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Differential equations with fractional derivative are being extensively used in the modelling of the transmission of many infective
diseases like HIV, Ebola, and COVID-19. Analytical solutions are unreachable for a wide range of such kind of equations. Stability
theory in the sense of Ulam is essential as it provides approximate analytical solutions. In this article, we utilize some fixed point
theorem (FPT) to investigate the stability of fractional neutral integrodifferential equations with delay in the sense of Ulam-Hyers-
Rassias (UHR). This work is a generalized version of recent interesting works. Finally, two examples are given to prove the

applicability of our results.

1. Introduction

Fractional calculus (FC) has proved to be an efficient tool in
many domains like biology, mechanics, electricity, signal
processing, chemistry, economics, polymer rheology, aero-
dynamics, and other areas of interest problems (see, e.g.,
[1-8] and the references therein). This is because of the pow-
erful tools (see, e.g., [5]) that are not available in the classical
calculus. In particular, FC enable researches to model in an
efficient way many complicated real-world problems like
COVID-19 (see [9]), HIV (see [10]), Rubella disease (see
[11]), Ebola virus (see [12]), and HBV infection (see [13]).

Neutral FDEs (NFDEs) play an essential role in many
applications. For instance, NFDEs with delay model have
electrical networks containing lossless transmission lines
(see, e.g., [14]).

As a consequence of the importance and applications of
this class of equations, numerous numerical and approxi-

mate tools have been proposed to solve such kind of equa-
tions. One of such tools that provide close exact analytical
solutions is the theory of stability. Stability theory popped
up as a result of Ulam’s famous question (see, e.g., [15]).
Various answers have been introduced for Ulam’s problem
by many mathematicians. For instance, in 1941, D. H. Hyers
(see [15]) presented a positive answer to the Ulam question
and the stability problem is called Ulam-Hyers or Hyers-
Ulam stability problem. The most important result after
Hyers, Aoki, and Bourgin answer (see [16, 17]) was that of
Rassias in 1978 (see [18]). The idea of Rassias is a generali-
zation of the result of Hyers. The result introduced by Ras-
sias in [18] is now known as the UHR stability.

During the last seventy years, the stability subject for
many kinds of equations has been a common issue of inves-
tigations in many directions and there are a lot of articles as
well as books published in this subject (see, e.g., [19, 20] for
further references). Obloza in 1993 (see [21]) is the first who
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investigated the Ulam stability of differential equations (see
also [22]). Alsina and Ger in 1998 (see [23]) studied the
Ulam-Hyers stability (UHS) of the ordinary differential
equation y'(s) = y(s) and end up with the estimation |h(x)
- ¥,(x)| <3¢, where y,(x) is a solution of the equation,
and some /1 : Q — R is a differentiable mapping satisfying
the corresponding differential inequality with some interval
0. Takahasi et al. in 2002 (see [24]) extended the result of
Alsina and Ger. In particular, Takahasi et al. studied the sta-
bility of the differential equation g'(s)=Ag(s) in Banach
spaces. Miura et al. in 2003 (see [25, 26]) generalized the
work of Alsina and Ger to higher order differential
equations.

As a consequence of the interesting results presented in
this direction, many articles devoted to this subject have
been introduced (see, e.g., [27, 28]). For instance, Jung in
2010 (see [29]) used some FPT to study the stability of the
equation ' =k(s, x). It should be remarked that Jung in
[29] generalized the work of Alsina and Ger (in [23]) to
the nonlinear case. Bojor in 2012 (see [30]) used different
assumptions to study the stability of the equation

h'(x1)+m(x1)h(x1):r(x1), (1)

and improved the result of Jung in [29]. Tun¢ and Biger in
2015 (see [31]) improved the approach of Jung in [29] for
the equation

U(xy) = F(xy, 3, ), 1(xy = 7). )

Huang et al. in 2015 (see [32]) studied the stability of
some general form of a nonlinear differential equation. Popa
and Pugna in 2016 (see [33]) studied the Hyers-Ulam stabil-
ity of Euler’s equation. Shen in 2017 (see [34]) introduced
Ulam stability results for differential equations on time
scales.

Rahim and Akbar in 2018 (see [27]) used a FPT-based
approach to study the stability of a delay Volterra integrodif-
ferential equation. Shikhare and Kucche in 2019 (see [35])
employed weakly Picard operator to investigate the UHS of
some kind of equations. Furthermore, they obtained stability
in the sense of UHR for such kind of equations via Pach-
patte’s integral inequalities. Also, Shah and Zada in 2019
(see [36]) used some FPT to investigate the stability of
impulsive Volterra integral equation. In 2020, the authors
in [37] investigated the stability of some general equation
using FPT. In [38], the authors studied the stability of some
Caputo fractional differential equations using FPT (see also
[39, 40]).

A great number of research articles have been intro-
duced to study the stability of fractional differential equa-
tions. For instance, in [41], the authors studied the Ulam
stability for some fractional differential equations in com-
plex domain. In [42], Ulam-Hyers stability for Cauchy frac-
tional differential equation in the unit disk is investigated. In
[43], the authors investigated the existence of Ulam stability
for iterative fractional differential equations based on frac-
tional entropy. In [44], Mittag-Leffler-Ulam stabilities of
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fractional evolution equations have been introduced. The
author in [45] investigated the generalized Ulam-Hyers sta-
bility for the following fractional differential equation

Djf(z)=G(f(z),zf’(z),zzf”;z),Z<ocs3, (3)

in a complex Banach space. In [46], the authors investigated
Ulam stability for nonlinear Hilfer fractional stochastic dif-
ferential systems in finite dimensional stochastic setting. In
[47], the authors studied the existence of a mild solution
and exponential stability for a class of second-order impul-
sive fractional neutral stochastic differential equations. In
[48], the authors employed some fixed point theory to study
the existence of mild solution for the analysis of the moment
stability of fractional stochastic differential inclusions driven
by the Rosenblatt process and Poisson jumps with impulses
in a Hilbert space. As far as we know, there is no existing
work using the fixed point approach to investigate the stabil-
ity of fractional neutral integrodifferential equations with
delay in the sense of Ulam-Hyers-Rassias (UHR).
The main contributions of our paper are as follows:

(1) Investigating the stability of fractional neutral inte-
grodifferential equations with delay in the sense of
Ulam-Hyers-Rassias (UHR)

(2) Extending some interesting work by adding the neu-
tral term and the fixed point theorem (see [27, 38])

The article is divided into three sections. In the next sec-
tion, we recall some preliminaries; in Section 3, we present
the stability results in UHR sense; in Section 4, we illustrate
our results with two examples; and in Section 5, we present
the conclusion.

2. Preliminaries

Definition 1 (see [8]). The Hadamard fractional integral of
order A for a function 4 is defined as

Hi h(w) = ﬁj{: <log %) . @dv,

provided the integral exists.

Definition 2 (see [8]). The Hadamard derivative of fractional
order A € (0,1) for a function & : [1,00) — R is defined as

D'h(w) = ﬁ (w%) J(: (log %) 7/1@%/. (5)

Definition 3 (see [8]). The Riemann-Liouville fractional inte-
gral of order A for a function % : [1,00) — R is defined as

'h(w) = L r(w ~vWh(v)dv, A>0,  (6)

1

provided the integral exists.
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Definition 4. Let a >0, [ € C. The Mittag-Leffler function
(see, e.g., [36]) E, is defined as

()= Y )

n=0

Remark 1. The function x(9) =

= (1) (x(9) -

Theorem 1 (see [49]). Suppose (M, d) is a complete metric
space and L: M — M satisfies d(L(z),L(e)) <dd(z, e)
(with 0<8 < 1) for all z,ee M. Assume that ve M, A>0
and d(v, L(v)) < A. Then, there is a unique k € M with k=1L
(k). Moreover,

E.(y(9—1)°) satisfies I°«(9)
1), where y e R*.

d(v,k) < %. (8)

The goal of the article is to investigate the stability of the
solution of the following fractional order differential equa-
tions:

D5

y(P)-iﬂffi(p,yp) =?’(P,yp),/3€1== (18], (9)

with initial conditions y(p)
C(1-wv,1],R), with ¢(1)
given functions.

For any function y defined on [1 — v, b] and any p € I, we
denote by y, the element of C, = C([-v,0],R) defined by

¥p(s)=y(p+s),s € [-,0], with norm ||y [ = sup {y(p +s);
-v<s<0}.

[1-wv,1], where ¢ €

$(p).pe
0<1, A,>0, V¢ are

0,0 <

3. Stability Results

In this section, we present our main results.

Theorem 2. Suppose that ¥ : I xR, &, : IXR for ie{l,2,
.-+, m} satisfy

¥ (7, ;) =¥ (7 )| <09l ¢) = Pa|» (10)
5:(7 1) = &i(T )| < 0il| 4, = b,
Joralltel, ¢;€C,,j=1,2 and for some 0;> 0.
Ifle C'([1 - v, b, R) satisfies (1) = 0 and

D |i0) - Y et | - wml)| <erm. ()

for all T € [1, b], where & > 0 and y(7) is a nondecreasing, con-
tinuous, positive function, then there is a solution I* of (9)
with I (t) =1(7), T € [1 - v, 1], such that

MUTTE (b - 1))
= TS+ 1)(1-((op/p®) + Xi2,0ilm;

)) ey(t), Vrell, b,

(12)

where M = sup,.(((log ) /(+*TT" By (ty(s — 1)) and g,
Y, are some positive constants such that

0, <-0;
—+ ) L|<1 (13)
<M5 Zm)
Proof. Consider the metric d on E = C([1 —v, b, R) by

d(y,y,) = inf {k € [0,00): % <kj(r)Vre[l-v, b]},

(14)

1)) for 7 € [1,b] and (1)

with B(r) = T, Ey (1, (1 - -1
)=y(7) for T € [1, b] and y(7) = (1)

forte[l-v,1]and y(r
forte[l-v,1].

We consider the operator & : E — E such that (By)(
7) =I(1), for T € [1 -0, 1], and

-3 L[ T ()
(93)1)(‘[) - ;IA Ei(T’yr) + mjl (log ;) fds)

(15)
for T € [1, ).
Let y,,y, € E, we have (By,)(t) — (By,)(r) =0, for all
T€[l-0,1].

For 7 € [1, b, we get

T)— T<m ! TT—SAi_l-S
(3)(2) = (B Y g | (=9 o)
= &i(5yy)|ds + ﬁjl (log ;)571 L) ;qj(s’yZS) ds
Zl j - radds
0

lOg ”yls yZSHdS
N

(16)

For s €[1, 7], there is g € [-
y1(s+9) = y,(s+q)|. Then,

v, 0] such that [y, —y, [/ =]

_ yi(s+q) = y,(s+q)| s s
||yls stH ﬁ(5+q)y(5+q) ﬁ( +q) ( +q) (17)

<d(y;y,)B(s+q)y(s+q) <d(y, y,) B(s)y(s)-



Therefore,

|(By,)(1) = (By,)(7)| < a‘)d()’p)’z))’

QEF4§
ﬁ
Q

<T>JT< ~ 5 B(s)ds + 0%

1

(T)JT(log )6 HALS) —2ds< Z

1

)¢ HEA pi(r=1)N J

j=Lj#i

1"(8) d(y1>y,)y HEA( pi(r -1 )J (log )

8) d(yiy2)y

/\

Y1)y

/\lE

(s— I)A*)ds

6— 15#
—ds.
S

(18)

By using the change of variable u =y log 7 — u log s, we
get

T 51 ght p log 7 o-1  -u iz
(log ) T ds= 5w aus< Tro).
| s 0 u [z ue
(19)

Using the inequality (17) and Remark 1, we get

(By)) (@) = (By) (2 ( Zﬁ> 02V OB()
i=1 "
(20)
Thus, 9 is contractive.
For 7 € [1 — v, 1], we have (%I)(7) - (1) =
We have
D’ |l(z) - il"*‘&i(r, L)| -¥(r.)| <ep(r), Vrellb].
i=1
(21)
By using Lemma 2.1 in [50], we get
I AR (O
(1) - Bl(7)| < WL (log ) ds
() [ (100 £\ 'L ey(7)
76 Jl(l 55) S pppplesn’ vrellyl,
(22)
Hence,
li(t) - BI(7)] € (log7)’ _ eM vee L),

B e’ pm “Teen'™

(23)
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then

M

d(h Bl e

(24)

Using Theorem 1, there is a solution I* of (9) such that

1 M

(LI se— (0w + XPada) T+ 1) (25)
so that
. ML E,, (:”i(b_ I)Ai)
I(7) =" (7)< I@+ 1)(1 _ ((Go/!ﬁ) + ZZlGi///‘i)) ey(7),
(26)
for all 7 €[1, b]. O

The following theorem represents the UHS of (9).

Theorem 3. Suppose that ¥ : IXR, & : IxR for ie{l,2,
.-+, m} satisfy

¥ (7, ;) = ¥ (T $5)[ < 0p]|b; = ba|s (27)
8i(T: ¢,) = &i(T> 85) | < 0|, — 651,
foralltel,¢;€C,,j=1,2 and for some o;> 0.
If 1€ C'([I - v,b], R) satisfies I(1) = 0 and
YL v se (28)
i=1

for all T € [1,b], where € > 0, then there is a solution I* of (9)
with I"(t) = l(t), T € [1 — v, 1], such that

MbﬂH?;E/\i (P’i(b_ I)Ai>
r@+1)(1-((op/p®) + X1 0i1;))

l(z) = I"(7)| < & Vre[lbl,

(29)

where M = sup, (. (1og )T [y (1 (s = 1)) and
Y, are some positive constants such that

0, <-0;
—+ Y L)<l 30
(#6 ZI M) 0

Proof. The proof is similar to Theorem 2. O

Remark 2. Note that the author in [51] has studied the exis-
tence and uniqueness of (9), where he assumes some condi-
tions on ;.
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4. Examples

Example 1. Consider equation (9) for m=1,v=0.3,0 =04,
A, =0.5, b=2, ,(1,¢) = (1+7)* sin (¢(-v)), and ¥(z, ¢)
=(2+12) cos (¢(-v)).

We have
81(T: ¢1) = &1(T, 6,)[ <9Iy — &5,

¥ (7, 6,) = ¥(7, 6,)[ < 6[|¢) = s,

Vte [1, 2]; ¢1> ¢2 € C043’
VT e[l,2],¢,,¢,€Cys.
(31)

Then, 0,=6 and 0, =9.
Suppose that I € C'([0.7,2], R) satisfies /(1) =0 and

’D0'4 [l(‘[) _10-551(1, lr)} -¥Y(r, l,)‘ <0.017, (32)

for all 7 €[1,2].
Here, y(7) =7 and €=0.01. By Theorem 2 there is a
solution I of equation (9) and K > 0 such that

l(t) - I"(1)] <0.01Kz, Vre[l,2)]. (33)

Example 2. Consider equation (9) for m=2, v=0.5,0 =0.6,
A =07, 1,=04, b=3, & (1,¢)=cos (¢(-v)), & (1, 9) =2
72 sin (¢(-v)), and ¥ (1, ¢) = 57 sin (¢(-v)).
We have
181(7,81) = &1(T, 62)[ < (|6, — &5
182(T5 1) — &o(T, 8,)| < 18[|¢, — ¢, ],

(¥ (7, 61) = (7, 6,)[ < 15][¢) = b,

VT €[L,3], 4, ¢, € Cys»

(34)

Then, 0,=15, 0, =1, and 0, = 18.
Suppose that [ € C'([0.5,3], R) satisfies /(1) = 0 and

|D*C[I(7) = 178, (z, L) = I**&, (7, 1,)] = ¥ (7. 1,)| <0.01,
(35)

for all 7 €1, 3].
Here, ¢ =0.01. By Theorem 3, there is a solution I* of
equation (9) and K > 0 such that

|i(r) = I" ()| < 0.01K,V7 € [1, 3]. (36)

5. Conclusion

We managed to utilize some version of Banach FPT to show
that according to certain conditions, functions that fulfill
some neutral fractional integrodifferential delay equations
(NFIDDE) approximately are close in some sense to the
exact solutions of such problems. In fact, we present UHR
stability results for some NFIDDE. To illustrate our results,
we presented two examples. We think that this work can
be extended for various types of differential equations.
Potential future work could be to invent a new method to

V1€ [1; 3}7 ¢13 (/)2 € C045’
VT € [1, 3}) ¢1: (/)2 € C045'

obtain such stability results or to investigate the stability of
much more complicated differential equations.
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