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Differential equations with fractional derivative are being extensively used in the modelling of the transmission of many infective
diseases like HIV, Ebola, and COVID-19. Analytical solutions are unreachable for a wide range of such kind of equations. Stability
theory in the sense of Ulam is essential as it provides approximate analytical solutions. In this article, we utilize some fixed point
theorem (FPT) to investigate the stability of fractional neutral integrodifferential equations with delay in the sense of Ulam-Hyers-
Rassias (UHR). This work is a generalized version of recent interesting works. Finally, two examples are given to prove the
applicability of our results.

1. Introduction

Fractional calculus (FC) has proved to be an efficient tool in
many domains like biology, mechanics, electricity, signal
processing, chemistry, economics, polymer rheology, aero-
dynamics, and other areas of interest problems (see, e.g.,
[1–8] and the references therein). This is because of the pow-
erful tools (see, e.g., [5]) that are not available in the classical
calculus. In particular, FC enable researches to model in an
efficient way many complicated real-world problems like
COVID-19 (see [9]), HIV (see [10]), Rubella disease (see
[11]), Ebola virus (see [12]), and HBV infection (see [13]).

Neutral FDEs (NFDEs) play an essential role in many
applications. For instance, NFDEs with delay model have
electrical networks containing lossless transmission lines
(see, e.g., [14]).

As a consequence of the importance and applications of
this class of equations, numerous numerical and approxi-

mate tools have been proposed to solve such kind of equa-
tions. One of such tools that provide close exact analytical
solutions is the theory of stability. Stability theory popped
up as a result of Ulam’s famous question (see, e.g., [15]).
Various answers have been introduced for Ulam’s problem
by many mathematicians. For instance, in 1941, D. H. Hyers
(see [15]) presented a positive answer to the Ulam question
and the stability problem is called Ulam-Hyers or Hyers-
Ulam stability problem. The most important result after
Hyers, Aoki, and Bourgin answer (see [16, 17]) was that of
Rassias in 1978 (see [18]). The idea of Rassias is a generali-
zation of the result of Hyers. The result introduced by Ras-
sias in [18] is now known as the UHR stability.

During the last seventy years, the stability subject for
many kinds of equations has been a common issue of inves-
tigations in many directions and there are a lot of articles as
well as books published in this subject (see, e.g., [19, 20] for
further references). Obloza in 1993 (see [21]) is the first who
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investigated the Ulam stability of differential equations (see
also [22]). Alsina and Ger in 1998 (see [23]) studied the
Ulam-Hyers stability (UHS) of the ordinary differential
equation y′ðsÞ = yðsÞ and end up with the estimation jhðxÞ
− y0ðxÞj ≤ 3ε, where y0ðxÞ is a solution of the equation,
and some h : Ω⟶ℝ is a differentiable mapping satisfying
the corresponding differential inequality with some interval
Ω. Takahasi et al. in 2002 (see [24]) extended the result of
Alsina and Ger. In particular, Takahasi et al. studied the sta-
bility of the differential equation g′ðsÞ = λgðsÞ in Banach
spaces. Miura et al. in 2003 (see [25, 26]) generalized the
work of Alsina and Ger to higher order differential
equations.

As a consequence of the interesting results presented in
this direction, many articles devoted to this subject have
been introduced (see, e.g., [27, 28]). For instance, Jung in
2010 (see [29]) used some FPT to study the stability of the
equation χ′ = kðs, χÞ. It should be remarked that Jung in
[29] generalized the work of Alsina and Ger (in [23]) to
the nonlinear case. Bojor in 2012 (see [30]) used different
assumptions to study the stability of the equation

h′ x1ð Þ +m x1ð Þh x1ð Þ = r x1ð Þ, ð1Þ

and improved the result of Jung in [29]. Tunç and Biçer in
2015 (see [31]) improved the approach of Jung in [29] for
the equation

l′ x1ð Þ = F x1, l x1ð Þ, l x1 − τð Þð Þ: ð2Þ

Huang et al. in 2015 (see [32]) studied the stability of
some general form of a nonlinear differential equation. Popa
and Pugna in 2016 (see [33]) studied the Hyers-Ulam stabil-
ity of Euler’s equation. Shen in 2017 (see [34]) introduced
Ulam stability results for differential equations on time
scales.

Rahim and Akbar in 2018 (see [27]) used a FPT-based
approach to study the stability of a delay Volterra integrodif-
ferential equation. Shikhare and Kucche in 2019 (see [35])
employed weakly Picard operator to investigate the UHS of
some kind of equations. Furthermore, they obtained stability
in the sense of UHR for such kind of equations via Pach-
patte’s integral inequalities. Also, Shah and Zada in 2019
(see [36]) used some FPT to investigate the stability of
impulsive Volterra integral equation. In 2020, the authors
in [37] investigated the stability of some general equation
using FPT. In [38], the authors studied the stability of some
Caputo fractional differential equations using FPT (see also
[39, 40]).

A great number of research articles have been intro-
duced to study the stability of fractional differential equa-
tions. For instance, in [41], the authors studied the Ulam
stability for some fractional differential equations in com-
plex domain. In [42], Ulam-Hyers stability for Cauchy frac-
tional differential equation in the unit disk is investigated. In
[43], the authors investigated the existence of Ulam stability
for iterative fractional differential equations based on frac-
tional entropy. In [44], Mittag-Leffler-Ulam stabilities of

fractional evolution equations have been introduced. The
author in [45] investigated the generalized Ulam-Hyers sta-
bility for the following fractional differential equation

Dα
z f zð Þ =G f zð Þ, zf ′ zð Þ, z2 f ′′ ; z

� �
, 2 < α ≤ 3, ð3Þ

in a complex Banach space. In [46], the authors investigated
Ulam stability for nonlinear Hilfer fractional stochastic dif-
ferential systems in finite dimensional stochastic setting. In
[47], the authors studied the existence of a mild solution
and exponential stability for a class of second-order impul-
sive fractional neutral stochastic differential equations. In
[48], the authors employed some fixed point theory to study
the existence of mild solution for the analysis of the moment
stability of fractional stochastic differential inclusions driven
by the Rosenblatt process and Poisson jumps with impulses
in a Hilbert space. As far as we know, there is no existing
work using the fixed point approach to investigate the stabil-
ity of fractional neutral integrodifferential equations with
delay in the sense of Ulam-Hyers-Rassias (UHR).

The main contributions of our paper are as follows:

(1) Investigating the stability of fractional neutral inte-
grodifferential equations with delay in the sense of
Ulam-Hyers-Rassias (UHR)

(2) Extending some interesting work by adding the neu-
tral term and the fixed point theorem (see [27, 38])

The article is divided into three sections. In the next sec-
tion, we recall some preliminaries; in Section 3, we present
the stability results in UHR sense; in Section 4, we illustrate
our results with two examples; and in Section 5, we present
the conclusion.

2. Preliminaries

Definition 1 (see [8]). The Hadamard fractional integral of
order λ for a function h is defined as

HIλh ωð Þ = 1
Γ λð Þ

ðω
1

log ω

ν

� �λ−1 h νð Þ
ν

dν,  λ > 0, ð4Þ

provided the integral exists.

Definition 2 (see [8]). The Hadamard derivative of fractional
order λ ∈ ð0, 1Þ for a function h : ½1,∞Þ⟶ℝ is defined as

Dλh ωð Þ = 1
Γ 1 − λð Þ ω

d
dω

� �ðω
1

log ω

ν

� �−λ h νð Þ
ν

dν: ð5Þ

Definition 3 (see [8]). The Riemann-Liouville fractional inte-
gral of order λ for a function h : ½1,∞Þ⟶ℝ is defined as

Iλh ωð Þ = 1
Γ λð Þ

ðω
1
ω − νð Þλ−1h νð Þdν, λ > 0, ð6Þ

provided the integral exists.
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Definition 4. Let α > 0, l ∈ℂ. The Mittag-Leffler function
(see, e.g., [36]) Eα is defined as

Eα lð Þ≔ 〠
∞

n=0

ln

Γ αn + 1ð Þ : ð7Þ

Remark 1. The function κðϑÞ = Eςðγðϑ − 1ÞςÞ satisfies IςκðϑÞ
= ð1/γÞðκðϑÞ − 1Þ, where γ ∈ℝ∗.

Theorem 1 (see [49]). Suppose ðM, dÞ is a complete metric
space and L : M⟶M satisfies dðLðzÞ, LðeÞÞ ≤ δdðz, eÞ
(with 0 < δ < 1) for all z, e ∈M. Assume that v ∈M, λ > 0
and dðv, LðvÞÞ ≤ λ. Then, there is a unique k ∈M with k = L
ðkÞ. Moreover,

d v, kð Þ ≤ λ

1 − δ
: ð8Þ

The goal of the article is to investigate the stability of the
solution of the following fractional order differential equa-
tions:

Dδ y ρð Þ − 〠
m

i=1
Iλiξi ρ, yρ

� �" #
=Ψ ρ, yρ
� �

, ρ ∈ I ≔ 1, b½ �, ð9Þ

with initial conditions yðρÞ = ϕðρÞ, ρ ∈ ½1 − υ, 1�, where ϕ ∈
Cð½1 − υ, 1�,ℝÞ, with ϕð1Þ = 0,0 < δ < 1, λi > 0, Ψ, ξi are
given functions.

For any function y defined on ½1 − υ, b� and any ρ ∈ I, we
denote by yρ the element of Cυ ≔ Cð½−υ, 0�,ℝÞ defined by
yρðsÞ = yðρ + sÞ, s ∈ ½−υ, 0�, with norm kyρk = sup fyðρ + sÞ;
−υ ≤ s ≤ 0g.

3. Stability Results

In this section, we present our main results.

Theorem 2. Suppose that Ψ : I ×ℝ, ξi : I ×ℝ for i ∈ f1, 2,
⋯,mg satisfy

Ψ τ, ϕ1ð Þ −Ψ τ, ϕ2ð Þj j ≤ σ0 ϕ1 − ϕ2k k,
ξi τ, ϕ1ð Þ − ξi τ, ϕ2ð Þj j ≤ σi ϕ1 − ϕ2k k,

ð10Þ

for all τ ∈ I, ϕj ∈ Cυ, j = 1, 2 and for some σi > 0.

If l ∈ C1ð½1 − υ, b�,ℝÞ satisfies lð1Þ = 0 and

Dδ l τð Þ − 〠
m

i=1
Iλiξi τ, lτð Þ

" #
−Ψ τ, lτð Þ

�����
����� ≤ εγ τð Þ, ð11Þ

for all τ ∈ ½1, b�, where ε > 0 and γðτÞ is a nondecreasing, con-
tinuous, positive function, then there is a solution l∗ of (9)
with l∗ðτÞ = lðτÞ, τ ∈ ½1 − υ, 1�, such that

l τð Þ − l∗ τð Þj j ≤
Mbμ

Qm
i=1Eλi

μi b − 1ð Þλi
� �

Γ δ + 1ð Þ 1 − σ0/μδ
� �

+∑m
i=1σi/μi

� �� � εγ τð Þ, ∀τ ∈ 1, b½ �,

ð12Þ

where M = sups∈½1,b�ððlog sÞδ/ðsμ
Qm

i=1Eλi
ðμiðs − 1ÞλiÞÞÞ and μ,

μi are some positive constants such that

σ0
μδ

+ 〠
m

i=1

σi
μi

 !
< 1: ð13Þ

Proof. Consider the metric d on E = Cð½1 − υ, b�,ℝÞ by

d y1, y2ð Þ = inf k ∈ 0,∞½ Þ: y1 τð Þ − y2 τð Þj j
β τð Þ ≤ k~γ τð Þ,∀τ ∈ 1 − υ, b½ �

	 

,

ð14Þ

with βðτÞ = τμ
Qm

i=1Eλi
ðμiðτ − 1ÞλiÞ for τ ∈ ½1, b� and βðτÞ = 1

for τ ∈ ½1 − υ, 1� and ~γðτÞ = γðτÞ for τ ∈ ½1, b� and ~γðτÞ = γð1Þ
for τ ∈ ½1 − υ, 1�.

We consider the operator B : E⟶ E such that ðByÞð
τÞ = lðτÞ, for τ ∈ ½1 − υ, 1�, and

Byð Þ τð Þ = 〠
m

i=1
Iλiξi τ, yτð Þ + 1

Γ δð Þ
ðτ
1
log τ

s

� �δ−1 Ψ s, ysð Þ
s

ds,

ð15Þ

for τ ∈ ½1, b�.
Let y1, y2 ∈ E, we have ðBy1ÞðτÞ − ðBy2ÞðτÞ = 0, for all

τ ∈ ½1 − υ, 1�.
For τ ∈ ½1, b�, we get

By1ð Þ τð Þ − By2ð Þ τð Þj j ≤ 〠
m

i=1

1
Γ λið Þ

ðτ
1
τ − sð Þλi−1 ξi s, y1sð Þj

− ξi s, y2sð Þjds + 1
Γ δð Þ

ðτ
1
log τ

s

� �δ−1 Ψ s, y1sð Þ −Ψ s, y2sð Þ
s

����
����ds

≤ 〠
m

i=1

σi
Γ λið Þ

ðτ
1
τ − sð Þλi−1 y1s − y2sk kds

+ σ0
Γ δð Þ

ðτ
1
log τ

s

� �δ−1 y1s − y2sk k
s

ds:

ð16Þ

For s ∈ ½1, τ�, there is q ∈ ½−υ, 0� such that ky1s − y2sk = j
y1ðs + qÞ − y2ðs + qÞj. Then,

y1s − y2sk k = y1 s + qð Þ − y2 s + qð Þj j
β s + qð Þ~γ s + qð Þ β s + qð Þ~γ s + qð Þ

≤ d y1, y2ð Þβ s + qð Þ~γ s + qð Þ ≤ d y1, y2ð Þβ sð Þγ sð Þ:
ð17Þ
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Therefore,

By1ð Þ τð Þ − By2ð Þ τð Þj j ≤ 〠
m

i=1

σi
Γ λið Þ d y1, y2ð Þγ

τð Þ
ðτ
1
τ − sð Þλi−1β sð Þds + σ0

Γ δð Þ d y1, y2ð Þγ

τð Þ
ðτ
1
log τ

s

� �δ−1 β sð Þ
s

ds ≤ 〠
m

i=1

σi

Γ λið Þ d y1, y2ð Þγ

τð Þτμ
Ym
j=1;j≠i

Eλ j
μj τ − 1ð Þλ j

� �ðτ
1
τ − sð Þλi−1Eλi

μi s − 1ð Þλi
� �

ds

+ σ0
Γ δð Þ d y1, y2ð Þγ τð Þ

Ym
j=1

Eλ j
μ j τ − 1ð Þλ j

� �ðτ
1
log τ

s

� �δ−1 sμ
s
ds:

ð18Þ

By using the change of variable u = μ log τ − μ log s, we
get

ðτ
1
log τ

s

� �δ−1 sμ
s
ds =

ðμ log τ

0

u
μ

� �δ−1
τμ

e−u

μ
du ≤

τμ

μδ
Γ δð Þ:

ð19Þ

Using the inequality (17) and Remark 1, we get

By1ð Þ τð Þ − By2ð Þ τð Þj j ≤ σ0
μδ

+ 〠
m

i=1

σi
μi

 !
d y1, y2ð Þγ τð Þβ τð Þ:

ð20Þ

Thus, B is contractive.
For τ ∈ ½1 − υ, 1�, we have ðBlÞðτÞ − lðτÞ = 0.
We have

Dδ l τð Þ − 〠
m

i=1
Iλiξi τ, lτð Þ

" #
−Ψ τ, lτð Þ

�����
����� ≤ εγ τð Þ, ∀τ ∈ 1, b½ �:

ð21Þ

By using Lemma 2.1 in [50], we get

l τð Þ −Bl τð Þj j ≤ ε

Γ δð Þ
ðτ
1
log τ

s

� �δ−1 γ sð Þ
s

ds

≤
εγ τð Þ
Γ δð Þ

ðτ
1
log τ

s

� �δ−1 1
s
ds ≤

εγ τð Þ
Γ δ + 1ð Þ log τð Þδ, ∀τ ∈ 1, b½ �:

ð22Þ

Hence,

l τð Þ −Bl τð Þj j
β τð Þ ≤

ε

Γ δ + 1ð Þ γ τð Þ log τð Þδ
β τð Þ ≤

εM
Γ δ + 1ð Þ γ τð Þ, ∀τ ∈ 1, b½ �,

ð23Þ

then

d l,Blð Þ ≤ ε
M

Γ δ + 1ð Þ : ð24Þ

Using Theorem 1, there is a solution l∗ of (9) such that

d l, l∗ð Þ ≤ ε
1

1 − σ0/μδ
� �

+∑m
i=1σi/μi

� � M
Γ δ + 1ð Þ , ð25Þ

so that

l τð Þ − l∗ τð Þj j ≤
Mbμ

Qm
i=1Eλi

μi b − 1ð Þλi
� �

Γ δ + 1ð Þ 1 − σ0/μδ
� �

+∑m
i=1σi/μi

� �� � εγ τð Þ,

ð26Þ

for all τ ∈ ½1, b�:

The following theorem represents the UHS of (9).

Theorem 3. Suppose that Ψ : I ×ℝ, ξi : I ×ℝ for i ∈ f1, 2,
⋯,mg satisfy

Ψ τ, ϕ1ð Þ −Ψ τ, ϕ2ð Þj j ≤ σ0 ϕ1 − ϕ2k k,
ξi τ, ϕ1ð Þ − ξi τ, ϕ2ð Þj j ≤ σi ϕ1 − ϕ2k k,

ð27Þ

for all τ ∈ I, ϕj ∈ Cυ, j = 1, 2 and for some σi > 0.

If l ∈ C1ð½1 − υ, b�,ℝÞ satisfies lð1Þ = 0 and

Dδ l τð Þ − 〠
m

i=1
Iλiξi τ, lτð Þ

" #
−Ψ τ, lτð Þ

�����
����� ≤ ε, ð28Þ

for all τ ∈ ½1, b�, where ε > 0, then there is a solution l∗ of (9)
with l∗ðτÞ = lðτÞ, τ ∈ ½1 − υ, 1�, such that

l τð Þ − l∗ τð Þj j ≤
Mbμ

Qm
i=1Eλi

μi b − 1ð Þλi
� �

Γ δ + 1ð Þ 1 − σ0/μδ
� �

+∑m
i=1σi/μi

� �� � ε, ∀τ ∈ 1, b½ �,

ð29Þ

where M = sups∈½1,b�ððlog sÞδ/ðsμ
Qm

i=1Eλi
ðμiðs − 1ÞλiÞÞÞ and μ,

μi are some positive constants such that

σ0
μδ

+ 〠
m

i=1

σi
μi

 !
< 1: ð30Þ

Proof. The proof is similar to Theorem 2.

Remark 2. Note that the author in [51] has studied the exis-
tence and uniqueness of (9), where he assumes some condi-
tions on σi.
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4. Examples

Example 1. Consider equation (9) for m = 1, υ = 0:3,δ = 0:4,
λ1 = 0:5, b = 2, ξ1ðτ, ϕÞ = ð1 + τÞ2 sin ðϕð−υÞÞ, and Ψðτ, ϕÞ
= ð2 + τ2Þ cos ðϕð−υÞÞ.

We have

ξ1 τ, ϕ1ð Þ − ξ1 τ, ϕ2ð Þj j ≤ 9 ϕ1 − ϕ2k k, ∀τ ∈ 1, 2½ �, ϕ1, ϕ2 ∈ C0:3,
Ψ τ, ϕ1ð Þ −Ψ τ, ϕ2ð Þj j ≤ 6 ϕ1 − ϕ2k k, ∀τ ∈ 1, 2½ �, ϕ1, ϕ2 ∈ C0:3:

ð31Þ

Then, σ0 = 6 and σ1 = 9.
Suppose that l ∈ C1ð½0:7,2�,ℝÞ satisfies lð1Þ = 0 and

D0:4 l τð Þ − I0:5ξ1 τ, lτð Þ� �
−Ψ τ, lτð Þ�� �� ≤ 0:01τ, ð32Þ

for all τ ∈ ½1, 2�.
Here, γðτÞ = τ and ε = 0:01. By Theorem 2 there is a

solution l∗ of equation (9) and K > 0 such that

l τð Þ − l∗ τð Þj j ≤ 0:01Kτ, ∀τ ∈ 1, 2½ �: ð33Þ

Example 2. Consider equation (9) for m = 2, υ = 0:5,δ = 0:6,
λ1 = 0:7, λ2 = 0:4, b = 3, ξ1ðτ, ϕÞ = cos ðϕð−υÞÞ, ξ2ðτ, ϕÞ = 2
τ2 sin ðϕð−υÞÞ, and Ψðτ, ϕÞ = 5τ sin ðϕð−υÞÞ.

We have

ξ1 τ, ϕ1ð Þ − ξ1 τ, ϕ2ð Þj j ≤ ϕ1 − ϕ2k k, ∀τ ∈ 1, 3½ �, ϕ1, ϕ2 ∈ C0:5,
ξ2 τ, ϕ1ð Þ − ξ2 τ, ϕ2ð Þj j ≤ 18 ϕ1 − ϕ2k k, ∀τ ∈ 1, 3½ �, ϕ1, ϕ2 ∈ C0:5,
Ψ τ, ϕ1ð Þ −Ψ τ, ϕ2ð Þj j ≤ 15 ϕ1 − ϕ2k k, ∀τ ∈ 1, 3½ �, ϕ1, ϕ2 ∈ C0:5:

ð34Þ

Then, σ0 = 15, σ1 = 1, and σ2 = 18.
Suppose that l ∈ C1ð½0:5,3�,ℝÞ satisfies lð1Þ = 0 and

D0:6 l τð Þ − I0:7ξ1 τ, lτð Þ − I0:4ξ2 τ, lτð Þ� �
−Ψ τ, lτð Þ�� �� ≤ 0:01,

ð35Þ

for all τ ∈ ½1, 3�.
Here, ε = 0:01. By Theorem 3, there is a solution l∗ of

equation (9) and K > 0 such that

l τð Þ − l∗ τð Þj j ≤ 0:01K ,∀τ ∈ 1, 3½ �: ð36Þ

5. Conclusion

We managed to utilize some version of Banach FPT to show
that according to certain conditions, functions that fulfill
some neutral fractional integrodifferential delay equations
(NFIDDE) approximately are close in some sense to the
exact solutions of such problems. In fact, we present UHR
stability results for some NFIDDE. To illustrate our results,
we presented two examples. We think that this work can
be extended for various types of differential equations.
Potential future work could be to invent a new method to

obtain such stability results or to investigate the stability of
much more complicated differential equations.
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