
Research Article
A New Strategy for the Approximate Solution of Hyperbolic
Telegraph Equations in Nonlinear Vibration System

Jiao Zeng ,1 Asma Idrees ,2 and Mohammed S. Abdo 3

1Faculty of Science, Yibin University, Yibin 644000, China
2Department of Mathematics, Riphah International University, Faisalabad 44000, Pakistan
3Department of Mathematics, Hodeidah University, Al-Hudaydah, Yemen

Correspondence should be addressed to Mohammed S. Abdo; msabdo@hoduniv.net.ye

Received 10 June 2022; Revised 1 July 2022; Accepted 26 July 2022; Published 10 August 2022

Academic Editor: Yusuf Gurefe

Copyright © 2022 Jiao Zeng et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This study examines a new approach for the approximate solution of hyperbolic telegraph equations emerging in magnetic fields
and electrical impulse transmissions. We introduce a Laplace-Carson transform coupled with the homotopy perturbation method
which is called the Laplace-Carson homotopy perturbation method (Lc-HPM). The most significant feature of this approach is
that we do not require any restriction of variables and hypotheses to find the results of nonlinear problems. Further, HPM using
He’s is applied to reduce the number of computations in nonlinear terms. We demonstrate some graphical results to show thatLc
-HPM is a simple and suitable approach for linear and nonlinear problems.

1. Introduction

Most of the nonlinear vibration phenomena are described by
unsteady reactions, chaos, splitting processes, and some
other multiple norms of motion. This vibration study starts
from a large number of components such as high elastic
deflection, electrical charge force, and complex absorption
[1]. In this manner, a more proper comprehensive knowl-
edge of the nonlinear vibration phenomena is important
for the investigation of vibratory incidents. Recently, numer-
ous researchers have paid much attention for the study of
the applications of hyperbolic equations. Azab and Gamel
[2] constructed a new approach built on a numerical strategy
for the study of telegraph equations. Pandit et al. [3] applied
a finite difference scheme to find the results of the hyperbolic
telegraph problem. Evans and Bulut [4] proposed a new
approach to determine the precise results of the telegraph
problems in explicit form. Srinivasa and Rezazadeh [5]
obtained the numerical solution of the one-dimensional tele-
graph equation via the wavelet technique. Ding et al. [6]
used a nonpolynomial cubic spline approach in space direc-
tion for the study of the telegraph equation. Saadatmandi
and Dehghan [7] used the Chebyshev tau method to achieve

the numerical solution of the hyperbolic telegraph equation.
Lakestani and Saray [8] applied scaling functions for the
solution of the telegraph equation. Later, Sharifi and Rashi-
dinia [9] applied extended cubic B-spline for the solution
of the hyperbolic telegraph equation and also showed the
convergence and stability of the method. Khater and Lu
[10] investigated the stable analytical solutions of the non-
linear fractional nonlinear time–space telegraph equation
by applying the trigonometric-quantic-B-spline method.
Das and Gupta [11] used the homotopy analysis method to
find the explicit solutions of the telegraph equations. A
broad study of hyperbolic telegraph equation can be studied
in [12–15].

The basic concept of the homotopy perturbation method
(HPM) was suggested by He [16–18] to obtain the solution
of some differential equations. Later, many researchers [19,
20] constructed a scheme coupled with Laplace transform
and HPM to examine the solution of differential equations.
Recently, Aggarwal et al. [21] used Laplace-Carson trans-
form for the first kind of Volterra integrodifferential equa-
tion. Later, Kumar and Qureshi [22] obtained the exact
solutions of non-integer-order initial value problems with
the Caputo operator and confirmed the accuracy of this
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approach. Thange and Gade [23] introduced some proper-
ties of the Laplace-Carson transform with fractional order
with the help of convolution theorem. In this paper, we
introduce a new approach Laplace-Carson homotopy per-
turbation method (Lc-HPM) built on Laplace-Carson
transform and HPM for the study of hyperbolic telegraph
equation. We observe that this strategy is simple to handle
and produces the results in the form of series only after a
few iterations. This article is arranged as follows: in Section
2, we define the Laplace-Carson transform and its basic
properties. In Section 3, we introduce the basic idea of
HPM to decompose the nonlinear terms. In Section 4, we
illustrate some applications to indicate the competence of
Lc-PTM, and at last, some results are discussed with con-
clusion in Sections 5 and 6, respectively.

2. Fundamental Concepts of Laplace-
Carson Transform

Definition 1. Let f ðtÞ be a function precise for t ≥ 0; then,

L f tð Þf g = F sð Þ = θ
ð∞
0
f tð Þe−stdt ð1Þ

is called the Laplace transform and s is the independent var-
iable of the transformed function t.

Definition 2. Aggarwal et al. [21] introduced Laplace-Carson
transform for the solution of first kind of Volterra integro-
differential problem; then,

Lc g tð Þf g = R θð Þ = θ
ð∞
0
g tð Þe−θtdt, k1 ≤ θ ≤ k2, ð2Þ

where Lc is denoted as Laplace-Carson transform and θ is
the independent variable of the transformed function t. On
the other hand, let RðθÞ be the Laplace-Carson transform
of a function gðtÞ; then, gðtÞ is the inverse of RðθÞ so that

L−1
c R θð Þf g = g tð Þ, ð3Þ

where L−1
c is called inverse Laplace-Carson transform.

Definition 3. If gðtÞ = tm, then the Laplace-Carson transform
is applied as

Lc g tð Þf g = R θð Þ = m!

θm
: ð4Þ

Properties 4. If LcfgðtÞg = RðθÞ, then it has the following
differential properties [21, 23]:

(a) Lcfg′ðtÞg = θRðθÞ − θGð0Þ
(b) Lcfg′′ðtÞg = θ2RðθÞ − θ2Gð0Þ − θG′ð0Þ
(c) LcfgmðtÞg = θmRðθÞ − θmGð0Þ − θm−1G′ð0Þ −⋯−θ

Gm−1ð0Þ

3. Basic Idea of HPM

In this segment, we illustrate a nonlinear functional equation
to explain the basic view HPM [24, 25]. Consider

T uð Þ − g hð Þ = 0, h ∈Ω, ð5Þ

with conditions

S u, ∂u
∂n

� �
= 0, h ∈ Γ, ð6Þ

where T and S are known as general functional operator and
boundary operator, respectively, and gðhÞ is known function
with Γ as a interval of the domain Ω. We now divide T into
two units such as T1 which represents a linear and T2 a non-
linear operator. As a result, we can express Equation (6) such
as

T1 uð Þ + T2 uð Þ − g hð Þ = 0: ð7Þ

Assume a homotopy vðh, θÞ: Ω × ½0, 1�⟶ℍ in such a
way that it is appropriate for

H v, θð Þ = 1 − θð Þ T1 vð Þ − T1 u0ð Þ½ � + θ T1 vð Þ − T2 vð Þ − g hð Þ½ �
ð8Þ

or

H v, θð Þ = T1 vð Þ − T1 u0ð Þ + qL u0ð Þ + θ T2 vð Þ − g hð Þ½ � = 0,
ð9Þ

where θ ∈ ½0, 1� is embedding parameter and u0 is an initial
guess of Equation (5), which is suitable for the boundary
conditions. The theory of HPM states that θ is considered
as a slight variable and the solution of Equation (5) in the
resulting form of θ.

v = v0 + θv1 + θ2v2 + θ3v3+⋯ = 〠
∞

i=0
θivi: ð10Þ

Let θ = 1; then, the particular of Equation (6) is written
as

u = lim
θ⟶1

v = v0 + v1 + v2 + v3+⋯ = 〠
∞

i=0
vi: ð11Þ

The nonlinear terms can be calculated as

T2u x, tð Þ = 〠
∞

n=0
θnHn uð Þ: ð12Þ

Then, He’s polynomials HnðuÞ can be obtained using the
following expression:
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Hn u0 + u1+⋯+unð Þ

= 1
n!

∂n

∂θn
T2 〠

∞

i=0
θiui

 ! !
θ=0

, n = 0, 1, 2,⋯:
ð13Þ

The series solution in Equation (12) is mostly convergent
due to and the convergence rate of the series depending on
the nonlinear operator T2.

4. Numerical Applications

In this section, we incorporate the concept of Lc-PTM for
obtaining the approximate solution of linear and nonlinear
telegraph equations. We observe that only after iteration,
this scheme produces excellent accuracy. Mathematical Soft-
ware 11.0.1 is used to perform the calculations. We present
some 2D and 3D graphs for better understanding the behav-
ior of this scheme.

4.1. Example 1. Consider one-dimensional linear hyperbolic
telegraph equation

∂2u
∂x2

= ∂2u
∂t2

+ ∂u
∂t

+ u, ð14Þ

with conditions

u x, 0ð Þ = ex ,
ut x, 0ð Þ = −ex,
u 0, tð Þ = e−t ,
ux 0, tð Þ = e−t :

ð15Þ

Applying Laplace-Carson transform to Equation (14),
we get

Lc
∂2u
∂x2

" #
=Lc

∂2u
∂t2

+ ∂u
∂t

+ u

" #
: ð16Þ

Using the properties of Laplace-Carson transform, we
get

θ2u θ, tð Þ − θ2u 0, tð Þ − θu′ 0, tð Þ =Lc
∂2u
∂t2

+ ∂u
∂t

+ u

" #
, ð17Þ

which may be solved further as

u θ, tð Þ = u 0, tð Þ + 1
θ
u′ 0, tð Þ + 1

θ2
Lc

∂2u
∂t2

+ ∂u
∂t

+ u

( )
:

ð18Þ

Applying inverse Laplace-Carson transform, we get

u x, tð Þ = u 0, tð Þ + xu′ 0, tð Þ +L−1
c

1
θ2

Lc
∂2u
∂t2

+ ∂u
∂t

+ u

( )" #
:

ð19Þ

Now, we introduce HPM on Equation (38); we get

〠
∞

n=0
θnun x, tð Þ = u 0, tð Þ + xu′ 0, tð Þ + θL−1

c

�
"
1
θ2

L

(
∂2

∂t2
〠
∞

n=0
θnun x, tð Þ

+ ∂
∂t

〠
∞

n=0
θnun x, tð Þ + 〠

∞

n=0
θnun x, tð Þ

)#
:

ð20Þ

On comparing, the following iterations can be obtained:

θ0 : u0 x, tð Þ = e−t + xe−t ,

θ1 : u1 x, tð Þ =L−1
c

1
θ2

Lc
∂2u0
∂t2

+ ∂u0
∂t

+ u0

( )" #

= e−t
x2

2! + e−t
x3

3! ,

θ2 : u2 x, tð Þ =L−1
c

1
θ2

Lc
∂2u1
∂t2

+ ∂u1
∂t

+ u1

( )" #

= e−t
x4

4! + e−t
x5

5! ,

θ3 : u3 x, tð Þ =L−1
c

1
θ2

Lc
∂2u2
∂t2

+ ∂u2
∂t

+ u2

( )" #

= e−t
x6

6! + e−t
x7

7! :

⋮

ð21Þ

Hence, the solution can be expressed as

u x, tð Þ == u1 x, tð Þ + u2 x, tð Þ + u3 x, tð Þ+⋯,

u x, tð Þ == e−t + xe−t + x2

2! e
−t + x3

3! e
−t + x4

4! e
−t

+ x5

5! e
−t + x6

6! e
−t + x7

7! e
−t+⋯,

u x, tð Þ = ex−t:

ð22Þ

4.2. Example 2. Consider another linear hyperbolic telegraph
equation

∂2u
∂x2

= ∂2u
∂t2

+ 4 ∂u
∂t

+ 4u, ð23Þ
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with initial conditions

u x, 0ð Þ = 1 + e2x,
ut x, 0ð Þ = −2,
u 0, tð Þ = 1 + e−2t ,
ux 0, tð Þ = 2:

ð24Þ

Applying Laplace-Carson transform to Equation (23),
we get

Lc
∂2u
∂x2

" #
=Lc

∂2u
∂t2

+ 4 ∂u
∂t

+ 4u
" #

: ð25Þ

Using the properties of Laplace-Carson transform, we
get

θ2u θ, tð Þ − θ2u 0, tð Þ − θu′ 0, tð Þ =Lc
∂2u
∂t2

+ 4 ∂u
∂t

+ 4u
" #

,

ð26Þ

which may be solved further as

u θ, tð Þ = u 0, tð Þ + 1
θ
u′ 0, tð Þ + 1

θ2
Lc

∂2u
∂t2

+ 4 ∂u
∂t

+ 4u
( )

:

ð27Þ

Applying inverse Laplace-Carson transform, we get

u x, tð Þ = u 0, tð Þ + xu′ 0, tð Þ +L−1
c

� 1
θ2

Lc
∂2u
∂t2

+ 4 ∂u
∂t

+ 4u
( )" #

:
ð28Þ

Now, we introduce HPM on Equation (28); we get

〠
∞

n=0
θnun x, tð Þ = u 0, tð Þ + xu′ 0, tð Þ + θL−1

c

�
"
1
θ2

L

(
∂2

∂t2
〠
∞

n=0
θnun x, tð Þ

+ 4 ∂
∂t

〠
∞

n=0
θnun x, tð Þ + 4〠

∞

n=0
θnun x, tð Þ

)#
:

ð29Þ

On comparing, the following iterations can be obtained:

θ0 : u0 x, tð Þ = 1 + e−2t + 2x,

θ1 : u1 x, tð Þ =L−1
c

1
θ2

Lc
∂2u0
∂t2

+ 4 ∂u0
∂t

+ 4u0

( )" #

= 4 x
2

2! + 8 x
3

3! ,

θ2 : u2 x, tð Þ =L−1
c

1
θ2

Lc
∂2u1
∂t2

+ 4 ∂u1
∂t

4 + u1

( )" #

= 16 x
4

4! + 32 x
5

5! ,

θ3 : u3 x, tð Þ =L−1
c

1
θ2

Lc
∂2u2
∂t2

+ 4 ∂u2
∂t

+ 4u2

( )" #

= 64 x
6

6! + 128 x
7

7! :

⋮

ð30Þ

Hence, the solution can be expressed as

u x, tð Þ = u1 x, tð Þ + u2 x, tð Þ + u3 x, tð Þ+⋯,

u x, tð Þ = 1 + e−2t + 2x + 4 x
2

2! + 8 x
3

3! + 16 x
4

4!

+ 32 x
5

5! + 64 x
6

6! + 128 x
7

7! ,

u x, tð Þ = e2x + e−2t:

ð31Þ

4.3. Example 3. Consider nonlinear hyperbolic telegraph
equation

∂2u
∂t2

+ 2 ∂u
∂t

= ∂2u
∂x2

+ u3 − u, ð32Þ

with conditions

u x, 0ð Þ = 1
2 + 1

2 tanh x
8 + 5
� �

,

ut x, 0ð Þ = 3
16 sec h2 x

8 + 5
� �

,

u 0, tð Þ = 1
2 + 1

2 tanh 3t
8 + 5

� �
,

ux 0, tð Þ = 1
16 sec h2 3t

8 + 5
� �

:

ð33Þ

Applying Laplace-Carson transform on Equation (32),
we get

Lc
∂2u
∂x2

" #
=Lc

∂2u
∂t2

+ 2 ∂u
∂t

− u3 + u

" #
: ð34Þ
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(a) Analytical solution of uðx, tÞ for Equation (14)
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(b) Particular solution of uðx, tÞ for Equation (14)

Figure 1: Surface solutions for nonlinear hyperbolic telegraph equation.
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(a) Analytical solution of uðx, tÞ for Equation (23)
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(b) Particular solution of uðx, tÞ for Equation (23)

Figure 2: Surface solutions for linear hyperbolic telegraph equation.
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Figure 3: Surface solutions for nonlinear hyperbolic telegraph equation.
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Using the properties of Laplace-Carson transform, we
get

θ2u θ, tð Þ − θ2u 0, tð Þ − θu′ 0, tð Þ =Lc
∂2u
∂t2

+ 2 ∂u
∂t

− u3 + u

" #
,

ð35Þ

which may be solved further as,

u θ, tð Þ = u 0, tð Þ + 1
θ
u′ 0, tð Þ + 1

θ2
Lc

∂2u
∂t2

+ 2 ∂u
∂t

− u3 + u

( )
:

ð36Þ

Applying inverse Laplace-Carson transform,

u x, tð Þ = u 0, tð Þ + xu′ 0, tð Þ +L−1
c

� 1
θ2

Lc
∂2u
∂t2

+ 2 ∂u
∂t

− u3 + u

( )" #
:

ð37Þ

Now, we introduce HPM on Equation (32); we get

〠
∞

n=0
θnun x, tð Þ = u 0, tð Þ + xu′ 0, tð Þ + θL−1

c

�
"
1
θ2

L

(
∂2

∂t2
〠
∞

n=0
θnun x, tð Þ + 2 ∂

∂t
〠
∞

n=0
θnun

� x, tð Þ − 〠
∞

n=0
θnu3n x, tð Þ + 〠

∞

n=0
θnun x, tð Þ

#
:

ð38Þ

On comparing, the following iterations can be obtained:

θ0 : u0 x, tð Þ = 1
2 + 1

2 tanh 3t
8 + 5

� �
+ x

1
2 sec h2 3t

8 + 5
� �

,

θ1 : u1 x, tð Þ =L−1
c

1
θ2

Lc
∂2u0
∂t2

+ 2 ∂u0
∂t

− u30 + u0

( )" #
,

θ2 : u2 x, tð Þ =L−1
c

1
θ2

Lc
∂2u1
∂t2

+ ∂u1
∂t

+ u1 − 3u20u1

( )" #
,

θ3 : u3 x, tð Þ =L−1
c

"
1
θ2

Lc

(
∂2u2
∂t2

+ ∂u2
∂t

+ u2 − 3u0u21 − 3u20u2

)#
:

⋮
ð39Þ

The other iterations are computed with the help of Wol-
fram Mathematica to obtain u1, u2, u3,⋯, which turns to the
particular solution such as

u x, tð Þ = 1
2 + 1

2 tanh x
8 + 3t

8 + 5
� �

: ð40Þ

5. Results and Discussion

This segment presents the discussion of the solution behav-
iors for the hyperbolic telegraph equations. Figure 1 repre-
sents the physical behavior at 0 ≤ x ≤ 5 and 0 ≤ t ≤ 0:5,
whereas Figure 2 shows the physical behavior at 0 ≤ x ≤ 1
and 0 ≤ t ≤ 5 for the linear telegraph equations. We observe
that the solution graphs turn to the particular solution very
rapidly only after a few computations of iterations. Figure 3
represents the solution behavior of nonlinear hyperbolic
telegraph equation at 0 ≤ x ≤ 5 and 0 ≤ t ≤ 0:5. The solution
graph of the approximate solution is computed only for one
iteration which coincides with the exact solation. Graphical
representation and physical behavior of the linear and non-
linear hyperbolic telegraph equations demonstrate that the
results obtained by Lc-HPM are accurate and agreed with
the results of exact solutions which confirm the authenticity
of this approach.

6. Conclusion

In this article, we successfully conducted Lc-HPM for find-
ing the approximate solution of hyperbolic telegraph equa-
tions. We provided the results in the form of series without
any discretization, linearization, or assumptions. The pro-
posed strategy predicts the following fruitful remarks:

(i) Lc-HPM is a direct approach to find the approxi-
mate solution of the problems

(ii) This scheme has less computational work, and there
is no restriction of variables to obtain the solution

(iii) Lc-HPM is applicable for both linear and nonlinear
problems that provides the series solution only after
a few iterations

(iv) We made all calculations with the help of Mathema-
tica Software 11.0.1

(v) This approach is also applicable for other nonlinear
fractional partial differential equations in science
and engineering for future problems
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