞqg and ðνRðst−1ÞÞq ≤max fðνRðsÞÞq, ðνRðtÞÞqg for

all s, t ∈G. Then, ðμPðstÞÞq = ðμPðsðt−1Þ−1ÞÞ
q
≥min f

ðμRðsÞÞq, ðμRðt−1ÞÞqg =min fðμRðsÞÞq, ðμRðtÞÞqg. Thus,

μP stð Þð Þq ≥min μR sð Þð Þq, μR tð Þð Þqf g: ð11Þ

Similarly,

νR stð Þð Þq ≤max νR sð Þð Þq, νR tð Þð Þqf g: ð12Þ

Next, ðμPðs−1ÞÞq = ðμPðes−1ÞÞq ≥min fðμRðeÞÞq,

ðμRðsÞÞqg = ðμRðsÞÞq, that is,

μR s−1
� �� �q ≥ μR sð Þð Þq: ð13Þ

Similarly,

νR s−1
� �� �q ≤ νR sð Þð Þq: ð14Þ

The inequalities (11)–(14) show that R is a q-ROFSG of
G.

Theorem 5. Let R1 = fs, μR1
ðsÞ, νR1

ðsÞg and R2 = fs, μR2
ðsÞ,

νR2
ðsÞg be two q-ROFSGs of G; then, R1 ∩ R2 is a q-ROFSG

of G.

Proof. Suppose that R1 and R2 are two q-ROFSGs of G. Then,
for all s1, s2 ∈G, we have

μR1∩R2
s1s

−1
2

� �� 	q
=min μR1

s1s
−1
2

� �� 	q
, μR2

s1s
−1
2

� �� 	qh i
≥min min μR1

s1ð Þ
� 	q

, μR1
s2ð Þ

� 	q� 	
, min μR2

s1ð Þ
� 	q

, μR2
s2ð Þ

� 	q� 	h i
=min min μR1

s1ð Þ
� 	q

, μR2
s1ð Þ

� 	q� 	
, min μR1

s2ð Þ
� 	q

, μR2
s2ð Þ

� 	q� 	h i
=min μR1∩R2

s1ð Þ
� 	q

, μR1∩R2
s2ð Þ

� 	qh i
:

ð15Þ

That is,

μR1∩R2
s1s

−1
2

� �� 	q
≥min μR1∩R2

s1ð Þ
� 	q

, μR1∩R2
s2ð Þ

� 	qh i
:

ð16Þ

Similarly,

μR1∩R2
s1s

−1
2

� �� 	q
≤max μR1∩R2

s1ð Þ
� 	q

, μR1∩R2
s2ð Þ

� 	qh i
:

ð17Þ

The application of (16) and (17) together with the theo-
rem give R1 ∩ R2 which is a q-ROFSG of G.

Theorem 6. Let R = fs, μRðsÞ, νRðsÞg be a q-ROFSG of G:
Then, ðμRðsmÞÞq ≥ ðμRðsÞÞq and ðνRðsmÞÞq ≤ ðνRðsÞÞq for all
s ∈G and m ∈ℕ.

Proof.We will use mathematical induction to prove this the-
orem. Suppose s ∈G; then, ðμRðs2ÞÞq = ðμRðssÞÞq ≥min f
ðμRðsÞÞq, ðμRðsÞÞqg = ðμRðsÞÞq.

Therefore, the inequality is valid for m = 2: Assume that
the inequality holds for m = n − 1, that is, ðμRðsn−1ÞÞq ≥
ðμRðsÞÞq. Then, ðμRðsnÞÞq = ðμRðssn−1ÞÞq ≥min fðμRðsÞÞq,
ðμRðsn−1ÞÞqg = ðμRðsÞÞq. Thus, by mathematical induction,
we have ðμRðsmÞÞq ≥ ðμRðsÞÞq for all m ∈ℕ.

Similarly, we can show ðνRðsmÞÞq ≤ ðνRðsÞÞq for all m ∈
ℕ.

Theorem 7. LetR = fs, μRðsÞ, νRðsÞg be a q-ROFSG of G: If
μRðs1Þ ≠ μRðs2Þ and νRðs1Þ ≠ νRðs2Þ for some s1, s2 ∈G,
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then ðμRðs1s2ÞÞq =min ½ðμRðs1ÞÞq, ðμRðs2ÞÞq� and
ðνRðs1s2ÞÞq =max ½ðνRðs1ÞÞq, ðνRðs2ÞÞq�.

Proof. Suppose that for some s1, s2 ∈G, we have μRðs1Þ >
μRðs2Þ; then, obviously ðμRðs1ÞÞq > ðμRðs2ÞÞq.

Consider

μR s2ð Þð Þq = μR s−11 s1s2
� �� �q ≥min μR s−11

� �� �q, μR s1s2ð Þð Þq
h i

=min μR s1ð Þð Þq, μR s1s2ð Þð Þq½ �:
ð18Þ

Since ðμRðs1ÞÞq > ðμRðs2ÞÞq, therefore from relation
(18), we obtain

μR s2ð Þð Þq ≥ μR s1s2ð Þð Þq: ð19Þ

Also, ðμRðs1s2ÞÞq ≥min ½ðμRðs1ÞÞq, ðμRðs2ÞÞq� =
ðμRðs2ÞÞq, that is,

μR s1s2ð Þð Þq ≥ μR s2ð Þð Þq: ð20Þ

From (19) and (20), we have

μR s1s2ð Þð Þq = μR s2ð Þð Þq =min μR s1ð Þð Þq, μR s2ð Þð Þq½ �:
ð21Þ

Similarly, the result can be proven if μRðs2Þ > μRðs1Þ.
Next, assume that νRðs1Þ < νRðs2Þ; therefore, ðνRðs1ÞÞq

< ðνRðs2ÞÞq. Then,

νR s2ð Þð Þq = νR s−11 s1s2
� �� �q ≤max νR s−11

� �� �q, νR s1s2ð Þð Þq
h i

=max νR s1ð Þð Þq, νR s1s2ð Þð Þq½ �:
ð22Þ

Since ðνRðs1ÞÞq < ðνRðs2ÞÞq, therefore from relation
(22), we obtain

νR s2ð Þð Þq ≤ νR s1s2ð Þð Þq: ð23Þ

Also, ðνRðs1s2ÞÞq ≤max ½ðνRðs1ÞÞq, ðνRðs2ÞÞq� =
ðνRðs2ÞÞq, that is,

νR s1s2ð Þð Þq ≤ νR s2ð Þð Þq: ð24Þ

From (23) and (24), we have

νR s1s2ð Þð Þq ≤ νR s2ð Þð Þq =max νR s1ð Þð Þq, νR s2ð Þð Þq½ �:
ð25Þ

Similarly, ðνRðs1s2ÞÞq =max ½ðνRðs1ÞÞq, ðνRðs2ÞÞq�, if
νRðs1Þ < νRðs2Þ.

Theorem 8. Let e denote the identity element of G and R

= fs, μRðsÞ, νRðsÞ g be a q-ROFSG of G: Then,

(i) if ðμRðs1ÞÞq = ðμRðeÞÞq for some s1 ∈G, then
ðμRðs1s2ÞÞq = ðμRðs2ÞÞq for all s2 ∈ G

(ii) if ðνRðs1ÞÞq = ðνRðeÞÞq for some s1 ∈ G, then
ðνRðs1s2ÞÞq = ðνRðs2ÞÞq for all s2 ∈G

Proof. Suppose that R = fs, μRðsÞ, νRðsÞg is a q-ROFSG of
G.

(i) Let ðμRðs1ÞÞq = ðμRðeÞÞqfor some s1 ∈ G. Then,

μR s2ð Þð Þq = μR s−11 s1s2
� �� �q ≥min μR s−11

� �� �q, μR s1s2ð Þð Þq
h i

=min μR s1ð Þð Þq, μR s1s2ð Þð Þq½ �
=min μR eð Þð Þq, μR s1s2ð Þð Þq½ �:

ð26Þ

Since ðμRðeÞÞq ≥ ðμRðs2ÞÞq, therefore from relation (26),
we obtain

μR s2ð Þð Þq ≥ μR s1s2ð Þð Þq: ð27Þ

Also, ðμRðs1s2ÞÞq ≥min ½ðμRðs1ÞÞq, ðμRðs2ÞÞq� =
ðμRðs2ÞÞq, that is,

μR s1s2ð Þð Þq ≥ μR s2ð Þð Þq: ð28Þ

From (27) and (28), we have

μR s1s2ð Þð Þq = μR s2ð Þð Þq: ð29Þ

(ii) The proof is similar to that of (i).

Theorem 9. Let e denote the identity element of G and R

= fs, μRðsÞ, νRðsÞg be a q-ROFSG of G. Then, H = fs ∈G
: ðμRðsÞÞq = ðμRðeÞÞq and ðνRðsÞÞq = ðνRðeÞÞqg is a sub-
group of G.

Proof. By definition of H, we have e ∈H. Therefore, H is
nonempty subset of G.

Let s1, s2 ∈H; then, ðμRðs1ÞÞq = ðμRðeÞÞq = ðμRðs2ÞÞq
and ðνRðs1ÞÞq = ðνRðeÞÞq = ðνRðs2ÞÞq.

Now,

μR s1s
−1
2

� �� �q ≥min μR s1ð Þð Þq, μR s−12
� �� �qh i

=min μR s1ð Þð Þq, μR s2ð Þð Þq½ �
=min μR eð Þð Þq, μR eð Þð Þq½ � = μR eð Þð Þq:

ð30Þ

Also, by Theorem 2, we have ðμRðeÞÞq ≥ ðμRðs1s−12 ÞÞq.
Therefore, ðμRðs1s−12 ÞÞq = ðμRðeÞÞq. Similarly, we can show
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that ðνRðs1s−12 ÞÞq = ðνRðeÞÞq. Thus, s1s−12 ∈H, which com-
pletes the proof.

3. q-Rung Orthopair Fuzzy Coset and q-Rung
Orthopair Fuzzy Normal Subgroup

In this section, we define q-rung orthopair fuzzy coset and q
-rung orthopair fuzzy normal subgroup. Moreover, we prove
some important results regarding q-rung orthopair fuzzy
normal subgroup (q-ROFNS).

Definition 10. LetR = fs, μRðsÞ, νRðsÞg be a q-ROFSG of G:
Then, for x ∈G,

(a) a q-ROFS xR = fs, μxRðsÞ, νxRðsÞg of G, where
ðμxRðsÞÞq = ðμRðx−1sÞÞq and ðνxRðsÞÞq =
ðνRðx−1sÞÞq, is called q-rung orthopair fuzzy left
coset of R in G determined by x

(b) a q-ROFS Rx = fs, μRxðsÞ, νRxðsÞg of G, where
ðμRxðsÞÞq = ðμRðsx−1ÞÞq and ðνRxðsÞÞq =
ðνRðsx−1ÞÞq, is called q-rung orthopair fuzzy right
coset of R in G determined by x

Definition 11. A q-ROFSG R = fs, μRðsÞ, νRðsÞg of G is
called q-rung orthopair fuzzy normal subgroup (q-ROFNS)
of G if xR =Rx for all x ∈G.

Theorem 12. Let R = fs, μRðsÞ, νRðsÞg be a q-ROFSG of G:
Then, R is q-ROFNS of G if and only if ðμRðs1s2ÞÞq =
ðμRðs2s1ÞÞq and ðνRðs1s2ÞÞq = ðνRðs2s1ÞÞq for all s1, s2 ∈G.

Proof. Assume thatR = fs, μRðsÞ, νRðsÞg is a q-ROFNSG of
G. Then, xR =Rx for all x ∈G; it means that ðμxRðsÞÞq =
ðμRxðsÞÞq and ðνxRðsÞÞq = ðνRxðsÞÞq for all s ∈G. Therefore,
ðμRðx−1sÞÞq = ðμRðsx−1ÞÞq and ðνRðx−1sÞÞq = ðνRðsx−1ÞÞq
for all x, s ∈G.

Now,

μR s1s2ð Þð Þq = μR s1 s−12
� �−1� 	� 	q

= μR s−12
� �−1

s1
� 	� 	q

= μR s2s1ð Þð Þq,

νR s1s2ð Þð Þq = νR s1 s−12
� �−1� 	� 	q

= νR s−12
� �−1

s1
� 	� 	q

νR s2s1ð Þð Þq:

ð31Þ

Conversely, suppose that ðμRðs1s2ÞÞq = ðμRðs2s1ÞÞq and
ðνRðs1s2ÞÞq = ðνRðs2s1ÞÞq for all s1, s2 ∈G. Then,

ðμRðs1ðs−12 Þ−1ÞÞq = ðμRððs−12 Þ−1s1ÞÞ
q
and ðνRðs1ðs−12 Þ−1ÞÞq =

ðνRððs−12 Þ−1s1ÞÞ
q
. Using s1 = s and s−12 = x gives ðμRðsx−1ÞÞq

= ðμRðx−1sÞÞq and ðνRðsx−1ÞÞq = ðνRðx−1sÞÞq. This means
that ðμRxðsÞÞq = ðμxRðsÞÞq and ðνRxðsÞÞq = ðνxRðsÞÞq; there-
fore, xR =Rx. Hence, R is q-ROFNS of G.

Theorem 13. Let R = fs, μRðsÞ, νRðsÞg be a q-ROFSG of G:
Then, R is q-ROFNS of G if and only if ðμRðsxs−1ÞÞq =
ðμRðxÞÞq and ðνRðsxs−1ÞÞq = ðνRðxÞÞq for all s, x ∈G.

Proof. Let R be a q-ROFNS of G and s, x ∈G. Then,

μR sxs−1
� �� �q = μR sxð Þs−1� �� �q = μR s−1 sxð Þ� �� �q

= μR ss−1
� �

x
� �� �q = μR exð Þð Þq = μR xð Þð Þq

ð32Þ

(by Theorem 12).
Similarly, we can prove ðνRðsxs−1ÞÞq = ðνRðxÞÞq.
Conversely, suppose that ðμRðsxs−1ÞÞq = ðμRðxÞÞq and

ðνRðsxs−1ÞÞq = ðνRðxÞÞq for all s, x ∈G. Let s1, s2 ∈G; then,

μR s1s2ð Þð Þq = μR s−12 s2
� �

s1s2
� �� �q = μR s−12 s2

� �
s1 s−12
� �−1� 	� 	q

= μR s−12 s2s1ð Þ s−12
� �−1� 	� 	q

= μR s2s1ð Þð Þq:
ð33Þ

Similarly,

νR s1s2ð Þð Þq = νR s2s1ð Þð Þq: ð34Þ

Then, the application of (33) and (34) together with The-
orem 12 gives R which is q-ROFNS of G.

Theorem 14. LetR = fs, μRðsÞ, νRðsÞg be a q-ROFNSG of G
. Then, H = fs ∈G : ðμRðsÞÞq = ðμRðeÞÞq and ðνRðsÞÞq =
ðνRðeÞÞqg is a normal subgroup of G.

Proof. The application of Theorem 9 gives H which is a sub-
group of G. Let h ∈H and s ∈G; then,

μR shs−1
� �� �q = μR hð Þð Þq by Theorem 3:2ð Þ = μR eð Þð Þq since h ∈Hð Þ:

ð35Þ

Similarly,

νR shs−1
� �� �q = νR eð Þð Þq: ð36Þ

Thus, shs−1 ∈H, which implies that H is a normal sub-
group of G.

4. q-Rung Orthopair Fuzzy Level Subgroup

This section reveals the idea of q-rung orthopair fuzzy level
subgroup. We also prove some relevant results.

Definition 15. Let R = fs, μRðsÞ, νRðsÞg be a q-ROFS of
crisp set G and γ, δ ∈ ½0, 1� such that 0 ≤ ð γÞq + ð δÞq ≤ 1.
Then Rð γ,δÞ = fs ∈G : ðμRðsÞÞq ≥ γ and ðνRðsÞÞq ≤ δg is
called q-rung orthopair fuzzy level subset (q-ROFLS) of q-
ROFS R of G.

Theorem 16. Let R = fs, μRðsÞ, νRðsÞg be a q-ROFS of G
and γ, δ, γ′, δ′ ∈ ½0, 1�. Then,

(i) Rð γ,δÞ ⊆Rðγ′,δ′Þ if γ′ ≤ γ and δ ≤ δ′

5Journal of Function Spaces



(ii) Rð γ,δÞ ⊆Rð γ,δÞ′ if R ⊆R′

Proof.

(i) Let s ∈Rð γ,δÞ; then, ðμRðsÞÞq ≥ γ and ðνRðsÞÞq ≤ δ.

Since γ′ ≤ γ and δ ≤ δ′, therefore ðμRðsÞÞq ≥ γ ≥ γ′
and ðνRðsÞÞq ≤ δ ≤ δ′. It means that s ∈Rðγ′ ,δ′Þ;
hence, Rð γ,δÞ ⊆Rðγ′ ,δ′Þ

(ii) Let s ∈Rð γ,δÞ; then, ðμRðsÞÞq ≥ γ and ðνRðsÞÞq ≤ δ.

Since R ⊆R′, therefore ðμRðsÞÞq ≤ ðμR′ðsÞÞq and
ðνRðsÞÞq ≥ ðνR′ðsÞÞq. So, ðμR′ðsÞÞq ≥ ðμRðsÞÞq ≥ γ

and ðνR′ðsÞÞq ≤ ðνRðsÞÞq ≤ δ, which implies that s

∈Rð γ,δÞ′. Thus, Rð γ,δÞ ⊆Rðγ,δÞ′

Theorem 17. A q-ROFS R of a group G is q-ROFSG of G if
and only if q-ROFLS Rðγ,δÞ of G is a subgroup of G.

Proof. We know Rðγ,δÞ = fs ∈ G : ðμRðsÞÞq ≥ γ and
ðνRðsÞÞq ≤ δg. Since for all γ, δ ∈ ½0, 1�, we have ðμRðeÞÞq
≥ γ and ðνRðeÞÞq ≤ δ. Therefore, at least e ∈Rðγ,δÞ, which
implies that Rðγ,δÞ is nonempty.

Suppose s, t ∈Rðγ,δÞ, which means that ðμRðsÞÞq,
ðμRðtÞÞq ≥ γ and ðνRðsÞÞq, ðνRðtÞÞq ≤ δ. Since R is q-
ROFSG of G, therefore

μR st−1
� �� �q ≥min μR sð Þð Þq, μR t−1

� �� �qn o
=min μR sð Þð Þq, μR tð Þð Þqf g ≥min γ, γf g = γ,

νR st−1
� �� �q ≤max νR sð Þð Þq, νR t−1

� �� �qn o
=max νR sð Þð Þq, νR tð Þð Þqf g ≤max δ, δf g = δ:

ð37Þ

Thus, st−1 ∈Rðγ,δÞ; therefore, Rðγ,δÞ is a subgroup of G.
Conversely, let R be a q-ROFS of G, and for all γ, δ ∈ ½

0, 1�, Rðγ,δÞ is a subgroup of G. Suppose s1, s2 ∈G such that
ðμRðs1ÞÞq = γ1, ðμRðs2ÞÞq = γ2, ðνRðs1ÞÞq = δ1, and
ðνRðs2ÞÞq = δ2. Then, s1, s2 ∈Rðmin ðγ1,γ2Þ,min ðδ1,δ2ÞÞ; since
Rðmin ðγ1,γ2Þ,max ðδ1,δ2ÞÞ is a subgroup of G, therefore s1s2 ∈
Rðmin ðγ1,γ2Þ,max ðδ1,δ2ÞÞ. This implies that ðμRðs1s2ÞÞq ≥min ð
γ1, γ2Þ =min ððμRðs1ÞÞq, ðμRðs2ÞÞqÞ and ðνRðs1s2ÞÞq ≤max
ðδ1, δ2Þ =max ððνRðs1ÞÞq, ðνRðs2ÞÞqÞ.

Next, let s ∈ G such that ðμRðsÞÞq = γ and ðνRðsÞÞq = δ.
Then, s ∈Rðγ,δÞ; since Rðγ,δÞ is a subgroup of G, therefore

s−11 ∈Rðγ,δÞ. It means that ðμRðs−11 ÞÞq ≥ γ and ðνRðs−11 ÞÞq ≤
δ, which implies that ðμRðs−11 ÞÞq ≥ ðμRðsÞÞq and ðνRðs−11 ÞÞq
≤ ðνRðsÞÞq.

Hence, R is a q-ROFSG of G.

Theorem 18. IfR is a q-ROFNSG of G, then q-ROFLSRðγ,δÞ
of G is a normal subgroup of G.

Proof. By Theorem 17, Rðγ,δÞ is a subgroup of G. Let x ∈
Rðγ,δÞ and s ∈G. Then, ðμRðxÞÞq ≥ γ and ðνRðxÞÞq ≤ δ. Since
x ∈Rðγ,δÞ ⊆G, therefore by using Theorem 13, we have

ðμRðsxs−1ÞÞq = ðμRðxÞÞq and ðνRðsxs−1ÞÞq = ðνRðxÞÞq. Ulti-
mately, it gives ðμRðsxs−1ÞÞq ≥ γ and ðμRðsxs−1ÞÞq ≤ δ,
which means that sxs−1 ∈Rðγ,δÞ. Thus, Rðγ,δÞ is a normal
subgroup of G.

5. Homomorphism on q-Rung Orthopair
Fuzzy Subgroups

This section is devoted to explore the impact of group
homomorphism on q-rung orthopair fuzzy subgroups.

Theorem 19. Suppose θ : G⟶G′ is an onto group homo-
morphism and R = fs, μRðsÞ, νRðsÞ: s ∈ Gg is a q-ROFAG
of G. Then, θðRÞ = fs′, μθðRÞðs′Þ, νθðRÞðs′Þ: s′ ∈ G′g is a q-

ROFSG of G′.

Proof. Since θ : G⟶G′ is an onto homomorphism, there-
fore θðGÞ = G′.

Let s1′ , s2′ ∈G′; then, there exists s1, s2 ∈ G such that θðs1
Þ = s1′, θðs2Þ = s2′, and θðs1s2Þ = θðs1Þθðs2Þ = s1′ s2′.

μθ Rð Þ s1′s2′
� 	� 	q

= max μR zð Þ: z ∈G, θ zð Þ = s1′s2′
n o� 	q

=max μR zð Þð Þq : z ∈G, θ zð Þ = s1′s2′
n o

=max
μR s1s2ð Þð Þq : s1s2 = z ∈G, θ s1ð Þ = s1′ , θ s2ð Þ = s2′

and θ s1s2ð Þ = θ s1ð Þθ s2ð Þ = s1′s2′

8<
:

9=
;

� θ is homomorphismð Þ

≥max
min μR s1ð Þð Þq, μR s2ð Þð Þqð Þ:
s1, s2 ∈G, θ s1ð Þ = s1′ , θ s2ð Þ = s2′

( )

� R is a q‐ROFSG of Gð Þ

=min
max μR s1ð Þð Þq : s1 ∈G, θ s1ð Þ = s1′

n o
,

max μR s2ð Þð Þq : s2 ∈G, θ s2ð Þ = s2′
n o

0
BB@

1
CCA

=min μθ Rð Þ s1′
� 	� 	q

, μθ Rð Þ s2′
� 	� 	q� 	

:

ð38Þ

So, ðμθðRÞðs1′ s2′ÞÞ
q ≥min ðμθðRÞðs1′ÞÞ

q, ðμθðRÞðs2′ÞÞ
q

� 	
for

all s1′ , s2′ ∈G′. In a similar way, it can be shown that

ðνθðRÞðs1′ s2′ÞÞ
q ≥min ðνθðRÞðs1′ÞÞ

q, ðνθðRÞðs2′ÞÞ
q

� 	
.
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Again, suppose that s′ ∈ G′; then,

μθ Rð Þ s′−1
� 	� 	q

= max μR zð Þ: z ∈G, θ zð Þ = s′−1
n o� 	q

= max μR z−1
� �

: z−1 ∈ G, θ z−1
� �

= s′
n o� 	q

= μθ Rð Þ s′
� 	� 	q

:

ð39Þ

Similarly, we have ðνθðRÞðs′
−1ÞÞq = ðνθðRÞðs′ÞÞ

q
for all s

′ ∈G′.
Thus, θðRÞ = fs′, μθðRÞðs′Þ, νθðRÞðs′Þ: s′ ∈G′g is a q-

ROFSG of G′.

Theorem 20. Suppose θ : G⟶G′ is a bijective homomor-
phism and T = fs′, μT ðs′Þ, νT ðs′Þ: s′ ∈G′g is a q-ROFSG
of G′. Then, θ−1ðT Þ = fs, μθ−1ðT ÞðsÞ, νθ−1ðT ÞðsÞ: s ∈Gg is a q
-ROFSG of G.

Proof. Let s1, s2 ∈G; then, s1s2 ∈G.
Next,

μθ−1 Tð Þ s1s2ð Þ
� 	q

= μT θ s1s2ð Þð Þð Þq

= μT θ s1ð Þθ s2ð Þð Þð Þq θ is homomorphismð Þ
≥min μT θ s1ð Þð Þð Þq, μT θ s2ð Þð Þð Þqf g
� T is a q‐ROFSG of G′
� 	

=min μθ−1 Tð Þ s1ð Þ
� 	q

, μθ−1 Tð Þ s2ð Þ
� 	qn o

:

ð40Þ

In a similar fashion, we can show ðνθ−1ðT Þðs1s2ÞÞq ≤
max fðνθ−1ðT Þðs1ÞÞq, ðνθ−1ðT Þðs2ÞÞqg, for all s1, s2 ∈G.

Again, suppose that s ∈ G; then,

μθ−1 Tð Þ s−1
� �� 	q

= μT θ s−1
� �� �� �q = μT θ sð Þð Þð Þq = μθ−1 Tð Þ sð Þ

� 	q
:

ð41Þ

Similarly, we can prove ðνθ−1ðT Þðs−1ÞÞq = ðνθ−1ðT ÞðsÞÞq.
Thus, θ−1ðT Þ is a q-ROFSG of G.

Theorem 21. Suppose θ : G⟶G′ is an onto group homo-
morphism and R = fs, μRðsÞ, νRðsÞ: s ∈Gg is a q-ROFNSG
of G. Then, θðRÞ = fs′, μθðRÞðs′Þ, νθðRÞðs′Þ: s′ ∈G′g is a q-

ROFNSG of G′.

Proof. The application of Theorem 19 yields that θðRÞ is a q
-ROFSG of G′. Let s1′ , s2′ ∈G′; then, there exists s1, s2 ∈G
such that θðs1Þ = s1′, θðs2Þ = s2′, and θðs1s2Þ = θðs1Þθðs2Þ = s1

′ s2′.

μθ Rð Þ s1′s2′
� 	� 	q

= max μR zð Þ: z ∈G, θ zð Þ = s1′s2′
n o� 	q

=max μR zð Þð Þq : z ∈G, θ zð Þ = s1′s2′
n o

=max
μR s1s2ð Þð Þq : s1s2 = z ∈G, θ s1ð Þ = s1′ , θ s2ð Þ = s2′

and θ s1s2ð Þ = θ s1ð Þθ s2ð Þ = s1′s2′

8<
:

9=
;

� θ is homomorphismð Þ

=max
μR s2s1ð Þð Þq : s2s1 = z′ ∈G, θ s1ð Þ = s1′ ,

θ s2ð Þ = s2′ and θ s2s1ð Þ = θ s2ð Þθ s1ð Þ = s2′s1′

8<
:

9=
;

� R is a q‐ROFNSGof Gð Þ
=max μR z′

� 	� 	q
: z′ ∈G, θ z′

� 	
= s2′s1′

n o
= max μR z′

� 	
: z′ ∈G, θ z′

� 	
= s2′s1′

n o� 	q

= μθ Rð Þ s2′s1′
� 	� 	q

:

ð42Þ

So, ðμθðRÞðs1′ s2′ÞÞ
q = ðμθðRÞðs2′ s1′ÞÞ

q
for all s1′ , s2′ ∈G′. In a

similar way, it can be shown that ðνθðRÞðs1′ s2′ÞÞ
q =

ðνθðRÞðs2′ s1′ÞÞ
q
for all s1′ , s2′ ∈ G′.

Hence, by Theorem 12, θðRÞ = fs′, μθðRÞðs′Þ, νθðRÞðs′Þ
: s′ ∈G′g is a q-ROFNSG of G′.

Theorem 22. Suppose θ : G⟶G′ is a bijective homomor-
phism and T = fs′, μT ðs′Þ, νT ðs′Þ: s′ ∈ G′g is a q-ROFNSG
of G′. Then, θ−1ðT Þ = fs, μθ−1ðT ÞðsÞ, νθ−1ðT ÞðsÞ: s ∈Gg is a q-
ROFNSG of G.

Proof. By using Theorem 13, we have θ−1ðT Þ is a q-ROFSG
of G. Let s1, s2 ∈G; then, s1s2 ∈G.

Now,

μθ−1 Tð Þ s1s2ð Þ
� 	q

= μT θ s1s2ð Þð Þð Þq

= μT θ s1ð Þθ s2ð Þð Þð Þq θ is homomorphismð Þ
= μT θ s2ð Þθ s1ð Þð Þð Þq T is a q‐ROFNSG of G′

� 	
= μT θ s2s1ð Þð Þð Þq = μθ−1 Tð Þ s2s1ð Þ

� 	q
:

ð43Þ

Therefore, ðμθ−1ðT Þðs1s2ÞÞq = ðμθ−1ðT Þðs2s1ÞÞq for all s1, s2
∈G. In a similar way, it can be shown that ðνθ−1ðT Þðs1s2ÞÞq
= ðνθ−1ðT Þðs2s1ÞÞq for all s1, s2 ∈G.

Hence, by Theorem 12, θ−1ðT Þ = fs, μθ−1ðT ÞðsÞ, νθ−1ðT Þð
sÞ: s ∈Gg is a q-ROFNSG of G.

6. Conclusion

This article aims to initiate the study of q-rung orthopair
fuzzy group theory.

We have introduced the notion of q-ROFSG and many
algebraic characteristics of this newly defined concept. We
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have proven that every PFSG is q-ROFSG, but the converse
is not true. We presented the idea of q-rung orthopair fuzzy
coset and q-ROFNSG and found a necessary and sufficient
condition for ROFSG to be a ROFNSG. In addition, we
found that q-ROFLS q-rung orthopair fuzzy level subset of
a group G is a normal subgroup of G. Lastly, we have
explored the impact of group homomorphism on q-ROFSG.
We are working on some other classical group theoretic
topics like quotient groups, Lagrange’s theorem, isomor-
phism theorems, conjugate subgroups, Caley’s theorem, sub-
groups of nilpotent, solvable, Hamiltonian, and P-Hall
groups under q-rung orthopair fuzzy environment. We will
share this work in our upcoming papers.
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