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We examine in this paper some new problems on coincidence point and fixed point theorems for multivalued mappings in metric
space. By applying the characterizations of a modified gMT -function, under the name D-function, a few novel fixed point results
different from the existing fixed point theorems are launched. It is well-known that differential equation of either integer or
fractional order is not sufficient to capture ambiguity, since the derivative of a solution to any differential equation inherits all
the regularity properties of the mapping involved and of the solution itself. This does not hold in the case of differential
inclusions. In particular, fractional-order differential inclusion models are more suitable for describing epidemics. Thus, as a
generalization of a newly launched existence result for fractional-order model for COVID-19, using Banach and Shauder fixed
point theorems, we investigate solvability criteria of a novel Caputo-type fractional-order differential inclusion model for
COVID-19 by applying a standard fixed point theorem of multivalued contraction. Stability analysis of the proposed model in
the framework of Ulam-Hyers is also discussed. Nontrivial comparative illustrations are constructed to show that our ideas
herein complement, unify and, extend a significant number of existing results in the corresponding literature.

1. Introduction and Preliminaries

Numerous challenges in practical world defined by non-
linear functional equations can be simplified by reconfi-
guring them to their equivalent fixed point problems.
Fixed point theory yields relevant tools for solving prob-
lems emanating in various arms of sciences. The fixed
point theorem, commonly named as the Banach fixed
point theorem (see [1]), came up in clear form in
Banach thesis in 1922, where it was availed to study
the existence of a solution to an integral equation. Since
then, because of its importance, it has gained a number
of refinements by many authors. In some modifications
of the principle, the inequality is weakened, see, for
example [2, 3], and in others, the topology of the ambi-
ent space is relaxed, see [4–7] and the references
therein. Along the lane, three prominent improvements
of the Banach fixed point theorem was presented by
Ciric [2], Reich [8], and Rus [9].

Nadler [10] launched a multivalued improvement of the
Banach contraction mapping principle. Nadler’s contraction
mapping principle opened up the concept of metric fixed
point theory of multivalued contraction in nonlinear analy-
sis. In line with [10], a number of refinements of fixed point
theorems of multivalued contractions have been presented,
famously, by Berinde-Berinde [11], Du [12, 13], Mizoguchi
and Takahashi [14], Pathak [15], and Reich [16, 17], to cite
a few. Fixed point theorems for multivalued mappings are
highly advantageous in optimal control theory and have
been commonly used to solve several problems in eco-
nomics, game theory, biomathematics, qualitative physics,
viability theory, and many more.

Differential inclusions are found to be of great usefulness
in studying dynamical systems and stochastic processes. A
few examples include sweeping process, granular systems,
nonlinear dynamics of wheeled vehicles, and control prob-
lems. In particular, fractional differential inclusions arise in
several problems in mathematical physics, biomathematics,
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control theory, critical point theory for non-smooth energy
functionals, differential variational inequalities, fuzzy set
arithmetic, traffic theory, etc. Usually, the first most con-
cerned problem in the study of differential inclusion is the
conditions for existence of its solutions. In this direction,
several authors have applied different fixed point approaches
and topological methods to obtain existence results of differ-
ential inclusions in abstract spaces. In the current literature,
we can find many works on fractional-order models propos-
ing different measures for curbing the novel corona virus
(COVID-19) (see, for example, Ali et al. [18], Yu et al.
[19], Xu et al. [20], Shaikh et al. [21], and the references
therein). Recently, Ahmed et al. [22] constructed a Caputo-
type fractional-order model and studied the significance
and effect of the lockdown in curbing COVID-19. They
([22]) investigated the existence and uniqueness of solutions
of the fractional-order corona virus model by applying the
Banach and Schauder fixed point theorems. One of the
pioneer results of fixed point theory using fractional-
order model was presented by Boccaletti et al. [23]. For
some recent results and applications of fraction calculus,
we refer [24–26].

Following the above developments, we consider in this
paper some problems on coincidence point and fixed point
theorems for multivalued mappings. By applying the charac-
terizations of D-function, a few new fixed point results
different from the fixed point theorems due to Berinde-
Berinde [11], Du [13], Mizoguchi-Takahashi [14], Nadler
[10], Reich [17], and Rus [27] are launched. It is a common
knowledge that differential equation of either integer or
fractional order is not sufficient to capture ambiguity, since
the derivative j′ð:Þ of a solution jð:Þ to the differential equa-
tion j′ðtÞ = gðt, jðtÞÞ inherits the regularity properties of the
mapping g and of the function jð:Þ. This is no longer the
case with differential inclusions. In particular, fractional-
order differential inclusions models are more suitable for
describing epidemics (see, e.g., [28]). Differential inclusions
are not only models for handling dynamic processes but also
provide powerful analytic tools to prove existence theorems
such as in control theory, to derive sufficient conditions of
optimality, play a significant role in the theory of control
conditions under uncertainty. Thus, as a generalization of
the existence theorem presented by Ahmed et al. [22], in
the sequel, we investigate solvability conditions of a new
Caputo-type fractional differential inclusions model for
COVID-19 by applying a fixed point theorem of multivalued
contraction. Stability analysis of the proposed model in the
context of Ulam-Hyers is also obtained. Our results herein
complement, unify, and extend the above-mentioned articles
and a few others in the comparable literature. A few nontriv-
ial comparative illustrations are constructed to indicate that
our obtained ideas properly advanced corresponding results
in the literature.

In what follows, we recall some preliminary concepts
that are useful to our main results. Throughout this paper,
the set ℝ, ℝ+ and ℕ represent the set of real numbers, non-
negative real numbers, and the set of natural numbers,
respectively. Let ð℧, μÞ be a metric space. Denote by N ð℧Þ,

CBð℧Þ, and Kð℧Þ, the family of nonempty subsets of ℧,
the collection of all nonempty closed and bounded subsets
of ℧, and the class of all nonempty compact subsets of ℧,
respectively. For A, B ∈ CBð℧Þ, the mapping ~H : CBð℧Þ ×
CBð℧Þ⟶ℝ is given by

~H A, Bð Þ =max sup
j∈B

μ j,Að Þ, sup
ℓ∈A

μ ℓ, Bð Þ
( )

, ð1Þ

where μðj, AÞ = inf ℓ∈Aμðj, ℓÞ is named the Hausdorff-
Pompeiu metric induced by the metric μ. For example, if
we consider the set of real numbers endowed with the
standard metric, then for any two closed intervals ½a, b�
and ½c, d�, we have ~Hð½a, b�, ½c, d�Þ =max fja − cj, jb − djg.

Let Δ,Θ,Λ : ℧⟶℧ be point-valued mappings and
Y : ℧⟶N ð℧Þ be a multivalued mapping. A point u in
℧ is a coincidence point of Δ,Θ,Λ and Y if Δu =Θu =
Λu ∈ Yu. If Δ =Θ =Λ = I℧ is the identity mapping on ℧,
then u = Δu =Θu =Λu ∈ Yu is named a fixed point of Y .
We denote the set of fixed points of Y and the set of coin-
cidence point of Δ,Θ,Λ and Y by F ixðYÞ and COP ðΔ,
Θ,Λ, YÞ, respectively.

Let g be a real-valued function. For t ∈ℝ, we recall that

lim sup
r⟶t

g rð Þ = inf
ε>0

sup
0< r−tj j<ε

g rð Þandlim sup
r⟶t+

g rð Þ = inf
ε>0

sup
0<r−t<ε

g rð Þ:

ð2Þ

Definition 1. (see [12]). ψfMT
: ð0,∞Þ⟶ ½0, 1Þ is named angMT -function if it obeys the Mizoguchi-Takahashi’s condi-

tion, that is, lim supr⟶t+ψfMT
ðrÞ < 1, for each t ∈ℝ+ =

½0,∞Þ.

Remark 2. (see [12]).

(i) If ψfMT
: ℝ+ ⟶ ½0, 1Þ is given as ψfMT

ðtÞ = α ∈ ½0,
1Þ, then ψfMT

is an gMT -function

(ii) If the function ψfMT
: ℝ+ ⟶ ½0, 1Þ is either increas-

ing or decreasing, then ψfMT
is an gMT -function

Definition 3. ψ : ℝ+ ⟶ ½0, ð1/kÞÞ is named a D-function if
it obeys the condition: For each t ∈ℝ+, we can find k ∈
ð1,∞Þ such that lim supr⟶t+ψðrÞ < 1/k:

Definition 4. (see [12]). A function ψ : ℝ+ ⟶ ½0, 1Þ is
named a function of contractive factor, if for any strictly
decreasing sequence fjngn≥1 in ℝ+, we have 0 ≤ supn∈ℕ
ψðjnÞ < 1.

Definition 5. A function ψ : ℝ+ ⟶ ½0, ð1/kÞÞ is named a
function of 1/k-contractive factor, if for any sequence
fjngn≥1 in ℝ+ from and after some fixed terms, it is
strictly nonincreasing and 0 ≤ supn∈ℕψðjnÞ < 1/k, for some
k ∈ ð1,∞Þ.
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The following example recognizes the existence of
D-function and function of 1/k-contractive factor.

Example 6.
Let fjngn≥1 be a sequence in ℝ+ given by

jn =
32n − 1, if n ≤ 7

3 + 1
2n , if n > 7:

8<: ð3Þ

Define ψ : ℝ+ ⟶ ½0, ð1/kÞÞ by

ψ t̂
� �

=

1
17 + t̂2

, if 0 ≤ t̂ < 2

1
3 −

t̂

37 , if 2 ≤ t̂ < 50

0 otherwise:

8>>>>><>>>>>:
ð4Þ

Then, it is clear that ψ is a D-function, fjngn≥1 is a
strictly decreasing sequence from and after the eight term
and 0 ≤ supn∈ℕψðjnÞ = 727/2187 < 1/k for some k ∈ ð1,∞Þ.
Whence, ψ is also a function of 1/k-contractive factor. An
example which is not a D-function is provided hereunder.

Example 7.
Let ψ : ℝ+ ⟶ ½0, ð1/kÞÞ be given by

ψ t̂
� �

=

sin t̂

t̂
, if t̂ ∈ 0, π2

� i
1

t̂ + k2
, elsewhere:

8>><>>: ð5Þ

Since lim supr⟶0+ψðrÞ = 1, then ψ is not a D-function.

Remark 8.

(i) Note that if ψfMT
= kψð̂tÞ for all t̂ ∈ℝ+ and for some

k ∈ ð1,∞Þ, then ψfMT
becomes an gMT -function,

provided ψ is a D-function

(ii) If we define ψ : ℝ+ ⟶ ½0, ð1/kÞÞ as ψð̂tÞ = 1/kn for
all n ≥ 2 and k ∈ ð1,∞Þ, then ψ is a D-function

The following Lemma is in consistent with [16,
Lemma 18].

Lemma 9.
Let ψ : ℝ+ ⟶ ½0, ð1/kÞÞ be a D-function. Then ρ :

ℝ+ ⟶ ½0, ð1/kÞÞ given by ρðb̂t Þ = ðψðb̂t Þ + ð1/kÞÞ/2 is also

a D-function for each b̂t ∈ℝ+ and some k ∈ ð1,∞Þ.

Proof. Obviously, ψð̂tÞ < ρð̂tÞ and 0 < ρð̂tÞ < ð1/kÞ. Let t̂ ∈ℝ+
be fixed. Since ψ : ℝ+ ⟶ ½0, ð1/kÞÞ is a D-function, we can
find σt̂ ∈ ½0, ð1/kÞÞ and δt̂ > 0 such that ψðsÞ ≤ σt̂ for all s ∈

½̂t, t̂ + δt̂Þ. Assume that ηt̂ ≔ ðσt̂ + ð1/kÞÞ/2 ∈ ½0, ð1/kÞÞ. Then,
ρðsÞ ≤ ηt̂ for all s ∈ ½̂t, t̂ + δt̂Þ. Thus, ρ is a D-function.

The following result due to Nadler [26] is the first metric
fixed point theorem for multivalued contractions.

Theorem 10. (see [10]). Let ð℧, μÞ be a complete metric space
and Y : ℧⟶ CBð℧Þ be a multivalued λ-contraction, that
is, we can find λ ∈ ð0, 1Þ such that

~H Yj, Yℓð Þ ≤ λμ j, ℓð Þ, ð6Þ

for all j, ℓ ∈℧. Then, F ixðYÞ ≠∅.

In 2007, Berinde-Berinde [11] presented the following
notable fixed point Theorem.

Theorem 11. (see [11]). Let ð℧, μÞ be a complete metric
space, Y : ℧⟶ CBð℧Þ be a multivalued mapping, and

ψfMT
: ℝ+ ⟶ ½0, 1Þ be an gMT -function. Assume that we

can find L ≥ 0 such that

~H Yj, Yℓð Þ ≤ ψfMT
μ j, ℓð Þð Þμ j, ℓð Þ + Lμ ℓ, Y jð Þ, ð7Þ

for all j, ℓ ∈℧ with j ≠ ℓ. Then, F ixðYÞ ≠∅.

Observe that if we take L = 0 in Theorem 11, we realize
the Mizoguchi-Takahashi fixed point theorem [14] which
partially answered the problem posed in Reich [8].

Theorem 12. (see [8]). Let ð℧, μÞ be a complete metric
space, Y : ℧⟶Kð℧Þ be a multivalued mapping, and

ψfMT
: ℝ+ ⟶ ½0, 1Þ be an gMT -function. Suppose that

~H Yj, Yℓð Þ ≤ ψfMT
μ j, ℓð Þð Þμ j, ℓð Þ, ð8Þ

for all j, ℓ ∈℧ with j ≠ ℓ. Then, F ixðYÞ ≠∅.

In [8], Reich raised the question whether Theorem 12 is
also valid when Kð℧Þ is replaced with CBð℧Þ. In 1989,
Mizoguch-Takahashi [14] responded to this puzzle in affir-
mative via the following result.

Theorem 13. (see [14]). Let ð℧, μÞ be a complete metric
space, Y : ℧⟶ CBð℧Þ be a multivalued mapping, and

ψfMT
: ℝ+ ⟶ ½0, 1Þ be an gMT -function. Suppose that

~H Yj, Yℓð Þ ≤ ψfMT
μ j, ℓð Þð Þμ j, ℓð Þ, ð9Þ

for all j, ℓ ∈℧. Then, F ixðYÞ ≠∅.

Let A be a nonempty subset of ℧ and Y : ℧⟶℧ be a
mapping. We recall that the set A is Y-invariant if YðAÞ ⊆
A. Not long ago, Du [13] obtained the following important
fixed point and coincidence point result.
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Theorem 14. (see [13]). Let ð℧, μÞ be a complete metric
space, Y : ℧⟶ CBð℧Þ be a multivalued mapping, g :
℧⟶℧ be a continuous point-valued mapping, and

ψfMT
: ℝ+ ⟶ ½0, 1Þ be an gMT -function. Assume that the

following conditions hold:
ðDu1Þ Y j is g-invariant for each j ∈℧;
ðDu2Þ we can find a function h : ℧⟶ℝ+ such that

~H Yj, Yℓð Þ ≤ ψfMT
μ j, ℓð Þð Þμ j, ℓð Þ + h gℓð Þμ gℓ, Y jð Þ, ð10Þ

for all j, ℓ ∈℧. Then, COP ðg, YÞ ∩F ixðYÞ ≠∅.

Notice that Mizoguchi-Takahashi fixed point theorem
(13) is an extension of Nadler’s fixed point theorem (10),
but its original proof is not friendly. Alternative proof
presented in [29] is also difficult.

Definition 15. (see [9]). Let ð℧, μÞ be a metric space. A
single-valued mapping Y : ℧⟶℧ is named:

Rus contraction if we can find a, b ∈ℝ+ with a + b < 1
such that for all j, ℓ ∈℧,

μ Y j, Yℓð Þ ≤ aμ j, ℓð Þ + bμ ℓ, Yℓð Þ: ð11Þ

Ciric-Reich-Rus contraction if we can find a, b, c ∈ℝ+
with a + b + c < 1 such that for all j, ℓ ∈℧,

μ Y j, Yℓð Þ ≤ aμ j, ℓð Þ + bμ j, Y jð Þ + cμ ℓ, Yℓð Þ: ð12Þ

In [9], it was proved that every Rus and Ciric-Reich-Rus
contraction has a unique fixed point. These results have been
extended to multivalued mappings in the following manner.

Theorem 16. (see [27]). Let ð℧, μÞ be a complete metric space
and Y : ℧⟶ CBð℧Þ be a multivalued mapping. Assume
that we can find a, b ∈ℝ+ with a + b < 1 such that for all j,
ℓ ∈℧:

~H Yj, Yℓð Þ ≤ aμ j, ℓð Þ + bμ ℓ, Yℓð Þ: ð13Þ

Then, F ixðYÞ ≠∅.

Theorem 17. (see [17]). Let ð℧, μÞ be a complete metric space
and Y : ℧⟶ CBð℧Þ be a multivalued mapping. Assume
that we can find a, b ∈ℝ+ with a + b + c < 1 such that for all
j, ℓ ∈℧:

~H Yj, Yℓð Þ ≤ aμ j, ℓð Þ + bμ j, Y jð Þ + cμ ℓ, Yℓð Þ: ð14Þ

Then, F ixðYÞ ≠∅.

For more variants of fixed point results of multivalued
contractions, the interested reader may consult [30–33]
and the references therein.

2. Main Results

In line with the characterizations of gMT -function, we
begin this section by launching a few characterizations of
D-function in Lemma 18. Its proof is a slight adaption
of [17, Theorem 2.1].

Lemma 18.
Let ψ : ℝ+ ⟶ ½0, ð1/kÞÞ, k ∈ ð1,∞Þ. Then, the following

statements are equivalent:

(i) ψ is a D-function

(ii) For each t̂ ∈ℝ+, we can find σð1Þt̂ ∈ ½0, ð1/kÞÞ and

δð1Þ
t̂

> 0 such that ψðsÞ ≤ σð1Þ
t̂

for all s ∈ ð̂t, t̂ + δð1Þ
t̂
Þ

(iii) For each t̂ ∈ℝ+, we can find σð2Þ
t̂

∈ ½0, ð1/kÞÞ and

δð2Þt̂ > 0 such that ψðsÞ ≤ σð2Þt̂ for all s ∈ ½̂t, t̂ + δð2Þt̂ �

(iv) For each t̂ ∈ℝ+, we can find σð3Þ
t̂

∈ ½0, ð1/kÞÞ and

δð3Þt̂ > 0 such that ψðsÞ ≤ σð3Þt̂ for all s ∈ ð̂t, t̂ + δð3Þt̂ �

(v) For each t̂ ∈ℝ+, we can find σð4Þt̂ ∈ ½0, ð1/kÞÞ and

δð4Þ
t̂

> 0 such that ψðsÞ ≤ σð4Þ
t̂

for all s ∈ ½̂t, t̂ + δð4Þ
t̂
�

(vi) For any sequence fjngn≥1 in ℝ+, from and after
some fixed term, it is nonincreasing and 0 ≤ supn∈ℕ
ψðjnÞ < ð1/kÞ

(vii) ψ is a function of 1/k-contractive factor, that is, for
any sequence fjngn≥1 in ℝ+, from and after some
fixed term, it is strictly decreasing and 0 ≤ supn∈ℕψ
ðjnÞ < ð1/kÞ

The following existence theorem for coincidence point
and fixed point is one of the main results of this paper.

Theorem 19.
Let ð℧, μÞ be a complete metric space, Y : ℧⟶ CBð℧Þ

be a multivalued mapping, Δ,Θ,Λ : ℧⟶℧ be continuous
point-valued mappings, and ψ : ℝ+ ⟶ ½0, ð1/kÞÞ be a D-
function. Suppose that the following conditions are obeyed:

ðax1Þ for each j ∈℧, fΔℓ =Θℓ =Λℓ : ℓ ∈ Y jg ⊆ Y j;
ðax2Þ we can find three mappings f , g, h : ℧⟶ℝ+ such

that

~H Yj, Yℓð Þ ≤ ψ μ j, ℓð Þð Þ aμ j, ℓð Þ + bμ j, Y jð Þ + cμ ℓ, Yℓð Þ½ �
+ f Δℓð Þμ Δℓ, Y jð Þ + g Θℓð Þμ Θℓ, Y jð Þ
+ h Λℓð Þμ Λℓ, Y jð Þ,

ð15Þ

for all j, ℓ ∈℧, where a, b, c ∈ℝ+ with a + b + c < 1.

Then, COP ðΔ,Θ,Λ, YÞ ∩F ixðYÞ ≠∅.
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Proof. By ðax1Þ, we note that for each j ∈℧, μðΔℓ, Y jÞ =
μðΘℓ, Y jÞ = μðΛℓ, Y jÞ = 0 for all ℓ ∈ Y j. So for each j ∈℧,
it follows from ðax2Þ that for all ℓ ∈ Y j,

~H Yj, Yℓð Þ ≤ ψ μ j, ℓð Þð Þ aμ j, ℓð Þ + bμ j, Y jð Þ + cμ ℓ, Yℓð Þ½ �:
ð16Þ

Further, for each ℓ ∈ Y j, μðℓ, YℓÞ ≤ ~HðYj, YℓÞ. Whence,
for each j ∈℧, (16) gives

μ ℓ, Yℓð Þ ≤ ψ μ j, ℓð Þð Þ aμ j, ℓð Þ + bμ j, Y jð Þ + cμ ℓ, Yℓð Þ½ �
≤
ψ μ j, ℓð Þð Þ aμ j, ℓð Þ + bμ j, Yjð Þ½ �

1 − cψ μ j, ℓð Þð Þ
≤ ψ μ j, ℓð Þð Þ aμ j, ℓð Þ + bμ j, Y jð Þ½ �:

ð17Þ

Let j0 ∈℧ and choose j1 ∈ Y j0. If μðj0, j1Þ = 0, then j0 =
j1 ∈ Y j0, that is, j0 ∈F ixðYÞ, and the proof is finished. Other-
wise, if μðj0, j1Þ > 0, then consider a function ρ : ℝ+ ⟶
½0, ð1/kÞÞ given by ρðtÞ = ðð1/kÞ + ψðtÞÞ/2. By Lemma 9,
ρ is a D-function and 0 ≤ ψðtÞ < ρðtÞ < ð1/kÞ for all t ∈ℝ+.
From (2.2), it follows that

μ j1, Y j1ð Þ ≤ ψ μ j0, j1ð Þð Þ aμ j0, j1ð Þ + bμ j0, Y j0ð Þ½ �
< ρ μ j0, j1ð Þð Þ aμ j0, j1ð Þ + bμ j0, j1ð Þ½ �
= ρ μ j0, j1ð Þð Þ a + bð Þμ j0, j1ð Þ½ �:

ð18Þ

Since a + b + c < 1, then we can find η ∈ ð0, 1Þ such that
a + b < η = 1 − c < 1. Thus, (18) can be written as

μ j1, Y j1ð Þ < ηρ μ j0, j1ð Þð Þμ j0, j1ð Þ < ρ μ j0, j1ð Þð Þμ j0, j1ð Þ:
ð19Þ

From (19), we claim that we can find j2 ∈ Y j1 such that

μ j1, j2ð Þ < ρ μ j0, j1ð Þð Þμ j0, j1ð Þ: ð20Þ

Assume that this claim is not true, that is, μðj1, j2Þ ≥
ρðμðj0, j1ÞÞμðj0, j1Þ. Then, we get

μ j1, j2ð Þ ≥ inf
γ∈Y j1

μ j1, γð Þ ≥ ρ μ j0, j1ð Þð Þμ j0, j1ð Þ, ð21Þ

that is, μðj1, Y j1Þ ≥ ρðμðj0, j1ÞÞμðj0, j1Þ, contradicting (19).
Now, if μðj1, j2Þ = 0, then j1 = j2 ∈ Y j1 and so j1 ∈F ixðYÞ.
Otherwise, we can find j3 ∈ Y j2 such that

μ j2, j3ð Þ < ρ μ j1, j2ð Þð Þμ j1, j2ð Þ: ð22Þ

Let τn = μðjn−1, jnÞ for each n ∈ℕ. Proceeding on sim-
ilar steps as above, we can construct a sequence fjngn∈ℕ in
℧ with jn ∈ Y jn−1 for each n ∈ℕ and

τn+1 < ρ τnð Þτn: ð23Þ

Given that ψ is a D-function, then by Lemma 18:

0 ≤ sup
n∈ℕ

ψ τnð Þ < sup
n∈ℕ

ρ τnð Þ < 1
k
: ð24Þ

Whence,

0 < sup
n∈ℕ

ρ τnð Þ = 1/kð Þ + ψ τnð Þ
2 : n ∈ℕ, k ∈ 1,∞ð Þ

� �
< 1
k
< 1:

ð25Þ
Take ξ≔ supn∈ℕρðτnÞ, then 0 < ξ < 1. Since ρðtÞ < ð1/kÞ

< 1 for all t ∈ℝ+, then by (23), fτngn∈ℕ is a strictly decreas-
ing sequence of positive real numbers. Therefore, for each
n ∈ℕ, we have

τn+1 < ρ τnð Þ ≤ ξτn: ð26Þ
Whence, it follows from (26) that

μ jn, jn+1ð Þ = τn+1 ≤ ξτn ≤⋯≤ ξnτ1 = ξnd j0, j1ð Þ: ð27Þ
For any m, n, n0 ∈ℕ with m > n > n0, by (27), we get

μ jm, jnð Þ ≤ 〠
m−1

j=n
μ jj, jj+1
� �

≤ 〠
m−1

j=n
ξjμ j0, j1ð Þ ≤ 〠

∞

j=n
ξjμ j0, j1ð Þ

≤
ξn

1 − ξ
μ j0, j1ð Þ⟶ 0 asn⟶∞ð Þ:

ð28Þ
Thus, limsupn⟶∞fμðjm, jnÞ: m > ng = 0. This proves

that fjngn∈ℕ is a Cauchy sequence in ℧. The completeness
of ℧ implies that we can find u ∈℧ such that jn ⟶ u as
n⟶∞. Since jn ∈ Y jn−1 for each n ∈ℕ, it follows from
condition ðax1Þ that for each n ∈ℕ,

Δjn =Θjn =Λjn ∈ Y jn−1: ð29Þ
Using the continuity of the functions Δ,Θ and Λ, we

have

u = lim
n⟶∞

Δjn = lim
n⟶∞

Θjn = lim
n⟶∞

Λjn = lim
n⟶∞

Δu

= lim
n⟶∞

Θu = lim
n⟶∞

Λu:
ð30Þ

We claim that u ∈ Yu. Assume contrary so that μðu,
YuÞ > 0. Since the function j↦ μðj, YuÞ is continuous,
then from condition ðax2Þ, we realize

μ u, Yuð Þ = lim
n⟶∞

μ jn, Yuð Þ ≤ lim
n⟶∞

~H Yjn−1, Yuð Þ
≤ lim

n⟶∞
ψ μ jn−1, uð Þð Þ aμ jn−1, uð Þ + bμ jn−1, Y jn−1ð Þ½f

+ cμ u, Yuð Þ� + f Δuð Þμ Δu, Y jn−1ð Þ
+ g Θuð Þμ Θu, Yjn−1ð Þ + h Λuð Þμ Λu, Yjn−1ð Þg

< lim
n⟶∞

ρ μ jn−1, uð Þð Þ aμ jn−1, uð Þ + bμ jn−1, jnð Þ½f
+ cμ u, Yuð Þ� + f Δuð Þμ Δu, jnð Þ
+ g Θuð Þμ Θu, jnð Þ + h Λuð Þμ Λu, jnð Þg

< c
k

μ u, Yuð Þð Þ < μ u, Yuð Þ,
ð31Þ
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a contradiction. Whence, μðu, YuÞ = 0. Since Yu is closed,
we have u ∈ Yu. By condition ðax1Þ, Δu =Θu =Λu ∈ Yu.
Consequently, u ∈COP ðΔ,Θ,Λ, YÞ ∩F ixðYÞ.

The following example shows the generality of our
Theorem 19 over Theorems 10, 11, 17, and 16 due to Nadler,
Berinde-Berinde, Reich, and Rus, respectively.

Example 20.
Let ℧ = f0, ð1/5Þ, 2g and μðj, ℓÞ = jj − ℓj for all j, ℓ ∈℧.

Let Y : ℧⟶ CBð℧Þ be a multivalued mapping and Δ,Θ,
Λ : ℧⟶℧ be mappings given by

Y j =

0f g, if j = 0

0, 15

� �
, if j = 1

5
0, 2f g, if j = 2,

8>>>><>>>>:
ð32Þ

and Δ =Θ =Λ = I℧, the identity mapping on ℧. Define the
function ψ : ℝ+ ⟶ ½0, ð1/kÞÞ by ψðtÞ = 1/k2 for all t ∈ℝ+
and some k ∈ ð1,∞Þ. Also, define the mappings f , g, h :
℧⟶ℝ+ by f ðjÞ = gðjÞ = hðjÞ = 1/3 for all j ∈℧. Then, we
realize the following:

(i) for each j ∈℧, fΔℓ =Θℓ =Λℓ : ℓ ∈ Y jg ⊆ Yj;

(ii) COP ðΔ,Θ,Λ, YÞ ∩F ixðYÞ = f0, ð1/5Þ, 2g;
(iii) Δ,Θ and Λ are continuous

Clearly, lim sups⟶t+ψðsÞ = ð1/k2Þ < ð1/kÞ for all t ∈ℝ+
and some k ∈ ð1,∞Þ. Whence, ψ is a D-function. Further-
more, it is a routine to verify that condition ðax2Þ holds for
all j, ℓ ∈℧.

Now, notice that the mapping Y does not obey the
hypotheses of Theorem 10 due to Nadler. To see this, let
j = 0 and ℓ = 2, then

~H Y0, Y2ð Þ = ~H 0f g, 0, 2f gð Þ = 2 > λμ 0, 2ð Þ, ð33Þ

for all λ ∈ ð0, 1Þ. Moreover, to see that Theorem 11 due
to Berinde-Berinde fails in this instance, let L = 1/9 and
ψfMT

ðtÞ = kψðtÞ for all t ∈ℝ+, k ∈ ð1,∞Þ. Then, for all

λ ∈ ð0, 1Þ,

~H Y0, Y2ð Þ = 2 > λμ 0, 2ð Þ + 1
9 μ 2, Y0ð Þ: ð34Þ

Moreover, to see that Theorems 17 and 16 of Reich and
Rus are also not applicable to this example, again take j = 0
and ℓ = 2. Then, by setting b = c = 0 and a = 0 in Theorems
1.17 and 1.16, respectively, we have

~H Y0, Y2ð Þ = 2 > aμ 0, 2ð Þ for all a ∈ 0, 1ð Þ,
~H Y0, Y2ð Þ = 2 > bμ 2, Y2ð Þ for all b ∈ 0, 1ð Þ:

ð35Þ

A slight modification of Example A of Du [13] provided
below shows the generality of our Theorem 19 over
Mizoguch-Takahash’s [14] and Du’s [13] fixed point
theorems.

Example 21.
Let l∞ be the Banach space of all bounded real sequences

endowed with the uniform norm k:k∞, and let feng be the
canonical basis of l∞. Let fτngn∈ℕ be a sequence of positive
real numbers obeying τ1 = τ2 and τ2n−1 < τn for all n ≥ 2 (for
example, take τ1 = 1/9 and τn = 1/3n, n ≥ 2). It follows that
fτngn∈ℕ is convergent. Set vn = τnen for all n ∈ℕ, and let
℧ = fvngn∈ℕ be a bounded and complete subset of l∞. Then,
ð℧, k:k∞Þ is a complete metric space and kvn − vmk∞ = τn if
m> n.

Let Y : ℧⟶ CBð℧Þ be a multivalued mapping and Δ,
Θ,Λ : ℧⟶℧ be three mappings, respectively, given by

Yvn =
v1, v2, v3f g, if n ∈ 1, 2, 3f g
vn+1f g, if n > 3,

(

Δvn =Θvn =Λvn =
v2, if n ∈ 1, 2, 3f g
vn+1, if n > 3:

( ð36Þ

Then, we notice that the following results hold:

ax1ð Þfor each j ∈℧, Δℓ =Θℓ =Λℓ ∈ Y jf g ⊆ Yj,
ax1ð ÞCOP Δ,Θ,Λ, Yð Þ ∩F ix Yð Þ = v1, v2, v3f g:

ð37Þ

To show that Δ,Θ and Λ are continuous, it is suffices to
prove that Δ,Θ and Λ are nonexpansive. So we consider the
following six possibilities:

(i) kΔv1 − Δv2k∞ = 0 < τ1 = kv1 − v2k∞
(ii) kΔv1 − Δv3k∞ = 0 < τ1 = kv1 − v3k∞
(iii) kΔv1 − Δvmk∞ = τ2 = τ1 = kv1 − vmk∞ for anym > 3
(iv) kΔv2 − Δvmk∞ = τ2 = kv2 − vmk∞ for any m > 3
(v) kΔv3 − Δvmk∞ = τ2 = kv3 − vmk∞ for any m > 3
(vi) kΔvn − Δvmk∞ = τn+1 < τn = kvn − vmk∞ for any

m > 3 and m > n

Consequently, Δ is nonexpansive, and, since Δ =Θ =Λ,
then Δ,Θ and Λ are continuous.

Next, define the function ψ : ℝ+ ⟶ ½0, ð1/kÞÞ by

ψ tð Þ =
τn+2
τn

, if t = τn for some n ∈ℕ

0, elsewhere:

8<: ð38Þ
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Also, define the mappings f , g, h : ℧⟶℧ by

f vnð Þ = g vnð Þ = h vnð Þ =
0, if n ∈ 1, 2, 3f g
τ1n, if n > 3:

(
ð39Þ

Then, we observe that lim sups⟶t+ψðsÞ = 0 < ð1/kÞ for
all t ∈ℝ+ and some k ∈ ð1,∞Þ. It follows that ψ is a D-
function. Moreover, we claim that

~H∞ Y j, Yℓð Þ ≤ ψ j − ℓk k∞
� �

a j − ℓk k∞ + b j − Y jk k∞
�

+ c ℓ − Yℓk k∞� + f Δℓð Þ Δℓ − Y jk k∞
+ g Θℓð Þ Θℓ − Y jk k∞ + h Λℓð Þ Λℓ − Y jk k∞,

ð40Þ

for all j, ℓ ∈℧ and a, b, c ∈ℝ+ with a + b + c < 1, where ~H∞
is the Hausdorff metric induced by the norm k:k∞.

To see (40), we consider the following cases:

Case 1. For n = 1,m = 2 and a = 1/2, b = c = 0, we have

ψ v1 − v2k k∞
� �

a v1 − v2k k∞ + b v1 − Yv1k k∞
�

+ c v2 − Yv2k k∞Þ + f Δv2ð Þ Δv2 − Yv1k k∞
+ g Θv2ð Þ Θv2 − Yv1k k∞ + h Λv2ð Þ Λv2 − Yv1k k∞

= τ3
2 > 0 = ~H∞ Yv1, Yv2ð Þ:

ð41Þ

Case 2. For n = 1,m = 3 and a = 1/4, b = c = 0, we have

ψ v1 − v3k k∞
� �

a v1 − v3k k∞ + b v1 − Yv1k k∞ + c v3 − Yv3k k∞
� �

+ f Δv3ð Þ Δv3 − Yv1k k∞ + g Θv3ð Þ Θv3 − Yv1k k∞
+ h Λv3ð Þ Λv3 − Yv1k k∞

= τ3
4 > 0 = ~H∞ Yv1, Yv3ð Þ:

ð42Þ

Case 3. For n = 1,m > 3 and a = 1/2, b = c = 0, we have

ψ v1 − vmk k∞
� �

a v1 − vmk k∞ + b v1 − Yv1k k∞ + c vm − Yvmk k∞
� �

+ f Δvmð Þ Δvm − Yv1k k∞ + g Θvmð Þ Θvm − Yv1k k∞
+ h Λvmð Þ Λvm − Yv1k k∞

= τ3
2 1 + 6τ1 m + 1ð Þð Þ > τ1 = ~H∞ Yv1, Yvmð Þ:

ð43Þ

Case 4. For n = 2,m > 3 and a = 1/4, b = c = 0, we have

ψ v2 − vmk k∞
� �

a v2 − vmk k∞ + b v2 − Yv2k k∞ + c vm − Yvmk k∞
� �

+ f Δvmð Þ Δvm − Yv2k k∞ + g Θvmð Þ Θvm − Yv2k k∞
+ h Λvmð Þ Λvm − Yv2k k∞

= τ4
4 1 + 12τ1

τ4
m + 1ð Þτ3

	 

> τ1 = ~H∞ Yv2, Yvmð Þ:

ð44Þ

Case 5. For n = 3,m > 3 and a = 1/3 = b, c = 0, we have

ψ v3 − vmk k∞
� �

a v3 − vmk k∞ + b v3 − Yv3k k∞ + c vm − Yvmk k∞
� �

+ f Δvmð Þ Δvm − Yv3k k∞ + g Θvmð Þ Θvm − Yv3k k∞
+ h Λvmð Þ Λvm − Yv3k k∞

= τ5
3 1 + 9τ1 m + 1ð Þτ3ð Þ > τ1 = ~H∞ Yv3, Yvmð Þ:

ð45Þ

Case 6. For n > 3,m > n and a = 1/2, b = c = 0, we have

ψ vn − vmk k∞
� �

a vn − vmk k∞ + b vn − Yvnk k∞ + c vm − Yvmk k∞
� �

+ f Δvmð Þ Δvm − Yvnk k∞ + g Θvmð Þ Θvm − Yvnk k∞
+ h Λvmð Þ Λvm − Yvnk k∞

= τn+2
2 + 3 m + 1ð Þτn+1 > τn+1 = ~H∞ Yvn, Yvmð Þ:

ð46Þ

Therefore, from Cases (1)–(6), we have shown that
Condition (40) is obeyed. Consequently, all the assertions
of Theorem 19 are obeyed. It follows that COP ðΔ,Θ,Λ, YÞ
∩F ixðYÞ ≠∅.

Now, observe that if we take the sequence fτngn∈ℕ as
earlier given, that is, τ1 = τ2, τ2n−1 < τn, where τn = 1/3n for
all n ≥ 2 and let ψfMT

ðtÞ = 2ψðtÞði:e:k = 2 ∈ ð1,∞ÞÞ for all

t ∈ℝ+, then ψfMT
is an gMT -function, provided ψ is a

D-function. Thus,

(a) for n = 1 and any m > 3, we have

~H∞ Yv1, Yvmð Þ = τ1 > 2τ3
= ψfMT

v1 − vmk k∞
� �

v1 − vmk k∞:

ð47Þ

Whence, Mizoguch-Takahashi’s Theorem 13 does not
hold in this case.

(b) Let the function f : ℧⟶℧ be given by

f vnð Þ =
0, if n ∈ 1, 2, 3f g
τ1
kτn

, if n > 3, k ∈ 1,∞ð Þ,

8<: ð48Þ
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and g and h be as given in the above Example. Then,
for n = 1 and m > 3 with a = 1/2, b = c = 0, the above
Case 3 becomes

Case 3′:

ψfMT
v1 − vmk k∞

� �
a v1 − vmk k∞
� �

+ f Δvmð Þ Δvm − Yv1k k∞
+ g Θvmð Þ Θvm − Yv1k k∞ + h Λvmð Þ Λvm − Yv1k k∞

= τ3 +
τ1

kτm+1
+ 2τ1 m + 1ð Þτ3 > τ1 = ~H∞ Yv1, Yvmð Þ,

ð49Þ

that is, Case 3 also hold. On the other hand, notice that

~H∞ Yv1, Yvmð Þ = τ1 > τ3 +
τ1

kτm+1
= ψfMT

v1 − vmk k∞
� �

v1 − vmk k∞
+ f Δvmð Þ v1 − vmk k∞,

ð50Þ

that is, the main result of Du [17, Theorem 19] is not
applicable here.

3. Consequences

In this section, we deduce some significant consequences of
Theorem 19.

Corollary 2.
Let ð℧, μÞ be a complete metric space, Y : ℧⟶ CBð℧Þ

be a multivalued mapping, Δ : ℧⟶℧ be a continuous
point-valued mapping, and ψ : ℝ+ ⟶ ½0, ð1/kÞÞ be a D-
function. Suppose that

(i) Y j is Δ-invariant (i.e. ΔðY jÞ ⊆ Y j) for each j ∈℧
(ii) we can find a mapping f : ℧⟶ℝ+ such that

~H Yj, Yℓð Þ ≤ ψ μ j, ℓð Þð Þ aμ j, ℓð Þ + bμ j, Y jð Þ + cμ ℓ, Yℓð Þ½ �
+ f Δℓð Þμ Δℓ, Y jð Þ,

ð51Þ

for all j, ℓ ∈℧ and a, b, c ∈ℝ+ with a + b + c < 1.

Then, COP ðΔ, YÞ ∩F ixðYÞ ≠∅.

Proof. Take g, h : ℧⟶ℝ+ as gðjÞ = hðjÞ = 0 for all j ∈℧ in
Theorem 19.

The following result is a direct consequence of
Corollary 2.

Corollary 23.
Let ð℧, μÞ be a complete metric space, Y : ℧⟶ CBð℧Þ

be a multivalued mapping, Δ : ℧⟶℧ be a continuous
point-valued mapping, and ψ : ℝ+ ⟶ ½0, ð1/kÞÞ be a D-
function. Suppose that

(i) Y j is Δ-invariant (i.e., ΔðY jÞ ⊆ Y j) for each j ∈℧

(ii) we can find ξ ≥ 0 and a mapping f̂ : ℧⟶ ½0, ξ� such
that

~H Yj, Yℓð Þ ≤ ψ μ j, ℓð Þð Þ aμ j, ℓð Þ + bμ j, Y jð Þ + cμ ℓ, Yℓð Þ½ �
+ f̂ Δℓð Þμ Δℓ, Y jð Þ,

ð52Þ

for all j, ℓ ∈℧ and a, b, c ∈ℝ+ with a + b + c < 1.

Then, COP ðΔ, YÞ ∩F ixðYÞ ≠∅.

Corollary 24.
Let ð℧, μÞ be a complete metric space, Y : ℧⟶ CBð℧Þ

be a multivalued mapping, Δ : ℧⟶℧ be a continuous
point-valued mapping, and ψ : ℝ+ ⟶ ½0, ð1/kÞÞ be a D-
function. Suppose that

(i) Y j is Δ-invariant (i.e. ΔðY jÞ ⊆ Y j) for each j ∈℧
(ii) we can find ξ ≥ 0 such that

~H Yj, Yyð Þ ≤ ψ μ j, ℓð Þð Þ aμ j, ℓð Þ + bμ j, Y jð Þ + cμ ℓ, Yℓð Þ½ �
+ ξμ Δℓ, Y jð Þ,

ð53Þ

for all j, ℓ ∈℧ and a, b, c ∈ℝ+ with a + b + c < 1.

Then, COP ðΔ, YÞ ∩F ixðYÞ ≠∅.

Proof. Define f̂ : ℧⟶ ½0, ξ� as f̂ ðjÞ = ξ for all j ∈℧ in
Corollary 23.

By applying Corollary 2, we deduce a generalized version
of the primitive Ciric-Reich-Rus fixed point theorem for
multivalued mapping as follows.

Corollary 25.
Let ð℧, μÞ be a complete metric space, Y : ℧⟶ CBð℧Þ

be a multivalued mapping, and ψ : ℝ+ ⟶ ½0, ð1/kÞÞ be a
D-function. Suppose that we can find a mapping f : ℧⟶
ℝ+ such that

~H Yj, Yℓð Þ ≤ ψ μ j, ℓð Þð Þ aμ j, ℓð Þ + bμ j, Y jð Þ + cμ ℓ, Yℓð Þ½ �
+ f ℓð Þμ ℓ, Y jð Þ,

ð54Þ

for all j, ℓ ∈℧ and a, b, c ∈ℝ+ with a + b + c < 1.

8 Journal of Function Spaces



Then, F ixðYÞ ≠∅.

Proof. Take Δ≔ I℧, the identity mapping on ℧ in Cor-
ollary 2.

Remark 26.

(i) If we take ψfMT
ðtÞ = akψðtÞ, where a ∈ ð0, 1Þ, k ∈ ð1,

∞Þ, ψ is aD-function, and set b = c = 0, then Corol-
lary 25 reduces to Theorem 13 due to Mizoguchi-
Takahashi [14].

(ii) If ψ is a monotonic increasing function such that
0 ≤ ψðtÞ < ð1/kÞ for each t ∈ℝ+ and k ∈ ð1,∞Þ, then
by setting ψfMT

ðtÞ = akψðtÞ, where a ∈ ð0, 1Þ, k ∈
ð1,∞Þ and b = c = 0, Corollary 24 generalizes [14,
Corollary 2.2]. Also, Corollary 24 includes Theorem
1.2 in [29] as a special case, by extending the range of
Y from the family of bounded proximal subsets of℧
to CBð℧Þ.

(iii) If we take f ðjÞ = 0 and ψðtÞ = aμðj, ℓÞ/k2½aμðj, ℓÞ +
bμðj, Y jÞ + cμðℓ, YℓÞ� for all j, ℓ ∈℧ and k ∈ ð1,∞Þ,
where not all of a, b and c are identically zeros, then
Corollary 25 reduces to Theorem 1.10

(iv) If we put ψfMT
ðtÞ = akψðtÞ, where a ∈ ð0, 1Þ, k ∈

ð1,∞Þ, ψ is a D-function, take Δ≔ I℧, the identity
mapping on ℧, and set b = c = 0, then Corollary
24 reduces to Theorem 11 due to Berinde-
Berinde [11].

(v) If we define the multivalued mapping Y : ℧⟶
CBð℧Þ as Y j = fϕjg for all j ∈℧, where ϕ is a
single-valued mapping on ℧, then all the results
presented herein can be reduced to their single-
valued counterparts

(vi) It is clear that more consequences of our main result
can be deduced, but we skip them due to the length
of the paper

4. Applications to Caputo-Type Fractional
Differential Inclusions Model for COVID-19

Very recently, Ahmed et al. [22] investigated the significance
of lockdown in curbing the spread of COVID-19 via the
following fractional-order epidemic model:

CDv
0+ ~G t̂
� �

=Λv − βv ~GI − λ1~GL − �μv ~G + γv1I + γv2IL + θv1~GL,
CDv

0+ ~GL t̂
� �

= λv1~GL − �μv ~GL − θv1~GL,
CDv

0+I t̂
� �

= βv ~GI − γv1 − αv1 − �μvI + λv2IL + θv2IL,
CDv

0+IL t̂
� �

= λv2IL − �μvIL − θv2 − γv2 − αv2IL,
CDv

0+L t̂
� �

= μvI − ϕvL,

8>>>>>>>>><>>>>>>>>>:
ð55Þ

where the total population under study, N ð̂tÞ is divided into
four components, namely susceptible population that are
not under lockdown ~Gð̂tÞ, susceptible population that are
under lock-down ~GLð̂tÞ, infective population that are not
under lockdown Ið̂tÞ, infective population that are under
lock-down ILð̂tÞ, and cumulative density of the lockdown
program Lð̂tÞ. For the meaning of the rest parameters and
numerical simulations of (55), we refer the reader to [22].
The above model (55) is simplified as follows:

CDv
0+ ~G t̂
� �

=Θ1 t̂, ~G, ~G, ~GL, I, IL, L
� �

,

CDv
0+ ~GL t̂

� �
=Θ2 t̂, ~G, ~GL, I, IL, L

� �
,

CDv
0+I t̂
� �

=Θ3 t̂, ~G, ~GL, I, IL, L
� �

,

CDv
0+IL t̂
� �

=Θ4 t̂, ~G, ~GL, I, IL, L
� �

,

CDv
0+L t̂
� �

=Θ5 t̂, ~G, ~GL, I, IL, L
� �

,

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ð56Þ

where

Θ1 t̂, ~G, ~G, ~GL, I, IL, L
� �

=Λv − βv ~GI − λ1~GL − �μv ~G + γv1I + γv2IL + θv1~GL,

Θ2 t̂, ~G, ~GL, I, IL, L
� �

= λv1~GL − �μv ~GL − θv1~GL,

Θ3 t̂, ~G, ~GL, I, IL, L
� �

= βv ~GI − γv1 − αv1 − �μvI + λv2IL + θv2IL,

Θ4 t̂, ~G, ~GL, I, IL, L
� �

= λv2IL − �μvIL − θv2 − γv2 − αv2IL,

Θ5 t̂, ~G, ~GL, I, IL, L
� �

= μvI − ϕvL:

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ð57Þ
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Consequently, the model (55) takes the form:

CDv
0 j t̂
� �

= g t̂, j t̂
� �� �

, t̂ ∈Ω = 0:b½ �, 0 < v < 1
j 0ð Þ = j0 ≥ 0,

(
ð58Þ

with the condition:

j t̂
� �

= ~G, ~GL, I, IL, L
� �tr

,

j 0ð Þ = ~G0, ~GL0
, I0, IL0 , L0

� �tr
,

g t̂, j t̂
� �� �

= Θi t̂, ~G, ~GL, I, IL, L
� �� �tr

, i = 1,⋯, 5,

8>>>>>><>>>>>>:
ð59Þ

where ð:Þtr denotes the transpose operation.
In this section, we extend problem (55) to its multiva-

lued analogue given by

CDv
0 j t̂
� �

∈M t̂, j t̂
� �� �

, t̂ ∈Ω = 0, δð Þ
j 0ð Þ = j0 ≥ 0,

(
ð60Þ

where M : Ω ×ℝ⟶ PðℝÞ is a multivalued mapping (PðℝÞ
is the power set of ℝ). We launch existence criteria for solu-
tions of the inclusion problem (60) for which the right hand
side is nonconvex with the aid of standard fixed point theo-
rem for multivalued contraction mapping. First, we outline
some preliminary concepts of fractional calculus and multi-
valued analysis as follows.

Definition 27. (see [34]). Let v > 0 and f ∈ L′ð½0, δ�,ℝÞ. Then,
the Riemann-Liouville fractional integral order v for a func-
tion f is given as

Iv0+ f t̂
� �

= 1
Γ vð Þ

ð t̂
0
t̂ − τ
� �v−1

μτ, t̂ > 0, ð61Þ

where Γð:Þ is the gamma function given by ΓðvÞ = Ð∞0 τv−1

e−τμτ.

Definition 28. (see [34]). Let n − 1 < v < n, n ∈ℕ, and f ∈
Cnð0, δÞ. Then, the Caputo fractional derivative of order v
for a function f is given as

CDv
0+ f t̂
� �

= 1
Γ n − vð Þ

ð t̂
0
t̂ − τ
� �n−v−1 f n τð Þμτ, t̂ > 0: ð62Þ

Lemma 29. (see [34]). Let RðvÞ > 0, n = ½RðvÞ� + 1, and f
∈ ACnð0, δÞ. Then,

Iv0+
CDv

0+ f
� �

t̂
� �

= f t̂
� �

−
∑m

k=1 Dk
0+ f

� �
0+ð Þ

k!
: ð63Þ

In particular, if 0 < v ≤ 1, then ðIv0+CDv
0+ f Þð̂tÞ = f ð̂tÞ − f ð0Þ.

In view of Lemma 29, the integral reformulation of prob-
lem 16 which is equivalent to the model 13 is given by

j t̂
� �

= j0 + Iv0+g t̂, j t̂
� �� �

= j0 +
1

Γ vð Þ
ð t̂
0
t̂ − τ
� �v−1g τ, j τð Þð Þμτ:

ð64Þ

Let ℧ = CðΩ,ℝÞ denotes the Banach space of all con-
tinuous functions j from Ω to ℝ equipped with the norm
given by

jk k = sup j t̂
� ��� ��: t̂ ∈Ω = 0, δ½ �� 

, ð65Þ

where

j t̂
� ��� �� = ~G t̂

� ��� �� + ~GL t̂
� ��� �� + I t̂

� ��� �� + IL t̂
� ��� �� + L t̂

� ��� ��, ð66Þ

and ~G, ~GL, I, IL, L ∈℧.

Definition 30.
Let ℧ be a nonempty set. A single-valued mapping

f : ℧⟶℧ is named a selection of a multivalued map-
ping M : ℧⟶ Pð℧Þ, if fðjÞ ∈MðjÞ for each j ∈℧.

For each j ∈℧, we define the set of all selections of a
multi-valued mapping M by

~GM,j = f ∈ L′ Ω,ℝð Þ: f t̂
� �

∈M t̂, j t̂
� �� �

for a:e:̂t ∈Ω
n o

:

ð67Þ

Definition 31. A function j ∈ C′ðΩ,ℝÞ is a solution of
problem (60) if there is a function φ ∈ L′ðΩ,ℝÞ with
φð̂tÞ ∈Mð̂t, jð̂tÞÞa:e: on Ω such that

j t̂
� �

= j0 +
1

Γ vð Þ
ð t̂
0
t̂ − τ
� �v−1

φ τð Þμτ ð68Þ

and jð0Þ = j0 ≥ 0.

Definition 32. A multivalued mapping M : Ω⟶ PðℝÞ with
nonempty compact convex values is said to be measurable, if
for every ϖ ∈ℝ, the function t̂↦ μðϖ, Mð̂tÞÞ = inf fjϖ − ζj:
ζ ∈Mð̂tÞg is measurable.

The following is the main result of this section.

Theorem 33. Assume that the following conditions are
obeyed:

(N1) M : Ω ×ℝ⟶KðℝÞ is such that Mð:,jÞ: Ω⟶
KðℝÞ is measurable for each j ∈ℝ

(N2) We can find a continuous function h : Ω⟶ℝ+
such that for all j, ℓ ∈ℝ,

~H M t̂, j
� �

,M t̂, ℓ
� �� �

≤ h t̂
� �

j − ℓj j, ð69Þ

for almost all t̂ ∈Ω and μð0,Mð̂t, 0ÞÞ ≤ hð̂tÞ for almost all
t̂ ∈Ω.
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Then, the differential inclusion problem (60) has at least
one solution on Ω, provided that Φkhk < 1, where Φ = bv/
ðΓðv + 1ÞÞ.

Proof. First, we convert the differential inclusions (60) into a
fixed point problem. For this, let ℧ = CðΩ,ℝÞ and consider
the multivalued mapping Y : ℧⟶ Pð℧Þ given by

Y jð Þ =
∇∈℧ :

∇ t̂
� �

= j0 +
1

Γ vð Þ
ð t̂
0
t̂ − τ
� �v−1φ τð Þμτ, φ ∈ ~GM,j

8><>:
9>=>;:

ð70Þ

Clearly, the fixed points of Y are solutions of problem
(60). Now, we prove that Y obeys all the conditions of
Theorem 10 under the following cases.

Case 1. YðjÞ is nonempty and closed for every φ ∈ ~GM,j. Since
the multi-valued mapping Mð:,jð:ÞÞ is measurable, by the
measurable selection theorem (see, e.g. [35], Theorem III.
6), it admits a measurable selection φ : Ω⟶ℝ. Further-
more, by condition ðN2Þ, we get jφð̂tÞj ≤ hð̂tÞ + hð̂tÞjjð̂tÞj,
that is, φ ∈ L′ðΩ,ℝÞ, and hence M is integrably bounded.
Thus, ~GM,j is nonempty. Now, we show that YðjÞ is closed
for each j ∈℧. Let fςngn∈ℕ ∈ YðjÞ be such that ςn ⟶ u
ðn⟶∞Þ in ℧. Then, u ∈℧, and we can find φn ∈
~GM,jn such that for each t̂ ∈Ω,

ςn t̂
� �

= j0 +
1

Γ vð Þ
ð t̂
0
t̂ − τ
� �v−1φn τð Þμτ: ð71Þ

Since M has compact values, we pass onto a subse-
quence to obtain that φn converges to u ∈ L′ðΩ,ℝÞ.
Therefore, u ∈ ~GM,j and for each t̂ ∈Ω, we have

ςn t̂
� �

⟶ u t̂
� �

= j0 +
1

Γ vð Þ
ð t̂
0
t̂ − τ
� �v−1φ τð Þμτ: ð72Þ

Thus, u ∈ YðjÞ.

Case 2. Next, we prove that we can find a ∈ ð0, 1Þða =ΦkhkÞ
such that ~HðYðjÞ, YðℓÞÞ ≤ akj − ℓk for each j, ℓ ∈℧. Let j,
ℓ ∈℧ and ∇1 ∈ YðjÞ. Then, we can find φ1ð̂tÞ ∈Mð̂t, jð̂tÞÞ
such that for each t̂ ∈Ω,

∇1 t̂
� �

= j0 +
1

Γ vð Þ +
ð t̂
0
t̂ − τ
� �v−1φ1 τð Þμτ: ð73Þ

By ðN2Þ, ~HðMð̂t, jÞ,Mð̂t, ℓÞÞ ≤ hð̂tÞkj − ℓk. Whence, we
can find ρ ∈Mð̂t, ℓð̂tÞÞ such that

∇1 t̂
� �

− ρ t̂
� ��� �� ≤ h t̂

� �
j t̂
� �

− ℓ t̂
� ��� ��, t̂ ∈Ω: ð74Þ

Define Ξ : Ω⟶ PðℝÞ by

Ξ t̂
� �

= t̂ ∈ℝ : ∇1 t̂
� �

− ρ t̂
� ��� �� ≤ h t̂

� �
j t̂
� �

− ℓ t̂
� ��� ��� 

: ð75Þ

Since the multivalued mapping Ξð̂tÞ ∩Mð̂t, ℓð̂tÞÞ is
measurable (see ([35], Proposition III.4)), we can find a
function φ2 which is a measurable selection of Ξ. Thus,
φ2ð̂tÞ ∈Mð̂t, ℓð̂tÞÞ, and for each t̂ ∈Ω, we have jφ1ð̂tÞ −
φ2ð̂tÞj ≤ hð̂tÞjjð̂tÞ − ℓð̂tÞj. For each t̂ ∈Ω, take

∇2 t̂
� �

= j0 +
1

Γ vð Þ
ð t̂
0
t̂ − τ
� �v−1

φ2 τð Þμτ: ð76Þ

Then, from (73) and (76), we realize

∇1 t̂
� �

− ∇2 t̂
� ��� �� ≤ 1

Γ vð Þ
ð t̂
0
t̂ − τ
� �v−1 φ1 τð Þ − φ2 τð Þj j½ �μτ

≤
1

Γ vð Þ
ð t̂
0
t̂ − τ
� �v−1 h t̂

� �
j t̂
� �

− ℓ t̂
� ��� ����� �

μτ

≤
bv

Γ v + 1ð Þ hk k j − ℓk k =Φ hk k j − ℓk k:

ð77Þ

Therefore, k∇1 − ∇2k ≤Φkhkkj − ℓk. On similar steps,
interchanging the roles of j and ℓ, we have

~H Y jð Þ, Y ℓð Þð Þ ≤Φ hk k j − ℓk k = a j − ℓk k: ð78Þ

Note that if we take f ðjÞ = 0 and ψð̂tÞ = ðΦkhkkj − ℓkÞ/
ðk2½Φkhkkj − ℓk + bkj − Y jk + ckℓ − Yℓk�Þ for all j, ℓ ∈℧
and k ∈ ð1,∞Þ, then (54) coincides with (78). Whence, Corol-
lary 25 can be applied to conclude that the mapping Y has at
least one fixed point in ℧ which corresponds to the solutions
of Problem 4.6.

Example 34. Consider the Caputo-type fractional differential
inclusion problem given by

CD3/5
0 j t̂
� �

∈M t̂, j t̂
� �� �

, t̂ ∈Ω = 0, 1½ �,
j 0ð Þ = 0,

(
ð79Þ

where the multivalued mapping M : ½0, 1� ×ℝ⟶ PðℝÞ is
given as

M t̂, j t̂
� �� �

= 1
50 ,

1
9 + 10t̂

sin2 j t̂
� �

2 − sin j t̂
� ��� ��

 !
+ 1
30

" #
: ð80Þ

Obviously, the mapping j↦ ½1/50, ð1/9 + 10t̂Þðsin2 jð̂tÞ/
2 − sin jjð̂tÞjÞ + 1/30� is measurable for each j ∈ℝ. In this
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case, we can take hð̂tÞ = 1/ð9 + 10t̂Þ for all t̂ ∈ ½0, 1�, and thus,
μð0,Mð̂t, 0ÞÞ = 1/30 ≤ hð̂tÞ for almost all t̂ ∈ ½0, 1�. Note that
for each j, ℓ ∈ℝ, we have

~H M t̂, j t̂
� �� �

,M t̂, ℓ t̂
� �� �� �

= 1
50 ,

1
9 + 10t̂

sin2 j t̂
� �

2 − sin j t̂
� ��� ��

 !
+ 1
30

" #
,

 

� 1
50 ,

1
9 + 10t̂

sin2ℓ t̂
� �

2 − sin ℓ t̂
� ��� ��

 !
+ 1
30

" #!

≤
1

9 + 10t̂ j t̂
� �

− ℓ t̂
� ��� �� = h t̂

� �
j t̂
� �

− ℓ t̂
� ��� ��:

ð81Þ

Moreover, khk = 1/9. Whence, Φkhk ≈ 0:124355 < 1.
Consequently, by Theorem 38, Problem (68) has at least
one solution on ½0, 1�:

5. Stability Results

Investigated as a type of data dependence, the concept of
Ulam stability was initiated by Ulam [36] and developed
by Hyers [37], Rassias [38], and later on by many authors.
In this section, we study an Ulam-Hyers type stability of
the proposed fractional-order model 4.6. In [22], the stability
result of the model 4.4 has been obtained in the framework
of single-valued mappings. But, it is a known fact that multi-
valued mappings often have more fixed points than their
corresponding single-valued mappings. Whence, the set of
fixed points of set-valued mappings becomes more interest-
ing for the study of stability. First, we give some needed
definitions as follows.

Let ε > 0 and consider the following inequality:

CDv
0+ j

∗ t̂
� �

− j∗ t̂
� ��� �� ≤ ε, t̂ ∈Ωa:e: ð82Þ

Definition 35. The proposed problem (60) is Ulam-Hyers
stable if we can find a real number ς∗ > 0 such that for every
ε > 0 and for each solution j∗ ∈ CðΩ,ℝÞ of the inequality
(82), we can find a solution j ∈ CðΩ,ℝÞ of problem (60)
and two functions φ∗, φ ∈ L′ðΩ,ℝÞ with φ∗ð̂tÞ ∈Mð̂t, j∗ð̂tÞÞ
and φð̂tÞ ∈Mð̂t, jð̂tÞÞ a:e: on Ω such that

j∗ t̂
� �

− j t̂
� ��� �� ≤ ς∗ε, ð83Þ

for almost all t̂ ∈Ω, where kjk = sup fjjð̂tÞj: t̂ ∈Ωa:e:g.

Remark 36. A function j∗ ∈ CðΩ,ℝÞ is a solution of the
inequality (82) if and only if we can find a continuous func-
tion m : Ω⟶ℝ and φ∗ ∈ L′ðΩ,ℝÞ with φ∗ð̂tÞ ∈Mð̂t, j∗ð̂tÞÞ
a:e: on Ω such that the following properties hold:

(i) jmð̂tÞj ≤ ε,m =max ðmjÞtr , t̂ ∈Ωa:e:

(ii) CDv
0+ j

∗ð̂tÞ = j∗ð̂tÞ +mð̂tÞ, t̂ ∈Ω a:e:

Lemma 37. Suppose that j∗ ∈ CðΩ,ℝÞ obeys the inequality
(82), then we can find a function φ∗ ∈ L′ðΩ,ℝÞ with φ∗ð̂tÞ
∈Mð̂t, j∗ð̂tÞÞa:e: on Ω such that

j∗ t̂
� �

− j∗0 −
1

Γ vð Þ
ð t̂
0
t̂ − τ
� �v−1φ∗ τð Þμτ

�����
����� ≤Φε: ð84Þ

Proof. From ðiiÞ of Remark 36, we have CDv
0+ j

∗ð̂tÞ = j∗ð̂tÞ +
mð̂tÞ, and by Lemma 29, we get

j∗ t̂
� �

= j∗0 +
1

Γ vð Þ
ð t̂
0
t̂ − τ
� �v−1φ∗ τð Þμτ

+ 1
Γ vð Þ

ð t̂
0
t̂ − τ
� �v−1m τð Þμτ:

ð85Þ

Therefore, from ðiÞ of Remark 36, we realize

j∗ t̂
� �

− j∗0 −
1

Γ vð Þ
ð t̂
0
t̂ − τ
� �v−1φ∗ τð Þμτ

�����
�����

≤
1

Γ vð Þ
ð t̂
0
t̂ − τ
� �v−1 m τð Þj jμτ ≤Φε:

ð86Þ

Now, we present the main result of this section as
follows.

Theorem 38. Assume that the following conditions are
obeyed:

(i) the multivalued mapping Mð:,jÞ: Ω⟶Kð℧Þ is
measurable for each j ∈ℝ

(ii) for all j, ℓ ∈ℝ, we can find φð̂tÞ ∈Mð̂t, jð̂tÞÞ, φ∗ð̂tÞ
∈Mð̂t, ℓð̂tÞÞ a:e: on Ω and a continuous function
h : Ω⟶ℝ+ such that for almost all t̂ ∈Ω,

φ t̂
� �

− φ∗ t̂
� ��� �� ≤ h t̂

� �
j t̂
� �

− ℓ t̂
� ��� ��: ð87Þ

(iii) khk < 1/Φ, where Φ = bv/ðΓðv + 1ÞÞ.
Then the fractional-order inclusion model (60) is Ulam-

Hyers stable.

Proof.
Let j, j∗ ∈ CðΩ,ℝÞ, where j obeys (82) and j is a solution

of problem (60). Then, we can find two functions φ∗, φ ∈
L′ðΩ,ℝÞ with φ∗ð̂tÞ ∈Mð̂t, j∗ð̂tÞÞ and φð̂tÞ ∈Mð̂t, jð̂tÞÞa:e:
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on Ω such that for every ε > 0, Lemma 37 can be applied
to have

j∗ t̂
� �

− j t̂
� ��� �� = j∗ t̂

� �
− j∗0 −

1
Γ vð Þ

ð t̂
0
t̂ − τ
� �v−1

φ τð Þμτ
�����

�����
= j∗ t̂

� �
− j∗0 −

1
Γ vð Þ

ð t̂
0
t̂ − τ
� �v−1�����

� φ τð Þ − φ∗ τð Þ + φ∗ τð Þ½ �μτ
�����

≤ j∗ t̂
� �

− j∗0 −
1

Γ vð Þ
ð t̂
0
t̂ − τ
� �v−1φ∗ τð Þμτ

�����
�����

+ 1
Γ vð Þ

ð t̂
0
v − τð Þv−1 φ τð Þ − φ∗ τð Þj jμτ

≤Φε + bv

Γ v + 1ð Þ hk k j∗ − jk k

=Φε +Φ hk k j∗ − jk k,
ð88Þ

that is, kj∗ − jk ≤ ς∗ε, where ς∗ =Φ/ð1 −ΦkhkÞ. Conse-
quently, the proposed problem (60) is Ulam-Hyers stable.

6. Conclusions

A new coincidence and fixed point theorem of multivalued
mapping defined on a complete metric space has been pre-
sented in this work by using the characterizations of a mod-

ified gMT -function, named D-function. It has been noted
herein that our result is a generalization of the fixed point
theorems due Berinde-Berinde [11], Du [13], Mizoguchi-
Takahashi [14], Nadler [10], Reich [17], Rus [27], and a
few others in the corresponding literature. Though the con-
jecture raised by Reich [17] has now been proven valid in an
almost complete form in [11, 13, 14], however, our main
result (Theorem 19) provided a more general affirmative
response to this problem. Moreover, from application per-
spective, we launched an existence theorem for nonlinear
fractional-order differential inclusions model for COVID-
19 via a standard fixed point theorem of multivalued map-
ping. Ulam-Hyers stability analysis of the considered model
was also discussed. It is interesting to note that more useful
analysis and results may be obtained if the metric on the
ground set in this context is either quasi or pseudo metric.
For better management of uncertainty, and since every fixed
point theorem of contractive multivalued mapping has its
fuzzy set-valued analogue, the result of this paper can as well
be discussed in the framework of fuzzy fixed point theory
and related hybrid models of fuzzy mathematics. Further-
more, in order to obtain effective measures for curbing
Covid-19, other than observing the significance of lockdown,
numerical simulations and better analytic tools of the
proposed fractional-order differential inclusions model are
another future directions.
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