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In the present study, we have constructed new Banach sequence spaces ℓpðLÞ,c0ðLÞ,cðLÞ, and ℓ∞ðLÞ, where L = ðlv,kÞ is a regular
matrix defined by lv,k =

ðlk/lv+2 − ðv + 2ÞÞ, 0 ≤ k ≤ v,
0, k > v,

(
for all v, k = 0, 1, 2,⋯, where l = ðlkÞ is a sequence of Leonardo numbers.

We study their topological and inclusion relations and construct Schauder bases of the sequence spaces ℓpðLÞ,c0ðLÞ, and cðLÞ:
Besides, α-, β- and γ-duals of the aforementioned spaces are computed. We state and prove results of the characterization of
the matrix classes between the sequence spaces ℓpðLÞ,c0ðLÞ,cðLÞ, and ℓ∞ðLÞ to any one of the spaces ℓ1,c0,c, and ℓ∞: Finally,
under a definite functional ρ and a weighted sequence of positive reals r, we introduce new sequence spaces ðc0ðL, rÞÞρ and

ðℓpðL, rÞÞρ. We present some geometric and topological properties of these spaces, as well as the eigenvalue distribution of

ideal mappings generated by these spaces and s-numbers.

1. Introduction and Preliminaries

Let ω denote the set of all real- or complex-valued
sequences. A linear subspace of ω is called a sequence
space. Some of the well-known examples of sequence
spaces are the space of absolutely p-summable sequences,
the space of null sequences, the space of convergent
sequences, and the space of bounded sequences, denoted
by ℓp,c0,c, and ℓ∞, respectively. Here and afterwards, 1 ≤
p <∞, unless stated otherwise. Let bs and cs denote the
spaces of all bounded and convergent series, respectively.
A Banach sequence space with continuous coordinates is

called a BK-space. The spaces Z and ℓp are BK-spaces
equipped with the supremum norm kzkℓ∞ = sup

k∈ℕ0

jzkj and

the ℓp norm kzkℓp = ð∑∞
k=0jzkjpÞ1/p, respectively, where ℕ0

is the set of nonnegative integers and Z is any one of
the spaces c0,c, or ℓ∞.

Let A = ðav,kÞ be an infinite matrix over the complex
field ℂ: The A-transform of a sequence z = ðzkÞ is a
sequence Az = fðAzÞvg = f∑∞

k=0av,kzkg, provided that the
series ∑∞

k=0 av,kzk exists, for each v ∈ℕ0. In addition, if Z
and U are two sequence spaces and Az ∈U, for every
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sequence z ∈Z, then the matrix A is said to define a matrix
mapping from Z to U: The notation ðZ,UÞ represents the
family of all matrices that map from Z to U: Furthermore,
the matrix A = ðav,kÞ is called a triangle if av,v ≠ 0 and
av,k = 0, for v < k: For any Z ⊂ ω, define ZA = fz ∈ ω : Az ∈
ωg: Then, ZA is a sequence space and is called the matrix
domain of A in the space Z: It is well known that if Z is a
BK-space and A is a triangle, then, the matrix domain ZA

is also a BK-space under the norm kzkZA
= kAzkZ:We refer

to [1–13] for papers related to theory of sequence spaces and
summability.

1.1. Some Special Integer Sequences and the Associated
Sequence Spaces. We shall briefly highlight the literature
concerning special integer sequences and the construction
of the associated sequence spaces.

Let ðfkÞ∞k=0 be the sequence of Fibonacci numbers defined
by the recurrence relation fv = fv−1 + fv−2,v ≥ 2, with f0 = 1
and f1 = 1: Several authors constructed different types of
sequence spaces involving Fibonacci numbers. For instance,
Kara [3] studied the Fibonacci sequence spaces ℓpðF̂Þ≔
ðℓpÞF̂ and ℓ∞ðF̂Þ≔ ðℓ∞ÞF̂ and examined certain topological

and geometrical structures of these Banach sequence spaces,
where F̂= ðfv,kÞ is a double band matrix of Fibonacci
numbers defined by

fv,k =

−
fv+1
fv

, k = v − 1,

fv
fv+1

, k = v,

0, otherwise:

8>>>>>><
>>>>>>:

ð1Þ

v, k ∈ℕ0: Besides, Basarir et al. [7] studied the sequence
spaces ℓpðF̂Þ≔ ðℓpÞF̂,c0ðF̂Þ≔ ðc0ÞF̂ and cðF̂Þ≔ ðcÞF̂, where
0 < p < 1: The studies on Fibonacci sequence spaces are
further strengthened by Kara and Basarir [4] by introducing
the matrix domain ZðFÞ≔ ðZÞF, where Z represents any

one of the sequence spaces ℓp,c0,c, or ℓ∞ and F= ð~fv,kÞ is a
regular matrix of Fibonacci numbers defined by

~fv,k =
f2k

fvfv+1
, 0 ≤ k ≤ v,

0, k > v,

8><
>: ð2Þ

for all v, k ∈ℕ0: Furthermore, another regular matrix �F=
ð�fv,kÞ of Fibonacci numbers is defined by Debnath and Saha
[1] as follows:

�fv,k =
fk

fv+2 − 1 , 0 ≤ k ≤ v,

0, k > v,

8><
>: ð3Þ

for all v, k ∈ℕ0: By using this matrix, Debnath and Saha
[1] and Ercan and Bektas [2] defined and studied the
matrix domains ℓpð�FÞ≔ ðℓpÞ�F,c0ð�FÞ≔ ðc0Þ�F,cð�FÞ≔ ðcÞ�F,
and ℓ∞ð�FÞ≔ ðℓ∞Þ�F: More studies concerning construction
of Banach sequence spaces involving Fibonacci numbers
can be tracked in the literature that are generalization
or extension of any one of the above discussed Fibo-
nacci sequence spaces. We refer to [5, 6, 8, 9], for such
studies.

The number sequence ðtvÞ∞v=0 ≔ ð1, 1, 2, 4, 7,13,24,⋯Þ
defined by the recurrence relation tv = tv−1 + tv−2 + tv−3,
v ≥ 3, with t0 = t1 = 1 and t2 = 2, is called tribonacci
sequence. Recently, Yaying and Hazarika [10] introduced
tribonacci sequence spaces ℓpðTÞ≔ ðℓpÞT and ℓ∞ðTÞ≔
ðℓ∞ÞT, where T = ð�tv,kÞ is an infinite matrix of tribonacci
numbers defined by

�tv,k =
2tk

tv+2 + tv − 1 , 0 ≤ k ≤ v,

0, k > v,

8<
: ð4Þ

for all v, k ∈ℕ0: Quite recently, Yaying and Kara [11] stud-
ied the matrix domains c0ðTÞ≔ ðc0ÞT and cðTÞ≔ ðcÞT:
Moreover, Yaying et al. [12] studied Banach sequence spaces
defined by the sequence of Padovan numbers ðpvÞ∞v=0 =
ð1, 1, 1, 2, 2, 3, 4, 5, 7,⋯Þ. Besides, A. M. Karakas and M.
Karakas [13] also constructed BK-sequence spaces defined by
using Lucas numbers ðl′vÞ

∞
v=0 = ð2, 1, 3, 4, 7,11,18,29,47,⋯Þ.

1.2. Leonardo Numbers. The number sequence 1, 1, 3, 5,
9,15,25,41,67,⋯ is termed as Leonardo sequence. Let lv ,
v = 0, 1, 2,⋯, denote the vth Leonardo number. Then, the
Leonardo numbers are defined by the following recurrence
relation:

lv = lv−1 + lv−2 + 1, v ≥ 2, with l0 = l1 = 1: ð5Þ

It is believed that Leonardo sequence is invented by
Leonardo de Pisa, also known as Leonardo Fibonacci. But
not much studies related to Leonardo numbers can be
traced in the literature due to scarcity of research related
to this integer sequence. Leonardo sequence has a very
close relationship with the well-known Fibonacci sequence
ðfvÞ∞v=0 and the Lucus sequence ðl′vÞ

∞
v=0:

lv = 2fv+1 − 1, lv =
2
5 l′v + l′v+2
� �

− 1, v ≥ 0: ð6Þ

Quite recently, Catarino and Borges [14] studied
basic properties of Leonardo numbers and established

2 Journal of Function Spaces



several interesting identities, some of which are listed
below:

Besides, Alp and Koçer [15] also established interesting
relationships between Fibonacci, Lucus, and Leonardo
numbers. Vieira et al. [16] worked in the matrix form of
the Leonardo numbers and established several interesting
relations. Moreover, Shannon [17] also worked on the exten-
sion and generalization of the Leonardo numbers.

Inspired by the above studies, we define an infinite
matrix L = ðlv,kÞ involving Leonardo numbers and construct
sequence spaces ℓpðLÞ,c0ðLÞ,cðLÞ, and ℓ∞ðLÞ: We study
their topological and inclusion properties and obtain
Schauder bases of the sequence spaces ℓpðLÞ,c0ðLÞ, and
cðLÞ: In Section 3, α-, β-, and γ-duals of these new spaces
are determined. In Section 4, matrix classes from the space
Z ∈ fℓpðLÞ, c0ðLÞ, cðLÞ, ℓ∞ðLÞg to any one of the spaces ℓ1,
c0,c, and ℓ∞ are characterized. In Sections 5 and 6, we intro-
duce new sequence spaces ðc0ðL, rÞÞρ and ðℓpðL, rÞÞρ under a
definite functional ρ and weighted sequence of positive reals
r and discuss certain geometric and topological properties of
ðℓpðL, rÞÞρ and the eigenvalue distribution of mappings ide-

ally generated by these spaces and s-numbers are presented.

2. Leonardo Sequence Spaces

Define an infinite matrix L = ðlv,kÞ by

lv,k =
lk

lv+2 − v + 2ð Þ , 0 ≤ k ≤ v,

0, k > v,

8><
>: ð8Þ

for all v, k ∈ℕ0: Equivalently,

L =

1 0 0 0 ⋯  
1
2

1
2 0 0 ⋯  

1
5

1
5

3
5 0 ⋯  

1
10

1
10

3
10

5
10 ⋯  

⋮ ⋮ ⋮ ⋮ ⋱  

2
666666666664

3
777777777775
: ð9Þ

The inverse of the matrix L = ðlv,kÞ is given by the matrix
L−1 = ðl−1v,kÞ defined by

l−1v,k =
−1ð Þv−k lk+2 − k + 2ð Þ

lv
, v ≤ k ≤ v + 1,

0, k > v,

8><
>: ð10Þ

for all v, k ∈ℕ0:
Now, we define the following sequence spaces:

ℓp Lð Þ≔ z = zkð Þ ∈ ω : 〠
∞

v=0
〠
v

k=0

lk
lv+2 − v + 2ð Þ zk

�����
�����
p

<∞

( )
,

c0 Lð Þ≔ z = zkð Þ ∈ ω : lim
v⟶∞

〠
v

k=0

lk
lv+2 − v + 2ð Þ zk = 0

( )
,

c Lð Þ≔ z = zkð Þ ∈ ω : lim
v⟶∞

〠
v

k=0

lk
lv+2 − v + 2ð Þ zk exists

( )
,

ℓ∞ Lð Þ≔ z = zkð Þ ∈ ω : sup
v∈ℕ0

〠
v

k=0

lk
lv+2 − v + 2ð Þ zk

�����
����� <∞

( )
,

ð11Þ

where the sequence w = ðwkÞ defined by

wv = Lzð Þv = 〠
v

k=0

lk
lv+2 − v + 2ð Þ zk, ð12Þ

for each v ∈ℕ0, which is known as the L-transform of the
sequence z = ðzkÞ: In what follows, the sequences z and w

are related by (12). It is trivial that the above defined
sequence spaces can be expressed in the form ZðLÞ = ðZÞL,
where Z represents any one of the spaces ℓp,c0,c, and ℓ∞:

That is, ZðLÞ is the domain of the matrix L in the sequence
space Z:

We observe by the definition of the matrix L = ðlv,kÞ that
∑v

k=0lv,k = 1: That is, sup
v∈ℕ0

∑v
k=0lv,k <∞ and lim

v⟶∞
∑∞

k=0lv,k = 1.

〠
v

k=0
lv = lv+2 − v + 2ð Þ, v ∈ℕ0,

l2v − lv−rlv+r = lv−r + lv+r − 2lv − −1ð Þv−r lv−1 + 1ð Þ2, v > r, r ≥ 1 Catalan′s identity
� �

,

l2v − lv−1lv+1 = lv−1 + lv−2 + 4 −1ð Þv , v ≥ 2 Cassini′s identity
� �

,

lv = 2 xv+1 − yv+1

x − y

� �
− 1, v ≥ 0, where x = 1 +

ffiffiffi
5

p

2 , y = 1 −
ffiffiffi
5

p

2 :

ð7Þ
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Additionally, limv⟶∞lv,k = 0, for each k ∈ℕ0: Thus, we
conclude that the matrix L is regular.

Theorem 1. The following inclusion relations hold:

(i) Z ⊂ZðLÞ, where Z is any one of the spaces ℓp,c0,c or
ℓ∞

(ii) ℓpðLÞ ⊂ c0ðLÞ ⊂ cðLÞ ⊂ ℓ∞ðLÞ
(iii) ℓpðLÞ ⊂ ℓqðLÞ for 1 ≤ p < q

Proof.

(i) The inclusion part is trivial. Assume that Z≔ c and
consider the sequence g = ð1, 0, 1, 0,⋯Þ: We observe
that g ∉ c: However

Lgð Þv = 〠
v

k=0

lk
lv+2 − v + 2ð Þ gk =

l0 + l2+⋯+lv
lv+2 − v + 2ð Þ   v ∈ℕ0ð Þ,

ð13Þ

which converges. Thus, g ∈ cðLÞ \ c: In the similar manner
strictness can be established for the other inclusions.

(ii) It is known that the matrix L is regular and the
inclusion ℓp ⊂ c0 ⊂ c ⊂ ℓ∞ holds. These imply that
the inclusion part holds. Now, consider the sequence
h = ð1, 1, 1, 1,⋯Þ. Then, ðLhÞv =∑v

k=0ðlk/lv+2 −
ðv + 2ÞÞhk = 1, for all v ∈ℕ0: Thus, Lh ∈ c \ c0: That
is, h ∈ cðLÞ \ c0ðLÞ: This verifies the strictness of the
inclusion c0ðLÞ ⊂ cðLÞ: In the similar fashion, strict-
ness of other inclusions can be established.

(iii) Assume that 1 ≤ p < q: Since L is regular and the
inclusion ℓp ⊂ ℓq holds, therefore the desired inclu-
sion holds. To prove the strictness part, we consider
a sequence g = ðgkÞ ∈ ℓq \ ℓp: Define a sequence
h = ðhkÞ by hk = ððgkðlk+2 − ðk + 2ÞÞ − gk−1ðlk+1 −
ðk + 1ÞÞÞ/lkÞ,k ∈ℕ0: Then, we get

Lhð Þv =
1

lv+2 − v + 2ð Þ〠
v

k=0
lkhk

= 1
lv+2 − v + 2ð Þ〠

v

k=0
gk lk+2 − k + 2ð Þð Þf

− gk−1 lk+1 − k + 1ð Þð Þg
= 1
lv+2 − v + 2ð Þ gv lv+2 − v + 2ð Þð Þ

= gv,

ð14Þ

for each v ∈ℕ0, where the terms with negative subscripts are
considered to be zero. Thus, we deduce that Lh = g ∈ ℓq \ ℓp
which implies h ∈ ℓqðLÞ \ ℓpðLÞ: Thus there exists at least

one sequence that is contained in ℓqðLÞ but not in ℓpðLÞ:
Hence, the desired inclusion is strict. This completes the
proof.

Theorem 2. We have the following results:

(i) The sequence spaces ℓ∞ðLÞ,c0ðLÞ, and cðLÞ are BK
-spaces equipped with the bounded norm kzkℓ∞ =
sup
k∈ℕ0

jðLzÞkj

(ii) The sequence space ℓpðLÞ is a BK-space equipped

with the norm kzkℓp = ð∑∞
v=0jðLzÞvjpÞ1/p

Proof. The proof is a routine exercise and so omitted.

Theorem 3. ZðLÞ ≅Z, where Z is any one of the spaces ℓp,c0,
c, or ℓ∞:

Proof. We present the proof for the space ℓp: Define the
mapping φ : ℓpðLÞ⟶ ℓp by w = φz =Lz, for all z ∈ ℓpðLÞ:
We observe that the mapping φ is linear and injective.

In view of the relation (12), we write

zk = 〠
k

j=k−1
−1ð Þk−j lj+2 − j + 2ð Þ

lk
wj, ð15Þ

for each k ∈ℕ0 and w = ðwkÞ ∈ ℓp: Then,

zk kpℓp Lð Þ = 〠
∞

v=0
〠
k

j=0

lj

lk+2 − k + 2ð Þ zj
�����

�����
p

= 〠
∞

v=0
〠
k

j=0

lj

lk+2 − k + 2ð Þ

�����
� 〠

j

u=j−1
−1ð Þj−u lu+2 − u + 2ð Þ

lj
wu

 !�����
p

= 〠
∞

v=0
wj jp = wk kpℓp :

ð16Þ

Thus, kzkℓpðLÞ = kwkℓp <∞: Thus, z ∈ ℓpðLÞ, and this

implies that φ is surjective and norm preserving. Thus,
ℓpðLÞ ≅ ℓp: In the similar manner, we can prove the exis-
tence of isomorphism between other given spaces. This
completes the proof.

Let us consider the following sequences:

g = 1, 1,− 23 , 0, 0,⋯
� �

, h = 1,−3, 23 , 0, 0,⋯
� �

: ð17Þ

Observe that Lg = ð1, 1, 0, 0, 0,⋯Þ and Lh = ð1,−1, 0, 0,
0,⋯Þ: Since L is linear, so Lðg + hÞ = ð2, 0, 0, 0,⋯Þ and
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Lðg − hÞ = ð0, 2, 0, 0,⋯Þ:With some elementary calculation,
we deduce that

g + hk k2ℓp Lð Þ + g − hk k2ℓp Lð Þ = 8 ≠ 22 1+ 1/pð Þð Þ

= 2 gk k2ℓp Lð Þ + hk k2ℓp Lð Þ
� �

:
ð18Þ

Thus, we realize that the norm k·kℓpðLÞ violates the paral-
lelogram identity for p ≠ 2: This immediately allows us to
write the following result.

Theorem 4. The sequence space ℓpðLÞ is not a Hilbert space
for p ≠ 2:

Proof. The proof is immediate from the above discussion.

We are well awarded that a matrix domain ZA, where A
is a triangle, has a basis, if and only if, Z has a basis (cf. [18]).
Thus, in the light of Theorem 3, we have the following result:

Theorem 5. Define the sequence bðkÞ = ðbðkÞv Þ by

b kð Þ
v =

−1ð Þv−k lk+2 − k + 2ð Þ
lv

, v − 1 ≤ k ≤ v + 1,

0, k > v

8><
>: ð19Þ

for each fixed k ∈ℕ0: Then,

(i) The sequence ðbðkÞÞk∈ℕ0
is the Schauder basis of the

sequence spaces ℓpðLÞ and c0ðLÞ, and every z in
ℓpðLÞ or c0ðLÞ is expressed uniquely in the form

z =∑∞
k=0b

ðkÞwk, where w = ðwkÞ is the L-transform
of the sequence z = ðzkÞ

(ii) The sequence ðe, bð0Þ, bð1Þ, bð2Þ,⋯Þ is the Schauder
basis of the sequence space cðLÞ, and every z in
cðLÞ is expressed uniquely in the form z = τe +
∑∞

k=0ðwk − τÞbðkÞ, where τ = limv⟶∞wv and e is
the unit sequence

(iii) The sequence space ℓ∞ðLÞ has no Schauder basis

Corollary 6. The sequence spaces ℓpðLÞ,c0ðLÞ, and cðLÞ are
separable spaces.

3. α-, β-, and γ-Duals

In this section, we obtain the α-, β-, and γ-duals of the
sequence spaces ℓpðLÞ,c0ðLÞ,cðLÞ, and ℓ∞ðLÞ: Before pro-
ceeding, we recall the definitions of α-, β-, and γ-duals.
Define the multiplier sequence space MðZ,UÞ by

M Z,Uð Þ≔ d = dkð Þ ∈ ω : dz = dkzkð Þ ∈U,∀z = zkð Þ ∈Uf g:
ð20Þ

In particular, if U is ℓ1,cs or bs, then, the sets

Zα =M Z, ℓ1ð Þ,Zβ =M Z, csð Þ,Zγ =M Z, bsð Þ ð21Þ

are, respectively, termed as α-, β-, and γ-dual of the sequence
space Z:

We present Lemma 7 which is essential to compute the
dual spaces. In what follows, we denote the collection of all
finite subsets of ℕ0 by N and q = p/p − 1.

Lemma 7 (see [19]). The following statements hold:

(i) A = ðav,kÞ ∈ ðℓ1, ℓ1Þ, if and only if, sup
k∈ℕ0

∑∞
v=0jav,kj <∞

(ii) A = ðav,kÞ ∈ ðℓp, ℓ1Þ, if and only if

sup
K∈N

〠
∞

v=0
〠
k∈K

av,k

�����
�����
q

<∞ ð22Þ

(iii) A = ðav,kÞ ∈ ðc0, ℓ1Þ = ðc, ℓ1Þ = ðℓ∞, ℓ1Þ, if and only if,
(22) holds with q = 1

(iv) A = ðav,kÞ ∈ ðℓ1, ℓ∞Þ, if and only if, sup
v,k∈ℕ0

jav,kj <∞

(v) A = ðav,kÞ ∈ ðℓp, ℓ∞Þ, if and only if,

sup
v∈ℕ0

〠
∞

k=0
av,k
�� ��q <∞ ð23Þ

(vi) A = ðav,kÞ ∈ ðc0, ℓ∞Þ = ðc, ℓ∞Þ = ðℓ∞, ℓ∞Þ, if and only
if (23) holds with q = 1

Theorem 8. Consider the following sets:

D
qð Þ
1 ≔ d = dkð Þ ∈ ω : 〠

∞

k=0

lk+2 − k + 2ð Þ
lk

dk

����
����
q

<∞

( )
,

D1 ≔ d = dkð Þ ∈ ω : sup
k∈ℕ0

lk+2 − k + 2ð Þ
lk

dk

����
���� <∞

( )
:

ð24Þ

Then, ½ℓ1ðLÞ�α ≔D1, ½ℓpðLÞ�α ≔D
ðqÞ
1 , and ½c0ðLÞ�α =

½cðLÞ�α = ½ℓ∞ðLÞ�α ≔D
ð1Þ
1 , where 1 < p <∞:

Proof. We observe that

dvzv = 〠
v

k=v−1
−1ð Þv−k lk+2 − k + 2ð Þ

lv
dvwk = Bwð Þv, ð25Þ
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for each v ∈ℕ0 and d = ðdkÞ ∈ ω, where the matrixB = ðbv,kÞ
is defined by

bv,k =
−1ð Þv−k lk+2 − k + 2ð Þ

lv
dv, v − 1 ≤ k ≤ v,

0, k > v,

8><
>: ð26Þ

for all v, k ∈ℕ0. We notice that the sequence dz = ðdvzvÞ ∈ ℓ1
whenever z = ðzvÞ ∈ c0ðLÞ, if and only if, the sequence
Bw ∈ ℓ1 whenever the sequence w = ðwvÞ ∈ c0: We realize
that the sequence d = ðdvÞ ∈ ½c0ðLÞ�α, if and only if, B ∈
ðc0, ℓ1Þ: Thus, by employing Part (iii) of Lemma 7, we get that

sup
V∈N

〠
∞

k=0
〠
v∈V

bv,k

�����
����� <∞: ð27Þ

Moreover, for any V ∈N , (27) holds, if and only if,

〠
∞

k=0

lk+2 − k + 2ð Þ
lk

dk

����
���� <∞: ð28Þ

Consequently, ½c0ðLÞ�α ≔D
ð1Þ
1 :

In the similar manner, α-dual of the other sequence
spaces can be obtained by employing Part (i), Part (ii), and
Part (iii) of Lemma 7.

Theorem 9. Consider the following sets:

D
qð Þ
2 ≔ d = dkð Þ ∈ ω : 〠

∞

k=0
Δ

dk
lk

� �
lk+2 − k + 2ð Þð Þ

����
����
q

<∞

( )
,

D2 ≔ d = dkð Þ ∈ ω : sup
k∈ℕ0

Δ
dk
lk

� �
lk+2 − k + 2ð Þð Þ

����
���� <∞

( )
,

D3 ≔ d = dkð Þ ∈ ω : lim
k⟶∞

lk+2 − k + 2ð Þ
lk

dk = 0
� 	

,

D4 ≔ d = dkð Þ ∈ ω : lim
k⟶∞

lk+2 − k + 2ð Þ
lk

dk exists
� 	

,

ð29Þ

where Δðdk/lkÞ = ðdk/lkÞ − ðdk+1/lk+1Þ: Then, ½ℓ1ðLÞ�β ≔D1

∩D2,½ℓpðLÞ�β ≔D1 ∩D
ðqÞ
2 ,½c0ðLÞ�β ≔D1 ∩D

ð1Þ
2 ,½cðLÞ�β ≔

D
ð1Þ
2 ∩D4, and ½ℓ∞ðLÞ�β ≔D

ð1Þ
2 ∩D3, where 1 < p <∞:

Proof. Let d = ðdkÞ ∈ ω: Then, we have

〠
v

k=0
dkzk = 〠

v

k=0
〠
k

j=k−1
−1ð Þk−j l j+2 − j + 2ð Þ

lk
wjdk

= 〠
v−1

k=0

dk
lk

−
dk+1
lk+1

� �
lk+2 − k + 2ð Þð Þwk +

lv+2 − v + 2ð Þ
lv

dvwv

= 〠
v−1

k=0
Δ

dk
lk

� �
lk+2 − k + 2ð Þð Þwk +

lv+2 − v + 2ð Þ
lv

dvwv ,

ð30Þ

for each v ∈ℕ0: By employing Theorem 2 and Corollary 1 of
Malkowsky and Savas [20], we get

ℓ1 Lð Þ½ �β ≔ d = dkð Þ ∈ ω : Δ
dk
lk

� �
lk+2 − k + 2ð Þð Þ

� ��

∈ ℓ∞ and lv+2 − v + 2ð Þ
lv

� �
∈ ℓ∞

	
,

ℓp Lð Þ
 �β ≔ d = dkð Þ ∈ ω : Δ
dk
lk

� �
lk+2 − k + 2ð Þð Þ

� ��

∈ ℓq,
lv+2 − v + 2ð Þ

lv

� �
∈ ℓ∞

	
,

c0 Lð Þ½ �β ≔ d = dkð Þ ∈ ω : Δ
dk
lk

� �
lk+2 − k + 2ð Þð Þ

� ��

∈ ℓ1,
lv+2 − v + 2ð Þ

lv

� �
∈ ℓ∞

	
,

c Lð Þ½ �β ≔ d = dkð Þ ∈ ω : Δ
dk
lk

� �
lk+2 − k + 2ð Þð Þ

� ��

∈ ℓ1,
lv+2 − v + 2ð Þ

lv

� �
∈ c
	
,

ℓ∞ Lð Þ½ �β ≔ d = dkð Þ ∈ ω : Δ
dk
lk

� �
lk+2 − k + 2ð Þð Þ

� ��

∈ ℓ1,
lv+2 − v + 2ð Þ

lv

� �
∈ c0

	
:

ð31Þ

This completes the proof.

Theorem 10. We have the following results:

(i) ½ℓ1ðLÞ�γ ≔D1 ∩D2:

(ii) ½ℓpðLÞ�γ ≔D1 ∩D
ðqÞ
2 , where 1 < p <∞

(iii) ½c0ðLÞ�γ = ½cðLÞ�γ = ½ℓ∞ðLÞ�γ ≔D1 ∩D
ð1Þ
2

Proof. It can be obtained by using relation (30) and Parts
(iv), (v), and (vi) of Lemma 7, respectively.

4. Characterization of Matrix Classes

Let A = ðav,kÞ be an infinite matrix over the field of complex
numbers. Denote

~Av ≔
lv+2 − v + 2ð Þ

lv
Av

= lv+2 − v + 2ð Þ
lv

av,k

� �∞

k=0
, for each v ∈ℕ0,

ð32Þ
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mv,k ≔ lk+2 − k + 2ð Þð ÞΔ av,k
lk

� �
, for all v, k ∈ℕ0: ð33Þ

Now, we state the following result:

Lemma 11. Let Z denote either of the spaces ℓp or c0,
1 ≤ p ≤∞: Then, A ∈ ðZL,UÞ, if and only if, ~A ∈MðZ, c0Þ,
for each v ∈ℕ0, and M ∈ ðZ,UÞ, where ~A and M = ðmv,kÞ
are defined in (32) and (33), respectively.

Proof. It follows straightly from ([20], Theorem 3]).

Lemma 12. A ∈ ðcðLÞ,UÞ, if and only if,

~Av ∈ c, that is lim
k⟶∞

lv+2 − v + 2ð Þ
lv

av,k = αv v ∈N0ð Þ, ð34Þ

M ∈ c0,Uð Þ = ℓ∞,Uð Þ, ð35Þ
αvð Þ∞v=0 ∈U: ð36Þ

Proof. Assume that A ∈ ðcðLÞ,UÞ: Then, Av ∈ ½cðLÞ�β which
immediately shows the necessity of condition (35). Also, it is
known that ððcÞL,UÞ ⊂ ððc0ÞL,UÞ: Hence, by employing
Lemma 11, we get that M ∈ ðc0,UÞ: Thus, in the light of
(30), we get that

〠
∞

k=0
av,kzk = 〠

∞

k=0
mv,kwk + zαv: ð37Þ

It is clear from the assumptions that Az ∈U and
Mw ∈U: These together yield ðαvÞ∞v=0 ∈U:

Conversely, we assume that conditions (34), (35), and
(36) hold. We realize that conditions (34) and (35) together
imply that Av ∈ ½cðLÞ�β: Again condition (34) implies (37).
By condition (35), Mw ∈U, for all w ∈ c: This together with
condition (36) implies that Az ∈U, for all z ∈ cðLÞ: This
proves that A ∈ ðcðLÞ,UÞ:

Now, using Lemmas 11 and 12 together with the proper-
ties Mðℓp, c0Þ =Mðc0, c0Þ = ℓ∞ð1 ≤ p<∞Þ,Mðc, cÞ = c, and
Mðℓ∞, c0Þ = c0, we deduce the following results:

Corollary 13. The following statements hold:

(i) A ∈ ðℓ1ðLÞ, ℓ∞Þ, if and only if

sup
k∈ℕ0

lv+2 − v + 2ð Þ
lv

av,k

����
���� <∞, ð38Þ

sup
v,k∈ℕ0

mv,k
�� �� <∞ ð39Þ

(ii) Let 1 < p <∞: Then A ∈ ðℓpðLÞ, ℓ∞Þ, if and only if,
(38) holds, and

sup
v∈ℕ0

〠
∞

k=0
mv,k
�� ��q <∞ ð40Þ

(iii) A ∈ ðc0ðLÞ, ℓ∞Þ, if and only if, (38) holds, and (40)
holds with q = 1

(iv) A ∈ ðcðLÞ, ℓ∞Þ, if and only if, (34) and (40) hold
with q = 1, and

sup
v∈ℕ0

αvj j <∞, ð41Þ

also holds

(v) A ∈ ðℓ∞ðLÞ, ℓ∞Þ, if and only if,

lim
k⟶∞

lv+2 − v + 2ð Þ
lv

av,k = 0, for all v ∈ℕ0, ð42Þ

and (40) holds with q = 1

Corollary 14. The following statements hold:

(i) A ∈ ðℓ1ðLÞ, c0Þ, if and only if, (38) and (39) hold,
and

lim
v⟶∞

mv,k = 0, for all k ∈ℕ0, ð43Þ

also holds

(ii) Let 1 < p <∞: Then, A ∈ ðℓpðLÞ, c0Þ, if and only if,
(38), (40), and (43) hold

(iii) A ∈ ðc0ðLÞ, c0Þ, if and only if, (38) and (40) hold
with q = 1, and (43) also holds

(iv) A ∈ ðcðLÞ, c0Þ, if and only if, (34), (40) with q = 1
and (43) hold, and

lim
v⟶∞

αv = 0, ð44Þ

also holds

(v) A ∈ ðℓ∞ðLÞ, c0Þ, if and only if, (42) holds, and

lim
v⟶∞

〠
∞

k=0
mv,k
�� �� = 0, ð45Þ

also holds

Corollary 15. The following statements hold:

(i) A ∈ ðℓ1ðLÞ, cÞ, if and only if, (38), (39), and

lim
v⟶∞

mv,k exists, for all k ∈ℕ0, ð46Þ

also holds

(ii) Let 1 < p <∞: Then A ∈ ðℓpðLÞ, cÞ, if and only if,
(38), (40) and (46) holds
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(iii) A ∈ ðc0ðLÞ, cÞ, if and only if, (38) holds, (40) with
q = 1 and (46) hold

(iv) A ∈ ðcðLÞ, cÞ, if and only if, (34), (40) with q = 1 and
(46) hold, and

lim
v⟶∞

αv exists ð47Þ

also holds

(v) A ∈ ðℓ∞ðLÞ, cÞ, if and only if, (42) and (46) hold,
and

〠
∞

k=0
mv,k
�� �� converges uniformly in v ð48Þ

also holds

Corollary 16. The following statements hold:

(i) A ∈ ðℓ1ðLÞ, ℓ1Þ, if and only if, (38) holds and

sup
v∈ℕ0

〠
∞

v=0
mv,k
�� �� <∞, ð49Þ

also holds

(ii) Let 1 < p <∞: Then A ∈ ðℓpðLÞ, ℓ1Þ, if and only if,
(38) holds, and

sup
V∈N

〠
∞

k=0
〠
v∈V

mv,k

�����
�����
q

<∞, ð50Þ

also holds

(iii) A ∈ ðc0ðLÞ, ℓ1Þ, if and only if, (38) holds, and (50)
holds with q = 1

(iv) A ∈ ðcðLÞ, ℓ1Þ, if and only if, (34) and (50) hold with
q = 1, and

〠
∞

v=0
αvj j <∞, ð51Þ

also holds

(v) A ∈ ðℓ∞ðLÞ, ℓ1Þ, if and only if, (42) and (50) hold
with q = 1

5. Mapping Ideal

In this section, we construct s-type mapping ideals on
Leonardo sequence spaces ðc0ðL, rÞÞρ and ðℓpðL, rÞÞρ: By

B, we denote the class of all bounded linear mappings
between any two Banach spaces. In particular, BðX,YÞ
denote the class of all bounded linear mappings acting from

Banach space X to Banach space Y: We note down certain
notations and definitions before moving to our results:

Definition 17 (see [21, 22]). Let ω+ represent the set of non-
negative real sequences. Then, s-number is a mapping s :
BðX,YÞ⟶ ω+ that satisfies the following settings:

(i) kϕk = s0ðϕÞ ≥ s1ðϕÞ ≥ s2ðϕÞ ≥⋯≥0, for each ϕ ∈
BðX,YÞ

(ii) sa+b−1ðϕ + ψÞ ≤ saðϕÞ + sbðψÞ, for each ϕ, ψ ∈BðX,
YÞ and a, b ∈ℕ0

(iii) saðϕθψÞ ≤ kϕksaðθÞkψk, for all ϕ ∈BðX0,XÞ,
θ ∈BðX,YÞ, and ψ ∈BðY,Y0Þ, where X0 and Y0
are any two Banach sequence spaces

(iv) Let ϕ ∈BðX,YÞ and ν ∈ℂ: Then, saðνϕÞ = jνjsaðϕÞ
(v) If rank ðϕÞ ≤ a, then saðϕÞ = 0 for all ϕ ∈BðX,YÞ
(vi) svðIaÞ = 0 for v ≥ a or svðIaÞ = 1 for v < a, where

Ia denotes the identity mapping on the a-dimen-
sional Hilbert space ℓa2

In an assorted illustration of s-numbers, we intimate the
next settings:

(1) The a-th Kolmogorov number, denoted by daðXÞ, is
defined as

da Xð Þ = infdim J≤a sup fk k≤1 infg∈J Xf − gk k ð52Þ

(2) The a-th approximation number, denoted by αaðXÞ,
is defined as

αa Xð Þ = inf X − Yk k: Y ∈B X,Yð Þ, rank Yð Þ ≤ af g
ð53Þ

Definition 18 (see [23]). Let W ⊂B and denote W ðX,YÞ =
W ∩BðX,YÞ: Then, W is known as a mapping ideal if it
satisfies the following settings:

(i) ID ∈W , where D is a Banach sequence space of
one dimension

(ii) W ðX,YÞ is a linear space over ℂ
(iii) If ψ ∈BðX0,XÞ,θ ∈BðX,YÞ and ϕ ∈BðY0,YÞ,

then ϕθψ ∈BðX0,Y0Þ, where X0 and Y0 are any
two normed spaces

Definition 19 (see [24]). A prequasi norm on the idealW is a
mapping μ : W ⟶ ω+ satisfying the following settings:

(i) μðϕÞ ≥ 0 and μðϕÞ = 0 if and only if ϕ = 0, for all
ϕ ∈W ðX,YÞ
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(ii) There exists m0 ≥ 1 such that μðςϕÞ ≤m0jςjμðϕÞ, for
all ϕ ∈W ðX,YÞ

(iii) There exists n0 ≥ 1 such that μðϕ + ψÞ ≤ n0ðμðϕÞ +
μðψÞÞ, for all ϕ, ψ ∈W ðX,YÞ

(iv) There exists p0 ≥ 1 such that μðϕθψÞ ≤ p0kϕkμðθÞk
ψk whenever ψ ∈BðX0,XÞ,θ ∈BðX,YÞ and ϕ ∈
BðY0,YÞ

Definition 20 (see [24]). The subspace Z ⊂ ω is said to be a
private sequence space (or in short pss) if it satisfies the
following settings:

(i) ev ∈Z, for each v ∈ℕ0, where ev denotes the
sequence with 1 in the vth position and 0 elsewhere

(ii) If g = ðgvÞ ∈ ω,jhj = ðjhvjÞ ∈Z and jgvj ≤ jhvj, for
v ∈ℕ0, then jgj ∈Z

(iii) ðjg½v/2�jÞ ∈Z whenever ðjgvjÞ ∈Z, where ½v/2�
denotes the integral part of v/2

Definition 21 (see [24]). A subspace of the pss is said to be a
premodular pss, if there is a function υ : Z⟶ ½0,∞Þ satis-
fying the following conditions:

(i) For every j ∈Z, j = 0⇔ υðjjjÞ = 0, and υðjÞ ≥ 0, with
0 is the zero vector of Z

(ii) If j ∈Z and ρ ∈ℂ, then there are E0 ≥ 1 with
υðρjÞ ≤ jρjE0υðjÞ

(iii) υðh + jÞ ≤G0ðυðhÞ + υðjÞÞ holds for some G0 ≥ 1,
with f , g ∈Z

(iv) Assume x ∈ℕ0, jhxj ≤ jjxj, we have υððjhxjÞÞ ≤
υððjjxjÞÞ

(v) The inequality, υððjjxjÞÞ ≤ υððjj½x/2�jÞÞ ≤D0υððjjxjÞÞ
verifies, for D0 ≥ 1

(vi) �C =Zυ, where �C denotes the closure of the space of
all sequences with infinite zero coordinates

(vii) We have η > 0 such that υðρ, 0, 0, 0,⋯Þ ≥ ηjρjυð1,
0, 0, 0,⋯Þ, with ρ ∈ℂ

Definition 22 (see [24]). The pssZυ is said to be a prequasi
normed pss, if υ confirms the setups (i)-(iii) of Definition
21. If Z is complete equipped with υ, then Zυ is called a
prequasi Banach pss.

Lemma 23 (see [24]). Every premodular pss is a prequasi
normed pss:

In what follows, we will use the following inequality:

g + hj jp ≤ 2p−1 gj jp + hj jp� 
, ð54Þ

where 1 ≤ p <∞ and g, h ∈ℂ: For detailed studies concerning
s-numbers and mapping ideals, we refer to [23–28].

Definition 24. We define the following sequence spaces:

ℓp L, rð Þ� 
ρ1

≔ z = zkð Þ ∈ ω : ρ1 zð Þ = 〠
∞

v=0
〠
v

k=0

rklk
lv+2 − v + 2ð Þ zk

�����
�����
p

<∞

( )
,

c0 L, rð Þð Þρ2
≔ z = zkð Þ ∈ ω : lim

v⟶∞
〠
v

k=0

rklk
lv+2 − v + 2ð Þ zk = 0

( )
,

ð55Þ

where r = ðrkÞ ∈ ω+ and ρ2ðzÞ = supv∈ℕ0
j∑v

k=0ðrklk/ðlv+2 −
ðv + 2ÞÞÞzkj.

By I↗ and I↘, we will denote the space of all mono-
tonic increasing and decreasing sequences of positive reals,
respectively.

Theorem 25. c0ðL, rÞ is a pss, whenever ðrklkÞ∞k=0 ∈I↘ or
ðrklkÞ∞k=0 ∈I↗ ∩ ℓ∞, and there exists C ≥ 1 such that r2k+1
l2k+1 ≤ Crklk.

Proof.

(i) Let g, h ∈ c0ðL, rÞ, we obtain

sup
v∈ℕ0

〠
v

k=0

rklk
lv+2 − v + 2ð Þ gk + hkð Þ

�����
�����

≤ sup
v∈ℕ0

〠
v

k=0

rklk
lv+2 − v + 2ð Þ gk

�����
�����

+ sup
v∈ℕ0

〠
v

k=0

rklk
lv+2 − v + 2ð Þ hk

�����
����� <∞

ð56Þ

Thus, g + h ∈ c0ðL, rÞ:
Assume that ς ∈ℂ and g ∈ c0ðL, rÞ: Then, we have

sup
v∈ℕ0

〠
v

k=0

rklk
lv+2 − v + 2ð Þ ςgkð Þ

�����
����� = ςj j sup

v∈ℕ0

〠
v

k=0

rklk
lv+2 − v + 2ð Þ gk

�����
����� <∞:

ð57Þ

Thus c0ðL, rÞ is a linear space. Moreover

sup
v∈ℕ0

〠
v

k=0

rklk
lv+2 − v + 2ð Þ eað Þk

�����
����� = rala sup

v∈ℕ0

1
lv+2 − v + 2ð Þ
� �

<∞:

ð58Þ

This implies ea ∈ c0ðL, rÞ, for each a ∈ℕ0:
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(ii) Assume that jgkj ≤ jhkj, for all k ∈ℕ0 and jhj ∈
c0ðL, rÞ: Then, we have

sup
v∈ℕ0

〠
v

k=0

rklk
lv+2 − v + 2ð Þ gkj j

�����
�����

≤ sup
v∈ℕ0

〠
v

k=0

rklk
lv+2 − v + 2ð Þ hkj j

�����
����� <∞

ð59Þ

This concludes that jgj ∈ c0ðL, rÞ:

(iii) Let ðjgkjÞ ∈ c0ðL, rÞ, ðrklkÞ∞k=0 ∈IZ ∩ ℓ∞, and there
exists C ≥ 1 such that r2k+1l2k+1 ≤ Crklk. Then, we
have

sup
v∈ℕ0

〠
v

k=0

rklk
lv+2 − v + 2ð Þ g k

2½ �
��� ���

 !

≤ sup
v∈ℕ0

〠
2v

k=0

rklk
l2v+2 − 2v + 2ð Þ g k

2½ �
��� ���

 !

+ sup
v∈ℕ0

〠
2v+1

k=0

rklk
l2v+3 − 2v + 3ð Þ g k

2½ �
��� ���

 !

≤ sup
v∈ℕ0

1
l2v+2 − 2v + 2ð Þ
�

� r2vl2v gvj j + 〠
v

k=0
r2kl2k gkj j + r2k+1l2k+1 gkj jð Þ

( )#

+ sup
v∈ℕ0

1
l2v+3 − 2v + 3ð Þ
�

� 〠
v

k=0
r2kl2k gkj j + r2k+1l2k+1 gkj jð Þ

#

≤ sup
v∈ℕ0

C
lv+2 − v + 2ð Þ〠

v

k=0
rklk gkj j

 !

+ sup
v∈ℕ0

2C
lv+2 − v + 2ð Þ〠

v

k=0
rklk gkj j

 !

+ sup
v∈ℕ0

2C
lv+2 − v + 2ð Þ〠

v

k=0
rklk gkj j

 !

≤ 5C sup
v∈ℕ0

1
lv+2 − v + 2ð Þ〠

v

k=0
lk gkj j

 !
<∞

ð60Þ

Thus, ðg½k/2�Þ ∈ c0ðL, rÞ:
This completes the proof.

Theorem 26. ℓpðL, rÞ is a pss, whenever 1 < p <∞,
ðrklkÞ∞k=0 ∈I↗ or ðrklkÞ∞k=0 ∈IZ ∩ ℓ∞, and there exists C ≥ 1
such that r2k+1l2k+1 ≤ Crklk.

Proof.

(i) Let g, h ∈ ℓpðL, rÞ: By using (54), we obtain

〠
∞

v=0
〠
v

k=0

rklk
lv+2 − v + 2ð Þ gk + hkð Þ

�����
�����
p

≤ 2p−1 〠
∞

v=0
〠
v

k=0

rklk
lv+2 − v + 2ð Þ gk

�����
�����
p(

+ 〠
∞

v=0
〠
v

k=0

rklk
lv+2 − v + 2ð Þ hk

�����
�����
p)

<∞

ð61Þ

Thus, g + h ∈ ℓpðL, rÞ:
Assume that ς ∈ℂ and g ∈ ℓpðL, rÞ: Then, we have

〠
∞

v=0
〠
v

k=0

rklk
lv+2 − v + 2ð Þ ςgkð Þ

�����
�����
p

= ςj jp 〠
∞

v=0
〠
v

k=0

rklk
lv+2 − v + 2ð Þ gk

�����
�����
p

<∞:

ð62Þ

Thus, ℓpðL, rÞ is a linear space. Moreover,

〠
∞

v=0
〠
v

k=0

rklk
lv+2 − v + 2ð Þ eað Þk

�����
�����
p

= rpal
p
a 〠

∞

v=r

1
lv+2 − v + 2ð Þ
� �p

<∞:

ð63Þ

This implies ea ∈ ℓpðL, rÞ for each a ∈ℕ0:

(ii) Assume that jgkj ≤ jhkj, for all k ∈ℕ0 and jhj ∈ ℓpðL,
rÞ: Then, we have

〠
∞

v=0
〠
v

k=0

rklk
lv+2 − v + 2ð Þ gkj j

�����
�����
p

≤ 〠
∞

v=0
〠
v

k=0

rklk
lv+2 − v + 2ð Þ hkj j

�����
�����
p

<∞

ð64Þ

This concludes that jgj ∈ ℓpðL, rÞ:
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(iii) Let ðjgkjÞ ∈ ℓpðL, rÞ, ðrklkÞ∞k=0 ∈IZ ∩ ℓ∞, and there
exists C ≥ 1 such that r2k+1l2k+1 ≤ Crklk. Then, we
have

〠
∞

v=0
〠
v

k=0

rklk
lv+2 − v + 2ð Þ g k/2½ �

��� ���
 !p

= 〠
∞

v=0
〠
2v

k=0

rklk
l2v+2 − 2v + 2ð Þ g k/2½ �

��� ���
 !p

+ 〠
∞

v=0
〠
2v+1

k=0

rklk
l2v+3 − 2v + 3ð Þ g k/2½ �

��� ���
 !p

≤ 〠
∞

v=0

1
l2v+2 − 2v + 2ð Þ
�

� r2vl2v gvj j + 〠
v

k=0
r2kl2k gkj j + r2k+1l2k+1 gkj jð Þ

( )#p

+ 〠
∞

v=0

1
l2v+3 − 2v + 3ð Þ〠

v

k=0
r2kl2k gkj j + r2k+1l2k+1 gkj jð Þ

" #p

≤ 2p−1 〠
∞

v=0

C
lv+2 − v + 2ð Þ〠

v

k=0
rklk gkj j

 !p"

+ 〠
∞

v=0

2C
lv+2 − v + 2ð Þ〠

v

k=0
rklk gkj j

 !p #

+ 〠
∞

v=0

2C
lv+2 − v + 2ð Þ〠

v

k=0
rklk gkj j

 !p

≤ 22p−1 + 2p + 2p−1
� 

Cp

� 〠
∞

v=0

1
lv+2 − v + 2ð Þ〠

v

k=0
lk gkj j

 !p

<∞

ð65Þ

Thus, ðg½k/2�Þ ∈ ℓpðL, rÞ:
This completes the proof.

Define the setsBs
ZðX,YÞ,Bα

ZðX,YÞ, andBd
ZðX,YÞ by

Bs
Z X,Yð Þ≔ ϕ ∈B X,Yð Þ: sa ϕð Þð Þ ∈Zf g,

Bα
Z X,Yð Þ≔ ϕ ∈B X,Yð Þ: αa ϕð Þð Þ ∈Zf g,

Bd
Z X,Yð Þ≔ ϕ ∈B X,Yð Þ: da ϕð Þð Þ ∈Zf g,

ð66Þ

where X and Y are any two Banach sequence spaces.
We denote Bs

Z ≔ fBs
ZðX,YÞg:, Bα

Z ≔ fBα
ZðX,YÞg, and

Bd
Z ≔ fBd

ZðX,YÞg, respectively.

Lemma 27 (see [24]). Let the linear sequence space Z be a
pss: Then, Bs

Z is a mapping ideal.

Theorem 28. Let ðrklkÞ∞k=0 ∈I↘ or ðrklkÞ∞k=0 ∈I↗ ∩ ℓ∞, and
there exists C ≥ 1 such that r2k+1l2k+1 ≤ Crklk. Then, B

s
c0ðL,rÞ

is a mapping ideal.

Proof. It follows straightly from Lemma 27.

Theorem 29. Let 1 < p <∞,ðrklkÞ∞k=0 ∈I↘ or ðrklkÞ∞k=0 ∈
I↗ ∩ ℓ∞, and there exists C ≥ 1 such that r2k+1l2k+1 ≤ Crklk.
Then, Bs

ℓpðL,rÞ is a mapping ideal.

Proof. It follows straightly from Lemma 27.

Theorem 30. Let ðrklkÞ∞k=0 ∈I↘ or ðrklkÞ∞k=0 ∈I↗ ∩ ℓ∞,
and there exists C ≥ 1 such that r2k+1l2k+1 ≤ Crklk. Then,
ðc0ðL, rÞÞρ is a premodular pss:

Proof.

(i) Clearly, for all g ∈ ðc0ðL, rÞÞρ that ρðgÞ ≥ 0 and
ρðjgjÞ = 0, if and only if, g = 0

(ii) For any ε ≥ 1: Then ρðαgÞ ≤ εjαjρðgÞ, for all g ∈
c0ðL, rÞ and α ∈ℂ

(iii) Observe that ρðg + hÞ ≤ ρðgÞ + ρðhÞ, for all g, h ∈
c0ðL, rÞ

(iv) We have ρððjgkjÞÞ ≤ ρððjhkjÞÞ, whenever jgkj ≤ jhkj
(see Proof Part (ii), Theorem 25).

(v) It is immediate from Proof Part (iii) of Theorem 25
that ρððjgkjÞÞ ≤ ρððjg½k/2�jÞÞ ≤ δρððjgkjÞÞ with δ = 5C.

�C = c0 L, rð Þ ð67Þ

(vi) We have, when α ≠ 0 then 0 < γ ≤ 1, for ρðα, 0,
0,⋯Þ ≥ γjαjρð1, 0, 0,⋯Þ and when α = 0 then γ > 0

This completes the proof.

Theorem 31. Let 1 < p <∞,ðrklkÞ∞k=0 ∈I↘ or ðrklkÞ∞k=0 ∈
I↘ ∩ ℓ∞, and there exists C ≥ 1 such that r2k+1l2k+1 ≤ Crklk.
Then, ðℓpðL, rÞÞρ is a premodular pss:

Proof.

(i) Clearly, for all g ∈ ðℓpðL, rÞÞρ that ρðgÞ ≥ 0 and

ρðjgjÞ = 0, if and only if, g = 0

(ii) Let ε =max f1, jαjp−1g ≥ 1: Then, ρðαgÞ ≤ εjαjρðgÞ,
for all g ∈ ℓpðL, rÞ and α ∈ℂ

(iii) Observe that ρðg + hÞ ≤ 2p−1ðρðgÞ + ρðhÞÞ, for all
g, h ∈ ℓpðL, rÞ

(iv) We have ρððjgkjÞÞ ≤ ρððjhkjÞÞ, whenever jgkj ≤ jhkj
(see Proof Part (ii), Theorem 26).

(v) It is immediate from Proof Part (iii) of Theorem 26
that ρððjgkjÞÞ ≤ ρððjg½k/2�jÞÞ ≤ δρððjgkjÞÞ with δ =
ð22p−1 + 2p + 2p−1ÞCp

�C = ℓp L, rð Þ ð68Þ
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(vi) We have, when α ≠ 0 then 0 < γ < jαjp−1, for ρðα, 0,
0,⋯Þ ≥ γjαjρð1, 0, 0,⋯Þ, and when α = 0 then γ > 0

This completes the proof.

Theorem 32. Assume that ðrklkÞ∞k=0 ∈I↘ or ðrklkÞ∞k=0 ∈
I↘ ∩ ℓ∞, and there exists C ≥ 1 such that r2k+1l2k+1 ≤ Crklk.
Then, ðc0ðL, rÞÞρ is a prequasi Banach pss:

Proof. In view of Theorem 30 and Lemma 23, it is enough to
prove that every Cauchy sequence in ðc0ðL, rÞÞρ is conver-

gent in ðc0ðL, rÞÞρ:We assume that gðmÞ = ðgðmÞ
k Þ is a Cauchy

sequence in ðc0ðL, rÞÞρ: Then, for all ε ∈ ð0, 1Þ there exists
n0 ∈ℕ0 such that

ρ g mð Þ − g nð Þ
� �

= sup
v=0

∞ 1
lv+2 − v + 2ð Þ〠

v

k=0
lk g

mð Þ
k − g nð Þ

� �
k

�����
����� < ε,

ð69Þ

for all m, n ≥ n0: This implies that ðgðmÞ − gðnÞÞ < ε, for all
m, n ≥ n0: Thus, ðgðmÞÞ is a Cauchy sequence in ℂ: Since

ℂ is complete, lim
m⟶∞

g
ðmÞ
k = gk, for a fixed k ∈ℕ0: This

yields, by using (69), that ρðgðmÞ − gÞ < ε, for all m ≥ n0:
Besides, we have ρðgÞ ≤ ρðgðmÞ − gÞ + ρðgðmÞÞ <∞: This con-
cludes that g ∈ ðc0ðL, rÞÞρ: Thus, ðc0ðL, rÞÞρ is a prequasi
Banach pss:

Theorem 33. Assume that 1 < p <∞,ðrklkÞ∞k=0 ∈I↘ or
ðrklkÞ∞k=0 ∈IZ ∩ ℓ∞, and there exists C ≥ 1 such that r2k+1
l2k+1 ≤ Crklk. Then, ðℓpðL, rÞÞρ is a prequasi Banach pss:

Proof. In view of Theorem 31 and Lemma 23, it is enough to
prove that every Cauchy sequence in ðℓpðL, rÞÞρ is conver-

gent in ðℓpðL, rÞÞρ:We assume that gðmÞ = ðgðmÞ
k Þ is a Cauchy

sequence in ðℓpðL, rÞÞρ: Then, for all ε ∈ ð0, 1Þ there exists

n0 ∈ℕ0 such that

ρ g mð Þ − g nð Þ
� �

= 〠
∞

v=0

1
lv+2 − v + 2ð Þ〠

v

k=0
lk g

mð Þ
k − g nð Þ

� �
k

�����
����� < εp,

ð70Þ

for all m, n ≥ n0: This implies that ðgðmÞ − gðnÞÞ < ε, for all
m, n ≥ n0: Thus, ðgðmÞÞ is a Cauchy sequence in ℂ: Since ℂ

is complete, lim
m⟶∞

g
ðmÞ
k = gk, for a fixed k ∈ℕ0: This yields,

by using (70), that ρðgðmÞ − gÞ < εp, for all m ≥ n0: Besides,
we have ρðgÞ ≤ 2p−1ðρðgðmÞ − gÞ + ρðgðmÞÞÞ <∞: This con-
cludes that g ∈ ðℓpðL, rÞÞρ: Thus ðℓpðL, rÞÞρ is a prequasi

Banach pss:

Theorem 34 (see [27]). Suppose s − type Eρ ≔ fh = ðsxðHÞÞ
∈ ω+ : H ∈BðX,YÞand ρðhÞ<∞g: If Bs

Eρ
is a mapping

ideal, then the following conditions are verified:

(1) C ⊂ s − typeEρ

(2) Suppose ðsxðH1ÞÞ∞x=0 ∈ s − typeEρ and ðsxðH2ÞÞ∞x=0 ∈
s − typeEρ; then ðsxðH1 +H2ÞÞ∞x=0 ∈ s − typeEρ

(3) Assume λ ∈ℂ and ðsxðHÞÞ∞x=0 ∈ s − typeEρ; then
jλjðsxðHÞÞ∞x=0 ∈ s − typeEρ

(4) The sequence space Eρ is solid; i.e., if ðsxðJÞÞ∞x=0 ∈ s −
typeEρ and sxðHÞ ≤ sxðJÞ, for all x ∈ℕ0 and H, J ∈
BðX,YÞ; then ðsxðHÞÞ∞x=0 ∈ s − typeEρ

In view of Theorem 34, we construct the next properties of
the s − type ðc0ðL, rÞÞρ and the s − type ðℓpðL, rÞÞρ.

Theorem 35. Let s − type ðc0ðL, rÞÞρ ≔ f f = ðsnðXÞÞ ∈
ω+ : X ∈BðX,YÞ and ρð f Þ<∞g: The next conditions are
established:

(1) One has s − type ðc0ðL, rÞÞρ ⊃C

(2) Suppose ðsrðX1ÞÞ∞r=0 ∈ s − type ðc0ðL, rÞÞρ and ðsr
ðX2ÞÞ∞r=0 ∈ s − type ðc0ðL, rÞÞρ; then ðsrðX1 + X2ÞÞ∞r=0
∈ s − type ðc0ðL, rÞÞρ

(3) Assume λ ∈ℂ and ðsrðXÞÞ∞r=0 ∈ s − type ðc0ðL, rÞÞρ;
hence jλjðsrðXÞÞ∞r=0 ∈ s − type ðc0ðL, rÞÞρ

(4) The s − type ðc0ðL, rÞÞρ is solid

Theorem 36. Let s − type ðℓpðL, rÞÞρ ≔ f f = ðsnðXÞÞ ∈ ω+

: X ∈BðX,YÞ and ρð f Þ<∞g: The next conditions are
established:

(1) One has s − type ðℓpðL, rÞÞρ ⊃C

(2) Suppose ðsrðX1ÞÞ∞r=0 ∈ s − type ðℓpðL, rÞÞρ and ðsr
ðX2ÞÞ∞r=0 ∈ s − type ðℓpðL, rÞÞρ; then ðsrðX1 + X2ÞÞ∞r=0
∈ s − type ðℓpðL, rÞÞρ

(3) Assume λ ∈ℂ and ðsrðXÞÞ∞r=0 ∈ s − type ðℓpðL, rÞÞρ;
hence jλjðsrðXÞÞ∞r=0 ∈ s − type ðℓpðL, rÞÞρ

(4) The s − type ðℓpðL, rÞÞρ is solid

6. Characteristics of the Prequasi Ideal

The conventions listed below will be followed throughout
the article; if the species is preowned, we will give it to
you.
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Conventions 1. Please see the following conventions:
F : the ideal of finite rank mappings between any arbi-

trary Banach spaces
A : the ideal of approximable mappings between any

arbitrary Banach spaces
K : the ideal of compact mappings between any arbi-

trary Banach spaces
FðX,YÞ: the space of finite rank mappings from a

Banach space X into a Banach space Y
FðXÞ: the space of finite rank mappings from a Banach

space X into itself
AðX,YÞ: the space of approximable mappings from a

Banach space X into a Banach space Y
AðXÞ: the space of approximable mappings from a

Banach space X into itself
KðX,YÞ: the space of compact mappings from a

Banach space X into a Banach space Y
KðXÞ: the space of compact mappings from a Banach

space X into itself

Lemma 37 (see [28]). If M ∈BðX,YÞ and M ∉AðX,YÞ,
then there are operators Q ∈BðXÞ and L ∈BðYÞ so that
LMQex = ex, for all x ∈ℕ0.

Definition 38 (see [28]). A Banach space E is called simple if
the algebra BðEÞ includes one and only one nontrivial
closed ideal.

Theorem 39 (see [28]). Suppose E is a Banach space with
dim ðEÞ =∞; then

F Eð Þ ⊂A Eð Þ ⊂K Eð Þ ⊂B Eð Þ: ð71Þ

In this section, firstly, we introduce the enough setups
(not necessary) on ðc0ðL, rÞÞρ and ðℓpðL, rÞÞρ such that �F =
Bs

ðc0ðL,rÞÞρ and �F =Bs
ðℓpðL,rÞÞρ

. This investigates a negative

answer of Rhoades [29] open problem about the linearity
of s − type ðc0ðL, rÞÞρ and ðℓpðL, rÞÞρ spaces. Secondly, for

which conditions on ðc0ðL, rÞÞρ and ðℓpðL, rÞÞρ, are

Bs
ðc0ðL,rÞÞρ and Bs

ðℓpðL,rÞÞρ
closed and complete? Thirdly, we

explain the enough setups on ðc0ðL, rÞÞρ and ðℓpðL, rÞÞρ
such that Bs

ðc0ðL,rÞÞρ and Bs
ðℓpðL,rÞÞρ

are strictly contained for

different weights and powers. We offer the setups so that
Bα

ðℓpðL,rÞÞρ
is minimum. Fourthly, we introduce the condi-

tions so that the Banach prequasi ideal Bs
ðc0ðL,rÞÞρ and

Bs
ðℓpðL,rÞÞρ

are simple Banach spaces. Fifthly, we investigate

the enough conditions on ðc0ðL, rÞÞρ and ðℓpðL, rÞÞρ such

that the space of all bounded linear operators which
sequence of eigenvalues in ðc0ðL, rÞÞρ and ðℓpðL, rÞÞρ equal

Bs
ðc0ðL,rÞÞρ and Bs

ðℓpðL,rÞÞρ
, respectively.

6.1. Finite Rank Prequasi Ideal

Theorem 40. Bs
ðc0ðL,rÞÞρðX,YÞ = �FðX,YÞ; suppose the setups

ðrklkÞ∞k=0 ∈I↘ or ðrklkÞ∞k=0 ∈IZ ∩ ℓ∞, and there exists C ≥ 1
such that r2k+1l2k+1 ≤ Crklk are satisfied. But the converse is
not necessarily true.

Proof. To investigate that �FðX,YÞ ⊆Bs
ðc0ðL,rÞÞρðX,YÞ, as

el ∈ ðc0ðL, rÞÞρ, for every l ∈ℕ0,ðc0ðL, rÞÞρ is a linear space.

Let Z ∈ FðX,YÞ, one gets ðslðZÞÞ∞l=0 ∈C. To explain that
Bs

ðc0ðL,rÞÞρðX,YÞ ⊆ �FðX,YÞ, assume Z ∈Bs
ðc0ðL,rÞÞρðX,YÞ,

we obtain ðslðZÞÞ∞l=0 ∈ ðc0ðL, rÞÞρ. Since ρðslðZÞÞ∞l=0<∞, let

ρ ∈ ð0, 1Þ; hence, there is l0 ∈ℕ0 − f0g with ρððslðZÞÞ∞l=l0Þ <
ρ/16d, for some d ≥ 1. Since slðZÞ ∈I�, we get

sup
l=l0+1

2l0 ∑l
j=0r jljs2l0 Zð Þ
ll+2 − l + 2ð Þ ≤ sup

l=l0+1

2l0 ∑l
j=0rjljsj Zð Þ

ll+2 − l + 2ð Þ

≤ sup
l=l0

∞ ∑l
j=0r jljsj Zð Þ

ll+2 − l + 2ð Þ < ρ

16d :
ð72Þ

Hence, there is Y ∈ F2l0ðX,YÞ so that rankðYÞ ≤ 2l0 and

sup
l=2l0+1

3l0 ∑l
j=0r jlj Z − Yk k
ll+2 − l + 2ð Þ ≤ sup

l=l0+1

2l0 ∑l
j=0rjlj Z − Yk k
ll+2 − l + 2ð Þ < ρ

16d ,

ð73Þ

we have

〠
l0

j=0
rjlj Z − Yk k < ρ

16 : ð74Þ

Therefore, one has

sup
l=0

l0 ∑l
j=0r jlj Z − Yk k
ll+2 − l + 2ð Þ < ρ

16d : ð75Þ

In view of inequalities (72)–(75), and ðrklkÞ∞k=0 ∈I�, one
gets

d Z, Yð Þ = ρ sl Z − Yð Þð Þ∞l=0

≤ sup
l=0

3l0−1∑
l
j=0rjljsj Z − Yð Þ
ll+2 − l + 2ð Þ + sup

l=3l0

∞ ∑l
j=0rjljsj Z − Yð Þ
ll+2 − l + 2ð Þ

≤ sup
l=0

3l0 ∑l
j=0rjljsj Z − Yð Þ
ll+2 − l + 2ð Þ + sup

l=l0

∞ ∑l+2l0
j=0 r jljsj Z − Yð Þ

ll+2l0+2 − l + 2l0 + 2ð Þ

≤ sup
l=0

3l0 ∑l
j=0rjljsj Z − Yð Þ
ll+2 − l + 2ð Þ + sup

l=l0

∞ ∑l+2l0
j=0 r jljsj Z − Yð Þ
ll+2 − l + 2ð Þ
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≤ 3 sup
l=0

l0 ∑l
j=0r jlj Z − Yk k
ll+2 − l + 2ð Þ

+ sup
l=l0

∞ ∑2l0−1
j=0 rjljsj Z − Yð Þ +∑l+2l0

j=2l0r jljsj Z − Yð Þ
ll+2 − l + 2ð Þ

 !

≤ 3 sup
l=0

l0 ∑l
j=0r jlj Z − Yk k
ll+2 − l + 2ð Þ + sup

l=l0

∞ ∑2l0−1
j=0 r jljsj Z − Yð Þ
ll+2 − l + 2ð Þ

+ sup
l=l0

∞ ∑l+2l0
j=2l0rjljsj Z − Yð Þ
ll+2 − l + 2ð Þ

≤ 3 sup
l=0

l0 ∑l
j=0r jlj Z − Yk k
ll+2 − l + 2ð Þ + sup

l=l0

∞ ∑2l0−1
j=0 r jljsj Z − Yð Þ
ll+2 − l + 2ð Þ

+ sup
l=l0

∞ ∑l
j=0rj+2l0lj+2l0 sj+2l0 Z − Yð Þ

ll+2 − l + 2ð Þ

≤ 3 sup
l=0

l0 ∑l
j=0r jlj Z − Yk k
ll+2 − l + 2ð Þ + 2〠

l0

j=0
ljr j Z − Yk k

+ sup
l=l0

∞ ∑l
j=0rjljsj Zð Þ

ll+2 − l + 2ð Þ < ρ:

ð76Þ

On the opposite side, one has a negative example as I3
∈Bs

ðc0ðL,rÞÞρðX,YÞ, where r = ð0, 0, 0, 1, 0, 1, 0,Þ. This shows
the proof.

Theorem 41. Bs
ðℓpðL,rÞÞρ

ðX,YÞ = �FðX,YÞ; suppose the setups
1 < p <∞,ðrklkÞ∞k=0 ∈I↘ or ðrklkÞ∞k=0 ∈IZ ∩ ℓ∞, and there
exists C ≥ 1 such that r2k+1l2k+1 ≤ Crklk are confirmed. But
the converse is not necessarily true.

Proof. To investigate that �FðX,YÞ ⊆Bs
ðℓpðL,rÞÞρ

ðX,YÞ, as

el ∈ ðℓpðL, rÞÞρ, for every l ∈ℕ0, ðℓpðL, rÞÞρ is a linear space.
Let Z ∈ FðX,YÞ; one gets ðslðZÞÞ∞l=0 ∈C. To explain that
Bs

ðℓpðL,rÞÞρ
ðX,YÞ ⊆ �FðX,YÞ, assume Z ∈Bs

ðℓpðL,rÞÞρ
ðX,YÞ;

we obtain ðslðZÞÞ∞l=0 ∈ ðℓpðL, rÞÞρ. Since ρðslðZÞÞ∞l=0<∞, let

ρ ∈ ð0, 1Þ, hence, there is l0 ∈ℕ0 − f0g with ρððslðZÞÞ∞l=l0Þ
< ðρ/2p+3ηdÞ, for some d ≥ 1, where η =max f1,∑∞

l=l0
ð1/ðll+2 − ðl + 2ÞÞÞpg: Since slðZÞ ∈I�, we get

〠
2l0

l=l0+1

∑l
j=0rjljs2l0 Zð Þ
ll+2 − l + 2ð Þ

 !p

≤ 〠
2l0

l=l0+1

∑l
j=0rjljsj Zð Þ

ll+2 − l + 2ð Þ

 !p

≤ 〠
∞

l=l0

∑l
j=0r jljsj Zð Þ

ll+2 − l + 2ð Þ

 !p

< ρ

2p+3ηd :

ð77Þ

Hence, there is Y ∈ F2l0ðX,YÞ so that rankðYÞ ≤ 2l0
and

〠
3l0

l=2l0+1

∑l
j=0rjlj Z − Yk k
ll+2 − l + 2ð Þ

 !p

≤ 〠
2l0

l=l0+1

∑l
j=0rjlj Z − Yk k
ll+2 − l + 2ð Þ

 !p

< ρ

2p+3ηd :

ð78Þ

Since 1 < p <∞, we have

〠
l0

j=0
rjlj Z − Yk k

 !p

< ρ

22p+2η : ð79Þ

Therefore, one has

〠
l0

l=0

∑l
j=0r jlj Z − Yk k
ll+2 − l + 2ð Þ

 !p

< ρ

2p+3ηd : ð80Þ

In view of inequalities (54), (77)–(80), and ðrklkÞ∞k=0 ∈
I�, one gets

d Z, Yð Þ = ρ sl Z − Yð Þð Þ∞l=0

= 〠
3l0−1

l=0

∑l
j=0r jljsj Z − Yð Þ
ll+2 − l + 2ð Þ

 !p

+ 〠
∞

l=3l0

∑l
j=0r jljsj Z − Yð Þ
ll+2 − l + 2ð Þ

 !p

≤ 〠
3l0

l=0

∑l
j=0rjljsj Z − Yð Þ
ll+2 − l + 2ð Þ

 !p

+ 〠
∞

l=l0

∑l+2l0
j=0 r jljsj Z − Yð Þ

ll+2l0+2 − l + 2l0 + 2ð Þ

 !p

≤ 〠
3l0

l=0

∑l
j=0rjljsj Z − Yð Þ
ll+2 − l + 2ð Þ

 !p

+ 〠
∞

l=l0

∑l+2l0
j=0 r jljsj Z − Yð Þ
ll+2 − l + 2ð Þ

 !p

≤ 3〠
l0

l=0

∑l
j=0rjlj Z − Yk k
ll+2 − l + 2ð Þ

 !p

+ 〠
∞

l=l0

∑2l0−1
j=0 r jljsj Z − Yð Þ +∑l+2l0

j=2l0r jljsj Z − Yð Þ
ll+2 − l + 2ð Þ

 !p

≤ 3〠
l0

l=0

∑l
j=0rjlj Z − Yk k
ll+2 − l + 2ð Þ

 !p
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+ 2p−1 〠
∞

l=l0

∑2l0−1
j=0 rjljsj Z − Yð Þ
ll+2 − l + 2ð Þ

 !p
2
4

+ 〠
∞

l=l0

∑l+2l0
j=2l0r jljsj Z − Yð Þ
ll+2 − l + 2ð Þ

 !p35

≤ 3〠
l0

l=0

∑l
j=0rjlj Z − Yk k
ll+2 − l + 2ð Þ

 !p

+ 2p−1 〠
∞

l=l0

∑2l0−1
j=0 rjljsj Z − Yð Þ
ll+2 − l + 2ð Þ

 !p
2
4

+ 〠
∞

l=l0

∑l
j=0r j+2l0lj+2l0 sj+2l0 Z − Yð Þ

ll+2 − l + 2ð Þ

 !p#

≤ 3〠
l0

l=0

∑l
j=0rjlj Z − Yk k
ll+2 − l + 2ð Þ

 !p

+ 2p 〠
l0

j=0
ljr j Z − Yk k

 !p

� 〠
∞

l=l0

1
ll+2 − l + 2ð Þ
� �p

+ 2p−1 〠
∞

l=l0

∑l
j=0rjljsj Zð Þ

ll+2 − l + 2ð Þ

 !p

< ρ:

ð81Þ

On the opposite side, one has a negative example as
I4 ∈B

s
ðℓ0:5ðL,rÞÞρðX,YÞ, where r = ð0, 0, 0, 0, 1, 1,Þ. This shows

the proof.

6.2. Banach and Closed Prequasi Ideal

Theorem 42 (see [24]). The functionΨ is a prequasi norm on
Bs

ðEÞρ , whereΨðYÞ = ρðsbðYÞÞ∞b=0, for every Y ∈Bs
ðEÞρðX,YÞ,

if ðEÞρ is a premodular pss.

Theorem 43. If the setups ðrklkÞ∞k=0 ∈I↘ or ðrklkÞ∞k=0 ∈IZ
∩ ℓ∞, and there exists C ≥ 1 such that r2k+1l2k+1 ≤ Crklk with
r0 > 0 are satisfied, then ðBs

ðc0ðL,rÞÞρ ,ΨÞ is a prequasi Banach

ideal, where ψðXÞ = ρððslðXÞÞ∞l=0Þ.

Proof. As ðc0ðL, rÞÞρ is a premodular pss, hence from
Theorem 42, Ψ is a prequasi norm on Bs

ðc0ðL,rÞÞρ . Suppose

ðXbÞb∈ℕ0
is a Cauchy sequence in Bs

ðc0ðL,rÞÞρðX,YÞ. As

BðX,YÞ ⊇Bs
ðc0ðL,rÞÞρðX,YÞ, one obtains

Ψ Xa − Xbð Þ = sup
l∈ℕ0

∑l
j=0r jljsj Xa − Xbð Þ
ll+2 − l + 2ð Þ ≥ r0 Xa − Xbk k:

ð82Þ

Hence, ðXbÞb∈ℕ0
is a Cauchy sequence in BðX,YÞ.

Since BðX,YÞ is a Banach space, then there is X ∈
BðX,YÞ with limb⟶∞ kXb − Xk = 0: Since ðslðXbÞÞ∞l=0 ∈

ðc0ðL, rÞÞρ, every b ∈ℕ0. According to Definition 21 setups
(ii), (iii), and (v), one gets

Ψ Xð Þ = sup
l∈ℕ0

∑l
j=0rjljsj Xð Þ

ll+2 − l + 2ð Þ

≤ sup
l∈ℕ0

∑l
j=0rjljs j/2½ � X − Xbð Þ
ll+2 − l + 2ð Þ + sup

l∈ℕ0

∑l
j=0r jljs j/2½ � Xbð Þ
ll+2 − l + 2ð Þ

≤ sup
l∈ℕ0

∑l
j=0rjlj X − Xbk k
ll+2 − l + 2ð Þ +D0 sup

l∈ℕ0

∑l
j=0r jljsj Xbð Þ
ll+2 − l + 2ð Þ <∞:

ð83Þ

Therefore, ðslðXÞÞ∞l=0 ∈ ðc0ðL, rÞÞρ; then X ∈Bs
ðc0ðL,rÞÞρ

ðX,YÞ.

Theorem 44. If the setups 1 < p <∞,ðrklkÞ∞k=0 ∈I↘ or
ðrklkÞ∞k=0 ∈IZ ∩ ℓ∞, and there exists C ≥ 1 such that r2k+1
l2k+1 ≤ Crklk with r0 > 0 are confirmed; then ðBs

ðℓpðL,rÞÞρ
,ΨÞ

is a prequasi Banach ideal, where ψðXÞ = ρððslðXÞÞ∞l=0Þ.

Proof. As ðℓpðL, rÞÞρ is a premodular pss, hence from

Theorem 42, Ψ is a prequasi norm on Bs
ðℓpðL,rÞÞρ

. Sup-

pose ðXbÞb∈ℕ0
is a Cauchy sequence in Bs

ðℓpðL,rÞÞρ
ðX,YÞ.

As BðX,YÞ ⊇Bs
ðℓpðL,rÞÞρ

ðX,YÞ, one obtains

Ψ Xa − Xbð Þ = 〠
∞

l=0

∑l
j=0rjljsj Xa − Xbð Þ
ll+2 − l + 2ð Þ

 !p

≥ r0 Xa − Xbk kð Þp:

ð84Þ

Hence, ðXbÞb∈ℕ0
is a Cauchy sequence in BðX,YÞ.

Since BðX,YÞ is a Banach space, then there is X ∈
BðX,YÞ with limb⟶∞ kXb − Xk = 0:Since ðslðXbÞÞ∞l=0 ∈
ðℓpðL, rÞÞρ, every b ∈ℕ0. According to Definition 21

setups (ii), (iii), and (v), one gets

Ψ Xð Þ = 〠
∞

l=0

∑l
j=0rjljsj Xð Þ

ll+2 − l + 2ð Þ

 !p

≤ 2p−1 〠
∞

l=0

∑l
j=0rjljs j/2½ � X − Xbð Þ
ll+2 − l + 2ð Þ

 !p

+ 2p−1 〠
∞

l=0

∑l
j=0rjljs j/2½ � Xbð Þ
ll+2 − l + 2ð Þ

 !p

≤ 2p−1 〠
∞

l=0

∑l
j=0rjlj X − Xbk k
ll+2 − l + 2ð Þ

 !p

+ 2p−1D0 〠
∞

l=0

∑l
j=0r jljsj Xbð Þ
ll+2 − l + 2ð Þ

 !p

<∞:

ð85Þ
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Therefore, ðslðXÞÞ∞l=0 ∈ ðℓpðL, rÞÞρ; then X ∈Bs
ðℓpðL,rÞÞρ

ðX,YÞ.

Theorem 45. Assume X, Y are normed spaces; the setups
ðrklkÞ∞k=0 ∈I↘ or ðrklkÞ∞k=0 ∈IZ ∩ ℓ∞; and there exists C ≥ 1
such that r2k+1l2k+1 ≤ Crklk with r0 > 0 are satisfied; then
ðBs

ðc0ðL,rÞÞρ ,ΨÞ is a prequasi closed ideal, where ΨðXÞ =
ρððslðXÞÞ∞l=0Þ.

Proof. As ðc0ðL, rÞÞρ is a premodular pss, by using Theorem
42, Ψ is a prequasi norm on Bs

ðc0ðL,rÞÞρ . Assume Xb ∈
Bs

ðc0ðL,rÞÞρðX,YÞ, every b ∈ℕ0 and limb⟶∞ΨðXb − XÞ = 0.
As BðX,YÞ ⊇Bs

ðc0ðL,rÞÞρðX,YÞ, we have

Ψ X − Xbð Þ = sup
l∈ℕ0

∑l
j=0rjljsj X − Xbð Þ
ll+2 − l + 2ð Þ ≥ r0 X − Xbk k: ð86Þ

Hence, ðXbÞb∈ℕ0
is a convergent sequence in BðX,YÞ.

Since ðslðXbÞÞ∞l=0 ∈ ðc0ðL, rÞÞρ, for every b ∈ℕ0. In view of
Definition 21 setups (ii), (iii), and (v), one has

Ψ Xð Þ = sup
l∈ℕ0

∑l
j=0r jljsj Xð Þ

ll+2 − l + 2ð Þ

≤ sup
l∈ℕ0

∑l
j=0r jljs j/2½ � X − Xbð Þ
ll+2 − l + 2ð Þ + sup

l∈ℕ0

∑l
j=0rjljs j/2½ � Xbð Þ
ll+2 − l + 2ð Þ

≤ sup
l∈ℕ0

∑l
j=0r jlj X − Xbk k
ll+2 − l + 2ð Þ +D0 sup

l∈ℕ0

∑l
j=0r jljsj Xbð Þ
ll+2 − l + 2ð Þ <∞:

ð87Þ

We get ðslðXÞÞ∞l=0 ∈ ðc0ðL, rÞÞρ, so X ∈Bs
ðc0ðL,rÞÞρðX,YÞ.

Theorem 46. Assume X, Y are normed spaces; the setups 1
< p <∞,ðrklkÞ∞k=0 ∈I↘ or ðrklkÞ∞k=0 ∈IZ ∩ ℓ∞; and there
exists C ≥ 1 such that r2k+1l2k+1 ≤ Crklk with r0 > 0 are satis-
fied; hence, ðBs

ðℓpðL,rÞÞρ
,ΨÞ is a prequasi closed ideal, where

ΨðXÞ = ρððslðXÞÞ∞l=0Þ.

Proof. As ðℓpðL, rÞÞρ is a premodular pss, by using Theorem

42, Ψ is a prequasi norm on Bs
ðℓpðL,rÞÞρ

. Assume Xb ∈

Bs
ðℓpðL,rÞÞρ

ðX,YÞ, for every b ∈ℕ0 and limb⟶∞ΨðXb − XÞ
= 0. As BðX,YÞ ⊇Bs

ðℓpðL,rÞÞρ
ðX,YÞ, we have

Ψ X − Xbð Þ = 〠
∞

l=0

∑l
j=0r jljsj X − Xbð Þ
ll+2 − l + 2ð Þ

 !p

≥ r0 X − Xbk kð Þp:

ð88Þ

Hence, ðXbÞb∈ℕ0
is a convergent sequence in BðX,YÞ.

Since ðslðXbÞÞ∞l=0 ∈ ðℓpðL, rÞÞρ, every b ∈ℕ0. In view of Defi-

nition 21 setups (ii), (iii), and (v), one has

Ψ Xð Þ = 〠
∞

l=0

∑l
j=0rjljsj Xð Þ

ll+2 − l + 2ð Þ

 !p

≤ 2p−1 〠
∞

l=0

∑l
j=0rjljs j/2½ � X − Xbð Þ
ll+2 − l + 2ð Þ

 !p

+ 2p−1 〠
∞

l=0

∑l
j=0rjljs j/2½ � Xbð Þ
ll+2 − l + 2ð Þ

 !p

≤ 2p−1 〠
∞

l=0

∑l
j=0rjlj X − Xbk k
ll+2 − l + 2ð Þ

 !p

+ 2p−1D0 〠
∞

l=0

∑l
j=0r jljsj Xbð Þ
ll+2 − l + 2ð Þ

 !p

<∞:

ð89Þ

We get ðslðXÞÞ∞l=0 ∈ ðℓpðL, rÞÞρ, so X ∈Bs
ðℓpðL,rÞÞρ

ðX,YÞ.

6.3. Minimum Prequasi Ideal

Theorem 47. Suppose X and Y are Banach spaces with
dim ðXÞ = dim ðYÞ =∞, and the setups ðrklkÞ∞k=0 ∈I� or
ðrklkÞ∞k=0 ∈IZ ∩ ℓ∞, and there exists C ≥ 1 such that r2k+1
l2k+1 ≤ Crklk are confirmed with 0 < rð2Þl ≤ rð1Þl , for all l ∈ℕ0,
hence

Bs
c0 L, r 1ð Þ

l

� � � 
ρ

X,Yð Þ ⊂Bs
c0 L, r 2ð Þ

l

� � � 
ρ

X,Yð Þ ⊂B X,Yð Þ:

ð90Þ

Proof. Let Z ∈Bs
ðc0ðL,ðrð1Þl ÞÞÞ

ρ

ðX,YÞ; then ðslðZÞÞ ∈
ðc0ðL, ðrð1Þl ÞÞÞρ. One obtains

sup
l∈ℕ0

∑l
j=0r

2ð Þ
j ljsj Zð Þ

ll+2 − l + 2ð Þ ≤ sup
l∈ℕ0

∑l
j=0r

1ð Þ
j ljsj Zð Þ

ll+2 − l + 2ð Þ <∞: ð91Þ

Then, Z ∈Bs
ðc0ðL,ðrð2Þl ÞÞÞ

ρ

ðX,YÞ. Next, if we choose

ðslðZÞÞ∞l=0 with ∑l
j=0r

ð1Þ
j ljsjðZÞ = ll+2 − ðl + 2Þ and ∑l

j=0r
ð1Þ
j lj

sjðZÞ = ðll+2 − ðl + 2ÞÞ/ðl + 1Þðll+2 − ðl + 2Þ/l + 1Þ, one gets
Z ∈BðX,YÞ such that Z ∉Bs

ðc0ðL,ðrð1Þl ÞÞÞ
ρ

ðX,YÞ and Z ∈

Bs
ðc0ðL,ðrð2Þl ÞÞÞ

ρ

ðX,YÞ.
Clearly, Bs

ðc0ðL,ðrð2Þl ÞÞÞ
ρ

ðX,YÞ ⊂BðX,YÞ. Next, if we put

ðslðZÞÞ∞l=0 such that ∑l
j=0r

ð2Þ
j ljsjðZÞ = ll+2 − ðl + 2Þ. We have

Z ∈BðX,YÞ such that Z ∉Bs
ðc0ðL,ðrð2Þl ÞÞÞ

ρ

ðX,YÞ. This explains
the proof.
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Theorem 48. Suppose X and Y are Banach spaces with
dim ðXÞ = dim ðYÞ =∞, and the setups ðrklkÞ∞k=0 ∈I↘ or
ðrklkÞ∞k=0 ∈IZ ∩ ℓ∞, and there exists C ≥ 1 such that r2k+1
l2k+1 ≤ Crklk are confirmed with 1 < hð1Þ < hð2Þ and 0 < rð2Þl

≤ rð1Þl for all l ∈ℕ0; hence,

Bs
ℓ
h 1ð Þ L, r 1ð Þ

l

� � � 
ρ

X,Yð Þ ⊂Bs
ℓ
h 2ð Þ L, r 2ð Þ

l

� � � 
ρ

X,Yð Þ

⊂B X,Yð Þ:
ð92Þ

Proof. Let Z ∈Bs
ðℓ

hð1Þ ðL,ðr
ð1Þ
l ÞÞÞ

ρ

ðX,YÞ; then ðslðZÞÞ ∈

ðℓhð1Þ ðL, ðrð1Þl ÞÞÞ
ρ
. One obtains

〠
∞

l=0

∑l
j=0r

2ð Þ
j ljsj Zð Þ

ll+2 − l + 2ð Þ

 !h 2ð Þ

< 〠
∞

l=0

∑l
j=0r

1ð Þ
j ljsj Zð Þ

ll+2 − l + 2ð Þ

 !h 1ð Þ

<∞:

ð93Þ

Then Z ∈Bs
ðℓ

hð2Þ ðL,ðr
ð2Þ
l ÞÞÞ

ρ

ðX,YÞ. Next, if we choose

ðslðZÞÞ∞l=0 with ∑l
j=0r

ð1Þ
j ljsjðZÞ = ðll+2 − ðl + 2ÞÞ/ ffiffiffiffiffiffiffiffiffi

l + 1h1
p ðll+2

− ðl + 2Þ/ ffiffiffiffiffiffiffiffiffi
l + 1h1

p Þ, one gets Z ∈BðX,YÞ such that

〠
∞

l=0

∑l
j=0r

1ð Þ
j ljsj Zð Þ

ll+2 − l + 2ð Þ

 !h 1ð Þ

= 〠
∞

l=0

1
l + 1 =∞,

〠
∞

l=0

∑l
j=0r

2ð Þ
j ljsj Zð Þ

ll+2 − l + 2ð Þ

 !h 2ð Þ

≤ 〠
∞

l=0

∑l
j=0r

1ð Þ
j ljsj Zð Þ

ll+2 − l + 2ð Þ

 !h 2ð Þ

= 〠
∞

l=0

1
l + 1

� �h 2ð Þ
h 1ð Þ

<∞:

ð94Þ

Therefore, Z ∉Bs
ðℓ

hð1Þ ðL,ðr
ð1Þ
l ÞÞÞ

ρ

ðX,YÞ and Z ∈

Bs
ðℓ

hð2Þ ðL,ðr
ð2Þ
l ÞÞÞ

ρ

ðX,YÞ.
Clearly, Bs

ðℓ
hð2Þ ðL,ðr

ð2Þ
l ÞÞÞ

ρ

ðX,YÞ ⊂BðX,YÞ. Next, if we

put ðslðZÞÞ∞l=0 such that ∑l
j=0r

ð2Þ
j ljsjðZÞ = ðll+2 − ðl + 2ÞÞ/ffiffiffiffiffiffiffiffiffi

l + 1h2
p

. We have Z ∈BðX,YÞ such that Z ∉Bs
ðℓ

hð2Þ ðL,ðr
ð2Þ
l ÞÞÞ

ρ

ðX,YÞ. This explains the proof.

Theorem 49. Let X and Y be Banach spaces with dim ðXÞ
= dim ðYÞ =∞, and the setups 1 < p <∞,ðrklkÞ∞k=0 ∈I↘ or
ðrklkÞ∞k=0 ∈IZ ∩ ℓ∞, and there exists C ≥ 1 such that r2k+1
l2k+1 ≤ Crklk are established with ðð∑l

j=0rjljÞ/ðll+2 − ðl +
2ÞÞÞl∈ℕ0

∉ ℓp; then, Bα
ðℓpðL,rÞÞρ

is minimum.

Proof. Suppose the enough setups are confirmed; then
ðBα

ðℓpðL,rÞÞρ
,ΨÞ, where ΨðZÞ =∑∞

l=0ðð∑l
j=0r jljαjðZÞÞ/ðll+2 −

ðl + 2ÞÞÞp, is a prequasi Banach ideal. Suppose Bα
ðℓpðL,rÞÞρ

ðX,

YÞ =BðX,YÞ; hence, there is η > 0 with ΨðZÞ ≤ ηkZk, for
every Z ∈BðX,YÞ. According to Dvoretzky’s Theorem
[23], for every b ∈ℕ0, one obtains quotient spaces X/Yb

and subspaces Mb of Y which can be mapped onto ℓb2 by
isomorphisms Vb and Xb with kVbkkV−1

b k ≤ 2 and kXbk
kX−1

b k ≤ 2. Let Ib be the identity operator on ℓb2 and Tb
be the quotient operator from X onto X/Yb, and Jb is
the natural embedding operator from Mb into Y. Suppose
mz is the Bernstein numbers [26]; then

1 =mz Ibð Þ =mz XbX
−1
b IbVbV

−1
b

� 
≤ Xbk kmz X−1

b IbVb

� 
V−1

b

�� ��
= Xbk kmz JbX

−1
b IbVb

� 
V−1

b

�� ��
≤ Xbk kdz JbX

−1
b IbVb

� 
V−1

b

�� ��
= Xbk kdz JbX

−1
b IbVbTb

� 
V−1

b

�� ��
≤ Xbk kαz JbX

−1
b IbVbTb

� 
V−1

b

�� ��,

ð95Þ

for 0 ≤ l ≤ b. We have

∑l
j=0rjlj

ll+2 − l + 2ð Þ ≤
∑l

z=0 Xbk krzlzαz JbX
−1
b IbVbTb

� 
V−1

b

�� ��
ll+2 − l + 2ð Þ

⟹
∑l

j=0rjl j
ll+2 − l + 2ð Þ

 !p

≤ Xbk k V−1
b

�� ��� p ∑l
z=0rzlzαz JbX

−1
b IbVbTb

� 
ll+2 − l + 2ð Þ

 !p

:

ð96Þ

Hence, for some ρ ≥ 1, one gets

〠
b

l=0

∑l
j=0rjlj

ll+2 − l + 2ð Þ

 !p

≤ ρ Xbk k V−1
b

�� ��
�〠

b

l=0

∑l
z=0rzlzαz JbX

−1
b IbVbTb

� 
ll+2 − l + 2ð Þ

 !p

⟹ 〠
b

l=0

∑l
j=0r jlj

ll+2 − l + 2ð Þ

 !p

≤ ρ Xbk k V−1
b

�� ��Ψ JbX
−1
b IbVbTb

� 
⟹ 〠

b

l=0

∑l
j=0r jlj

ll+2 − l + 2ð Þ

 !p

≤ ρη Xbk k V−1
b

�� �� JbX
−1
b IbVbTb

�� ��
⟹ 〠

b

l=0

∑l
j=0r jlj

ll+2 − l + 2ð Þ

 !p

≤ ρη Xbk k V−1
b

�� �� JbX
−1
b

�� �� Ibk k VbTbk k
= ρη Xbk k V−1

b

�� �� X−1
b

�� �� Ibk k Vbk k ≤ 4ρη:
ð97Þ
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Therefore, we have a contradiction, if b⟶∞. Then,
X and Y both cannot be infinite dimensional if
Bα

ðℓpðL,rÞÞρ
ðX,YÞ =BðX,YÞ. This shows the proof.

By the same manner, we can easily conclude the next
theorem.

Theorem 50. Let X and Y be Banach spaces with dim ðXÞ =
dim ðYÞ =∞, and the setups 1 < p <∞,ðrklkÞ∞k=0 ∈I↘ or
ðrklkÞ∞k=0 ∈IZ ∩ ℓ∞, and there exists C ≥ 1 such that r2k+1
l2k+1 ≤ Crklk are established with ðð∑l

j=0rjljÞ/ðll+2 − ðl +
2ÞÞÞl∈ℕ0

∉ ℓp; then Bd
ðℓpðL,rÞÞρ

is minimum.

6.4. Simple Banach Prequasi Ideal

Theorem 51. Suppose X and Y are Banach spaces with
dim ðXÞ = dim ðYÞ =∞, and the setups ðrklkÞ∞k=0 ∈I↘ or
ðrklkÞ∞k=0 ∈IZ ∩ ℓ∞, and there exists C ≥ 1 such that r2k+1
l2k+1 ≤ Crklk are confirmed with 0 < rð2Þl ≤ rð1Þl , for all l ∈ℕ0;
then

B Bs
c0 L, r 2ð Þ

l

� � � 
ρ

X,Yð Þ,Bs
c0 L, r 1ð Þ

l

� � � 
ρ

X,Yð Þ
� �

=A Bs
c0 L, r 2ð Þ

l

� � � 
ρ

X,Yð Þ,Bs
c0 L, r 1ð Þ

l

� � � 
ρ

X,Yð Þ
� �

:

ð98Þ

Proof. Let X ∈BðBs
ðc0ðL,ðrð2Þl ÞÞÞ

ρ

ðX,YÞ,Bs
ðc0ðL,ðrð1Þl ÞÞÞ

ρ

ðX,YÞÞ
and X ∉AðBs

ðc0ðL,ðrð2Þl ÞÞÞ
ρ

ðX,YÞ,Bs
ðc0ðL,ðrð1Þl ÞÞÞ

ρ

ðX,YÞÞ. In

view of Lemma 37, there are Y ∈BðBs
ðc0ðL,ðrð2Þl ÞÞÞ

ρ

ðX,YÞÞ
and Z ∈BðBs

ðc0ðL,ðrð1Þl ÞÞÞ
ρ

ðX,YÞÞ with ZXYIb = Ib. Therefore,

for every b ∈ℕ0, we get

Ibk kBs

c0 L, r
1ð Þ
l

� � � 
ρ

X,Yð Þ = sup
l∈ℕ0

∑l
j=0r

1ð Þ
j ljsj Ibð Þ

ll+2 − l + 2ð Þ
≤ ZXYk k Ibk kBs

c0 L, r
2ð Þ
l

� � � 
ρ

X,Yð Þ

≤ sup
l∈ℕ0

∑l
j=0r

2ð Þ
j ljsj Ibð Þ

ll+2 − l + 2ð Þ :

ð99Þ

This contradicts Theorem 47. Then X ∈AðBs
ðc0ðL,ðrð2Þl ÞÞÞ

ρ

ðX,YÞ,Bs
ðc0ðL,ðrð1Þl ÞÞÞ

ρ

ðX,YÞÞ, which finishes the proof.

Corollary 52. Assume X and Y are Banach spaces with
dim ðXÞ = dim ðYÞ =∞, and the setups ðrklkÞ∞k=0 ∈I↘ or
ðrklkÞ∞k=0 ∈IZ ∩ ℓ∞, and there exists C ≥ 1 such that r2k+1

l2k+1 ≤ Crklk are established with 0 < rð2Þl ≤ rð1Þl , for all l ∈
ℕ0; then

B Bs
c0 L, r 2ð Þ

l

� � � 
ρ

X,Yð Þ,Bs
c0 L, r 1ð Þ

l

� � � 
ρ

X,Yð Þ
� �

=K Bs
c0 L, r 2ð Þ

l

� � � 
ρ

X,Yð Þ,Bs
c0 L, r 1ð Þ

l

� � � 
ρ

X,Yð Þ
� �

:

ð100Þ

Proof. Clearly,A ⊂K .

Theorem 53. Suppose X and Y are Banach spaces with
dim ðXÞ = dim ðYÞ =∞, and the setups ðrklkÞ∞k=0 ∈I↘ or
ðrklkÞ∞k=0 ∈IZ ∩ ℓ∞, and there exists C ≥ 1 such that r2k+1
l2k+1 ≤ Crklk are confirmed with 1 < hð1Þ < hð2Þ and 0 < rð2Þl

≤ rð1Þl , for all l ∈ℕ0; then

B Bs
ℓ
h 2ð Þ L, r 2ð Þ

l

� � � 
ρ

X,Yð Þ,Bs
ℓ
h 1ð Þ L, r 1ð Þ

l

� � � 
ρ

X,Yð Þ
� �

=A Bs
ℓ
h 2ð Þ L, r 2ð Þ

l

� � � 
ρ

X,Yð Þ,Bs
ℓ
h 1ð Þ L, r 1ð Þ

l

� � � 
ρ

X,Yð Þ
� �

:

ð101Þ

Proof. Let X ∈BðBs
ðℓ

hð2Þ ðL,ðr
ð2Þ
l ÞÞÞ

ρ

ðX,YÞ,Bs
ðℓ

hð1Þ ðL,ðr
ð1Þ
l ÞÞÞ

ρ

ðX,
YÞÞ and X ∉AðBs

ðℓ
hð2Þ ðL,ðr

ð2Þ
l ÞÞÞ

ρ

ðX,YÞ,Bs
ðℓ

hð1Þ ðL,ðr
ð1Þ
l ÞÞÞ

ρ

ðX,YÞÞ.
In view of Lemma 37, there are Y ∈BðBs

ðℓ
hð2Þ ðL,ðr

ð2Þ
l ÞÞÞ

ρ

ðX,YÞÞ
andZ ∈BðBs

ðℓ
hð1Þ ðL,ðr

ð1Þ
l ÞÞÞ

ρ

ðX,YÞÞwithZXYIb = Ib. Therefore,

for every b ∈ℕ0, we get

Ibk kBs

ℓ
h 1ð Þ L, r

1ð Þ
l

� � � 
ρ

X,Yð Þ = 〠
∞

l=0

∑l
j=0r

1ð Þ
j ljsj Ibð Þ

ll+2 − l + 2ð Þ

 !h 1ð Þ

≤ ZXYk k Ibk kBs

ℓ
h 2ð Þ L, r

2ð Þ
l

� � � 
ρ

X,Yð Þ

≤ 〠
∞

l=0

∑l
j=0r

2ð Þ
j ljsj Ibð Þ

ll+2 − l + 2ð Þ

 !h 2ð Þ

:

ð102Þ

This contradicts Theorem 48. Then X ∈AðBs
ðℓ

hð2Þ ðL,ðr
ð2Þ
l ÞÞÞ

ρ

ðX,YÞ,Bs
ðℓ

hð1Þ ðL,ðr
ð1Þ
l ÞÞÞ

ρ

ðX,YÞÞ, which finishes the proof.

Corollary 54. Assume X and Y are Banach spaces with
dim ðXÞ = dim ðYÞ =∞, and the setups ðrklkÞ∞k=0 ∈I↘ or
ðrklkÞ∞k=0 ∈IZ ∩ ℓ∞, and there exists C ≥ 1 such that r2k+1
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l2k+1 ≤ Crklk are established with 1 < hð1Þ < hð2Þ and 0 < rð2Þl

≤ rð1Þl , for all l ∈ℕ0; then

B Bs
ℓ
h 2ð Þ L, r 2ð Þ

l

� � � 
ρ

X,Yð Þ,Bs
ℓ
h 1ð Þ L, r 1ð Þ

l

� � � 
ρ

X,Yð Þ
� �

=K Bs
ℓ
h 2ð Þ L, r 2ð Þ

l

� � � 
ρ

X,Yð Þ,Bs
ℓ
h 1ð Þ L, r 1ð Þ

l

� � � 
ρ

X,Yð Þ
� �

:

ð103Þ

Proof. Clearly,A ⊂K .

Theorem 55. Suppose X and Y are Banach spaces with
dim ðXÞ = dim ðYÞ =∞, and the setups ðrklkÞ∞k=0 ∈I↘ or
ðrklkÞ∞k=0 ∈IZ ∩ ℓ∞, and there exists C ≥ 1 such that r2k+1
l2k+1 ≤ Crklk are confirmed with 1 < h <∞ and 0 < rð2Þl ≤
rð1Þl , for all l ∈ℕ0, then

B Bs
c0 L, r 2ð Þ

l

� � � 
ρ

X,Yð Þ,Bs
ℓh L, r 1ð Þ

l

� � � 
ρ

X,Yð Þ
� �

=A Bs
c0 L, r 2ð Þ

l

� � � 
ρ

X,Yð Þ,Bs
ℓh L, r 1ð Þ

l

� � � 
ρ

X,Yð Þ
� �

:

ð104Þ

Proof. Let X ∈BðBs
ðc0ðL,ðrð2Þl ÞÞÞ

ρ

ðX,YÞ,Bs
ðℓhðL,ðrð1Þl ÞÞÞ

ρ

ðX,YÞÞ
and X ∉AðBs

ðc0ðL,ðrð2Þl ÞÞÞ
ρ

ðX,YÞ,Bs
ðℓhðL,ðrð1Þl ÞÞÞ

ρ

ðX,YÞÞ. In

view of Lemma 37, there are Y ∈BðBs
ðc0ðL,ðrð2Þl ÞÞÞ

ρ

ðX,YÞÞ
and Z ∈BðBs

ðℓhðL,ðrð1Þl ÞÞÞ
ρ

ðX,YÞÞ with ZXYIb = Ib. Therefore,

for every b ∈ℕ0, we get

Ibk kBs

ℓh L, r
1ð Þ
l

� � � 
ρ

X,Yð Þ = 〠
∞

l=0

∑l
j=0r

1ð Þ
j ljsj Ibð Þ

ll+2 − l + 2ð Þ

 !h

≤ ZXYk k Ibk kBs

c0 L, r
2ð Þ
l

� � � 
ρ

X,Yð Þ

≤ sup
l∈ℕ0

∑l
j=0r

2ð Þ
j ljsj Ibð Þ

ll+2 − l + 2ð Þ :

ð105Þ

This contradicts ℓhðL, ðrð1Þl ÞÞ ⊂ c0ðL, ðrð2Þl ÞÞ. Then X ∈A

ðBs
ðc0ðL,ðrð2Þl ÞÞÞ

ρ

ðX,YÞ,Bs
ðℓhðL,ðrð1Þl ÞÞÞ

ρ

ðX,YÞÞ, which finishes

the proof.

Theorem 56. Let X and Y be Banach spaces with dim ðXÞ
= dim ðYÞ =∞, and the setups ðrklkÞ∞k=0 ∈I↘ or ðrklkÞ∞k=0
∈IZ ∩ ℓ∞, and there exists C ≥ 1 such that r2k+1l2k+1 ≤
Crklk are satisfied; hence, Bs

ðc0ðL,rÞÞρ is simple.

Proof. Assume the closed idealKðBs
ðc0ðL,rÞÞρðX,YÞÞ includes

an operator X ∉AðBs
ðc0ðL,rÞÞρðX,YÞÞ. In view of Lemma 37,

we have Y , Z ∈BðBs
ðc0ðL,rÞÞρðX,YÞÞ with ZXYIb = Ib.

This gives that IBs
ðc0ðL,rÞÞρ ðX,YÞ ∈KðBs

ðc0ðL,rÞÞρðX,YÞÞ. Then,
BðBs

ðc0ðL,rÞÞρðX,YÞÞ =KðBs
ðc0ðL,rÞÞρðX,YÞÞ. Hence,Bs

ðc0ðL,rÞÞρ
is simple Banach space.

Theorem 57. Let X and Y be Banach spaces with dim ðXÞ
= dim ðYÞ =∞, and the setups 1 < p <∞,ðrklkÞ∞k=0 ∈I↘ or
ðrklkÞ∞k=0 ∈IZ ∩ ℓ∞, and there exists C ≥ 1 such that r2k+1
l2k+1 ≤ Crklk are satisfied; hence, B

s
ðℓpðL,rÞÞρ

is simple.

Proof. Assume the closed ideal KðBs
ðℓpðL,rÞÞρ

ðX,YÞÞ
includes an operator X ∉AðBs

ðℓpðL,rÞÞρ
ðX,YÞÞ. In view of

Lemma 37, we have Y , Z ∈BðBs
ðℓpðL,rÞÞρ

ðX,YÞÞ with ZXYIb
= Ib. This gives that IBs

ðℓpðL,rÞÞρ
ðX,YÞ ∈KðBs

ðℓpðL,rÞÞρ
ðX,YÞÞ.

Then, BðBs
ðℓpðL,rÞÞρ

ðX,YÞÞ =KðBs
ðℓpðL,rÞÞρ

ðX,YÞÞ. Hence,

Bs
ðℓpðL,rÞÞρ

is simple Banach space.

6.5. Eigenvalues of S-Type Operators

Conventions 2. Please see the following conventions:

Bs
Eð Þρ ≔ Bs

Eð Þρ X,Yð Þ ;X andY are Banach Spacesf g, where
Bs

Eð Þρ X,Yð Þ≔ X ∈B X,Yð Þ: ρl Xð Þð Þ∞n=0
��

∈E and X − ρl Xð ÞIk k is not invertible, for all l ∈ℕ0g
ð106Þ

Theorem 58. Let X and Y be Banach spaces with dim ðXÞ
= dim ðYÞ =∞, and the setups ðrklkÞ∞k=0 ∈I↘ or ðrklkÞ∞k=0
∈IZ ∩ ℓ∞, and there exists C ≥ 1 such that r2k+1l2k+1 ≤
Crklk are verified with inf l∈ℕ0

ðð∑l
j=0r jljÞ/ðll+2 − ðl + 2ÞÞÞ

> 0; then ðBs
ðc0ðL,rÞÞρÞ

ρðX,YÞ =Bs
ðc0ðL,rÞÞρðX,YÞ:

Proof. Let X ∈ ðBs
ðc0ðL,rÞÞρÞ

ρðX,YÞ; hence, ðρlðXÞÞ∞l=0 ∈
ðc0ðL, rÞÞρ and kX − ρlðXÞIk = 0, for all l ∈ℕ0. We have X
= ρlðXÞI, for all l ∈ℕ0; hence, slðXÞ = slðρlðXÞIÞ = jρlðXÞj,
for every l ∈ℕ0. Therefore, ðslðXÞÞ∞l=0 ∈ ðc0ðL, rÞÞρ; then
X ∈Bs

ðc0ðL,rÞÞρðX,YÞ.
Secondly, suppose X ∈Bs

ðc0ðL,rÞÞρðX,YÞ. Then ðslðXÞÞ∞l=0
∈ ðc0ðL, rÞÞρ. Hence, we have

lim
l⟶∞

∑l
j=0rjljsj Xð Þ

ll+2 − l + 2ð Þ ≥ inf
l∈ℕ0

∑l
j=0r jlj

ll+2 − l + 2ð Þ lim
l⟶∞

sl Xð Þ: ð107Þ

Therefore, lim
l⟶∞

slðXÞ = 0: Assume kX − slðXÞIk−1 exists,
for every l ∈ℕ0. Hence, kX − slðXÞIk−1 exists and bounded,
for every l ∈ℕ0. Then, lim

l⟶∞
kX − slðXÞIk−1 = kXk−1 exists
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and bounded. As ðBs
ðc0ðL,rÞÞρ ,ΨÞ is a prequasi operator ideal,

we get

I = XX−1 ∈Bs
c0 L,rð Þð Þρ X,Yð Þ

⟹ sl Ið Þð Þ∞l=0 ∈ c0 L, rð Þð Þρ ⟹ lim
l⟶∞

sl Ið Þ = 0:
ð108Þ

So we have a contradiction, since lim
l⟶∞

slðIÞ = 1. Hence,

kX − slðXÞIk = 0, for every l ∈ℕ0. This gives X ∈
ðBs

ðc0ðL,rÞÞρÞ
ρðX,YÞ. This shows the proof.

Theorem 59. Let X and Y be Banach spaces with dim ðXÞ
= dim ðYÞ =∞, and the setups 1 < p <∞,ðrklkÞ∞k=0 ∈I↘ or
ðrklkÞ∞k=0 ∈IZ ∩ ℓ∞, and there exists C ≥ 1 such that r2k+1
l2k+1 ≤ Crklk are satisfied with inf lðð∑l

j=0rjljÞ/ðll+2 − ðl +
2ÞÞÞp > 0; then ðBs

ðℓpðL,rÞÞρ
ÞρðX,YÞ =Bs

ðℓpðL,rÞÞρ
ðX,YÞ:

Proof. Assume X ∈ ðBs
ðℓpðL,rÞÞρ

ÞρðX,YÞ; hence, ðρlðXÞÞ∞l=0 ∈
ðℓpðL, rÞÞρ and kX − ρlðXÞIk = 0, for all l ∈ℕ0. We have X

= ρlðXÞI, for all l ∈ℕ0; hence, slðXÞ = slðρlðXÞIÞ = jρlðXÞj,
for every l ∈ℕ0. Therefore, ðslðXÞÞ∞l=0 ∈ ðℓpðL, rÞÞρ; then

X ∈Bs
ðℓpðL,rÞÞρ

ðX,YÞ.
Secondly, suppose X ∈Bs

ðℓpðL,rÞÞρ
ðX,YÞ. Then ðslðXÞÞ∞l=0

∈ ðℓpðL, rÞÞρ. Hence, we have

〠
∞

l=0

∑l
j=0r jljsj Xð Þ

ll+2 − l + 2ð Þ

 !p

≥ inf
l

∑l
j=0rjlj

ll+2 − l + 2ð Þ

 !p

〠
∞

l=0
sl Xð Þ½ �p:

ð109Þ

Therefore, lim
l⟶∞

slðXÞ = 0: Assume kX − slðXÞIk−1 exists,
for every l ∈ℕ0. Hence, kX − slðXÞIk−1 exists and bounded,
for every l ∈ℕ0. Then, lim

l⟶∞
kX − slðXÞIk−1 = kXk−1 exists

and bounded. As ðBs
ðℓpðL,rÞÞρ

,ΨÞ is a prequasi operator ideal,
we get

I = XX−1 ∈Bs
ℓp L,rð Þð Þ

ρ

X,Yð Þ
⟹ sl Ið Þð Þ∞l=0 ∈ ℓp L, rð Þ� 

ρ
⟹ lim

l⟶∞
sl Ið Þ = 0:

ð110Þ

So we have a contradiction, since lim
l⟶∞

slðIÞ = 1. Hence,

kX − slðXÞIk = 0, for every l ∈ℕ0. This gives X ∈

ðBs
ðℓpðL,rÞÞρ

ÞρðX,YÞ. This shows the proof.
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