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In this paper, we present a novel extension of the well-known split-step Fourier transform (SSFT) approach for solving the one-
dimensional nonlinear Schrödinger equation (NLSE), which incorporates the fiber loss term. While this essential equation governs
the pulse propagation in a lossy optical fiber, it is not supported by an exact analytical solution. In this regard, extended versions of
the Fourier pseudospectral method (FPSM) and Hopscotch method (HSM) are effectively established as well to cope with the fiber
losses effects associated with the pulses’ propagation through the fiber optics, and thus, numerous comparisons are exhaustively
conducted among these three compelling numerical approaches to validate their reliability, stability, and accuracy. Based on this,
the MATLAB numerical findings bolster that the extended version of the SSFT approach demonstrates superior performance over
the other suggested schemes in simulating the solitons propagation in a lossy optical fiber.

1. Introduction

A soliton, or what is also known as a solitary wave, is a self-
reinforcing wave packet that sustains both its form and
velocity while propagation, regardless of the travelling dis-
tance or presence of obstacles. This shape conservation
property makes it potentially compatible with the long-
distance expansive data transmission [1]. Moreover, a
cancellation of nonlinear and dispersive effects in the prop-
agation medium, which is a basic feature that invariably
occurs in the optical fibers, causes solitons. In other words,
the term soliton refers to any optical pulse that resists chang-
ing when it is transferred from the source to the destination
due to a sensitive balance between the nonlinear and linear
effects in the medium [2]. Therefore, the solitons are utterly
beneficial in transporting information through optical fibers
in a variety of modern communication systems because they
demonstrate a robust grasp in achieving high bit rate trans-
mission while minimizing error possibilities. This occurs due
to their propagation without any distortion or shape chang-

ing while moving through a lossless medium, which guaran-
tees retaining the information stored in them until they
reach the desired location [3]. This means that solitons
pulses have incredibly stable characteristics in propagation
through the transmission path due to its powerful resistance
to the distortion effects, which resulted from the nonlinear-
ity and dispersion and inherited in the optical fibers.
However, the only serious damage that may change their
shapes while propagation is the attenuation caused by the
fiber losses. Thus, numerous researchers have suggested to
compensate these fiber losses by the aid of the amplification
in order to mitigate the functionality of the all-optical
transmission system [4].

The optical fiber, where the solitons always propagate, is
an extremely fine and thin pure glass that is usually made of
pure silica. This fascinating fiber simulates the function of a
waveguide in transmitting light pulses through the fiber ends
because it comprises a transparent core surrounded by a
lower refraction index transparent cladding material; this
unique structure, presented in Figure 1 [5], confines the light
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wave in the core region in accordance with the total internal
reflection phenomenon. Hence, optical fibers are eminently
used in the communications field, especially for long dis-
tance and higher band width transmission. In contrast,
transmission through the metal wires experiences higher
losses and encounters electromagnetic interference, which
negatively impacts the quality of the transmitted data [6].

The propagation of the optical pulses through the optical
fiber, which is a nonlinear medium, is modeled by the 1D
nonlinear Schrödinger equation (NLSE). Thus, this crucial
second-order partial differential equation is highly compati-
ble with depicting the unidirectional propagation of the light
waves in single-mode fiber optics [7]. More importantly,
although it is remarkably noticed that the NLSE can be
solved using both exact and numerical solutions, its analyti-
cal solution is extremely tough and tedious to be found,
abreast of being provided for a limited set of initial condi-
tions [8]. As a result of this, the numerical solutions of the
NLSE frequently demonstrate a significant role in solving
and approximating the equation and, likewise, understand-
ing the equation’s physical behavior [9].

Moreover, the exact analytical solutions of NLSE can
only be obtained in the case of the soliton solutions, if and
only if the attenuation term is neglected, whereas, for the
other solutions, which are not solitons, or in the presence
of fiber losses that must occur in any realistic optical fiber,
the exact solutions are not easily to be reached. In other
words, the exact analytical solution can only be found for
some specific input pulses, most commonly, the hyperbolic
secant and tangent functions. Therefore, the numerical
solutions are widely used to unravel this equation. More spe-
cifically, the split-step Fourier transform is suggested for its

high processing speed, stability, and accuracy, along with
other techniques such as the Fourier pseudospectral method
and the Hopscotch approach, as employed elsewhere for
solving other equations [10–16], which will be comprehen-
sively explained within this framework. Besides, other
numerical approaches have recently been developed to
report the 1D NLSE by several authors, for more details,
see [17–26]. Additionally, analytical approximations to solve
the NLSE might exist by implementing plenty of lineariza-
tion techniques. For instance, perturbation methods tailored
for modulation instability, small-signal analysis, variational
method, and an approach based on Volterra series, all these
methods can provide accurate approximations for any arbi-
trary modulated input signal [17, 18].

On the other hand, opting for a numerical approach to
solve this equation should be classified under two main cat-
egories, which are either the finite difference methods
(FDMs) or the function approximation methods (FAMs),
which are divided into both the spectral and pseudospectral
methods. In the FDMs, the unknown function is approxi-
mated at discrete points in the space-time plane, while
replacing the partial derivatives with difference relations
employed by Taylor series. Whereas in the FAMs, the basic
goal is to approximate the exact solution using an appropri-
ate chosen basis function, a trigonometric function is usually
selected. This notable strategy eventually constitutes the
finite element method that is categorized as a spectral
method [27]. Furthermore, the main distinguished differ-
ence between the pseudospectral and spectral methods is
that the pseudospectral methods are computed in a discrete
space, which resembles the behavior of the FDMs [28, 29].

In this paper, the aim is to seek feasible solutions for the
NLSE, incorporating the fiber loss term. More specifically,
due to the harmful impact of the fiber losses on changing
the authentic form of the transmitted pulse that can
obviously be noticed as an attenuation in both the pulse’s
amplitude and power, an urgent need has emerged to
include the fiber losses in our consideration. Furthermore,
this attenuation should efficiently be measured and hence
compensated using amplifiers in order not to hinder the
accurate reception of the pulses at the destination. In other
words, including the loss term to our attention in the simu-
lation of the soliton propagation is extremely vital, as
recently followed elsewhere [30]. Otherwise, numerical
errors may arise, which shall likely lead to biased results that
do not genuinely represent the physical phenomenon. For
example, failing to correctly model the degradation of the
pulse’s amplitude and power due to the attenuation was
caused by the loss effects. Despite the losses problem in
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Figure 1: A schematic diagram of a single-mode fiber optics.
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Figure 2: A 3D plot of the 1D CNLSE exact solution.
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optical fibers has previously attracted a great deal of interest,
we exhibit in the present work, for the first time, a method
that renders the least sum of square errors along with the
fastest computational speed based on an extended version
of a well-known split-step strategy. Therefore, our primary
target was the meticulous inclusion of the loss term in our
suggested numerical methods named split-step Fourier
transform (SSFT), Fourier pseudospectral method (FPSM),
and Hopscotch method (HSM); the first two methods are
pseudospectral methods, while the last one is an explicit
finite difference method. Based on this, an extension for each
of the three proposed approaches was developed so that
their approximate solutions agree with the effects generated
by the fiber losses, thereby broadening the validity range of
the suggested schemes. Furthermore, in an attempt to sub-
stantiate the performance of the extended approaches,
plenty of numerical assessments were conducted to track
the behavior of both the pulse’s shape and power. In this
regard, we fundamentally focus on the bright and dark one
soliton propagation in fiber optics abreast of demonstrating
and testing each of the suggested methods of solutions.

This paper is organized as follows. Following this intro-
duction, which is illustrated in Section 1, the mathematical
preliminaries are explained in detail in Section 2. Section 3
is devoted to annotating the modified numerical approaches,
while Section 4 elaborates on the error and convergence dis-

cussion. In Section 5, the numerical results that were
achieved are exhibited, rigorously highlighting the attenua-
tion effect caused by the presence of the fiber losses through
the drawing of copious graphs and illustrative comparisons.
Eventually, Section 6 culminates with the overall conclusion
that summarizes the research work presented in this paper.

2. Mathematical Preliminaries

2.1. The NLSE for Lossy Optical Fiber. The 1D NLSE, which
governs the pulse propagation in the z direction through a
lossy optical fiber, comprises four rudimentary terms, the
first-order spatial partial derivative term, the second-order
temporal partial derivative term, the nonlinear term, and
the unknown function term. Moreover, this outstanding
equation mainly relies on some crucial parameters such as
the Kerr nonlinear coefficient, the power attenuation
constant, and the group velocity dispersion parameter, as
illustrated by either Equation (1) or (2):

∂u z, tð Þ
∂z

= −i
β2
2
∂2u z, tð Þ

∂t2
+ iɣ u z, tð Þj j2u z, tð Þ − α

2 u z, tð Þ,
ð1Þ
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Figure 3: A comparison of the split-step Fourier transform (SSFT), the Fourier pseudospectral method (FPSM), the Hopscotch method
(HSM), and the exact solution at τ = 0:001 and t = 20 over a space domain z from -40 to 40, whereas using different values of h.
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Table 1: A comparison among the sum of squares error (SSE) of the split-step Fourier transform (SSFT), the Fourier pseudospectral method
(FPSM), and the Hopscotch scheme (HSM), computed for different time values t from 35 to 105:When h = 0:2 and τ = 0:001.

Time, t SSE-SSFT CPU time (s) SSE-FPSM CPU time (s) SSE-HSM CPU time (s)

35 1:6336e − 21 2.7994 2:7847e − 03 2.8612 6:5206e − 03 3.7639

45 2:6725e − 21 3.2639 4:6158e − 03 3.6818 1:1120e − 02 4.8691

55 3:914e − 21 3.9879 6:9139e − 03 4.3797 1:7156e − 02 5.9605

65 5:439e − 21 4.8138 9:6827e − 03 5.2361 2:4774e − 02 6.9654

75 7:2441e − 21 5.4023 1:2926e − 02 5.884 3:4139e − 02 8.0312

85 9:2143e − 21 6.1936 1:6647e − 02 6.6282 4:5442e − 02 9.2682

95 1:141e − 20 6.9974 2:0851e − 02 7.4995 5:8899e − 02 10.181

105 1:3794e − 20 7.8761 2:5540e − 02 8.5734 7:4759e − 02 11.307
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Figure 4: A comparison of the split-step Fourier transform (SSFT) and the Fourier pseudospectral method (FPSM), the Hopscotch method
(HSM), and the exact solution at h = 0:2 and t = 20 over a space domain z from -40 to 40, whereas using different values τ.

Table 2: A comparison among the sum of squares error (SSE) of the split-step Fourier transform (SSFT), the Fourier pseudospectral method
(FPSM), and the Hopscotch scheme (HSM), computed for different time values t from 35 to 105: When h = 0:2 and τ = 0:0001.

Time, t SSE–SSFT CPU time (s) SSE-FPSM CPU time (s) SSE-HSM CPU time (s)

35 1:4036e − 19 24.941 2:7610e − 05 27.572 5:9491e − 05 36.65

45 2:3119e − 19 32.435 4:5653e − 05 36.867 9:8615e − 05 46.599
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i
∂u z, tð Þ

∂z
= β2

2
∂2u z, tð Þ

∂t2
− ɣ u z, tð Þj j2u z, tð Þ − i

α

2 u z, tð Þ,
ð2Þ

where uðz, tÞ is the spatial-temporal varying amplitude
of the optical pulse, z is the longitudinal coordinate of the
fiber, and t is the normalized time with respect to a reference
frame that moves with the pulse at a speed equal to the
group velocity vg = 1/β1. This frame is also called the
retarded frame, such that t = ζ − ðz/vgÞ, where ζ is the pres-
ent or physical time; both z and t are dimensionless in

distance and time, respectively, α is the power attenuation
constant, ɣ is the Kerr nonlinear coefficient, and β2 is the
first-order group velocity dispersion (GVD) parameter or
the second-order dispersion coefficient [19, 20], which can
be computed using the following formula:

β2 =
−λ2D
2π c

: ð3Þ

It is significant to highlight that λ represents the refer-
ence wavelength, c is the speed of light, and D is the fiber
dispersion parameter at a given wavelength. In addition to

Table 3: A comparison among the sum of squares error (SSE) of the split-step Fourier transform (SSFT), the Fourier pseudospectral method
(FPSM), and the Hopscotch scheme (HSM), computed for different time values t from 35 to 105: When h = 0:2 and τ = 0:008.

Time, t SSE-SSFT CPU time (s) SSE-FPSM CPU time (s) SSE-HSM CPU time (s)

35 1:9435e − 23 0.35126 1:9046e − 01 0.43022 1:5158e + 00 0.63134

45 3:1307e − 23 0.44921 3:2239e − 01 0.51259 1:0684e + 01 0.70445
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Figure 5: A comparison of the split-step Fourier transform (SSFT) (a), the Fourier pseudospectral method (FPSM) (b), and the Hopscotch
method (HSM) (c) approximate solutions at for a lossless optical fiber when the input pulse is a bright soliton at distances z = 0:1, 1, 10 km,
respectively.
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this, the sign of the GVD determines three different regimes
as mentioned below:

(i) When β2 = 0, the GV is an extremum. Such points
are called the zero-dispersion wavelength (ZDW)

(ii) When β2 < 0, the GV increases with the frequency,
and it is called anomalous dispersion. This regime
supports bright solitons

(iii) When β2 > 0, the GV decreases with the frequency,
and it is called normal dispersion. This regime sup-
ports dark solitons

It is obviously noted that the reason of having different
velocities for the spectral components of a pulse is the phys-
ical behavior of the group velocity (GV), which depends on
the frequency. This change in the velocities frequently
produces a pulse temporal distortion [31]. Moreover, elabo-
rating the concept of GVD in nonlinear optical fiber is

ubiquitously important because of its inevitable effect in
shaping the pulse propagation through fiber. When the dis-
persion is constant, the shape of a well-prepared pulse
remains the same, while its propagation through the nonlin-
ear fiber, creating a soliton; the accurate compensation
between the nonlinear effects and the linear dispersion in
the fiber is the cause of this fixed dispersion.

Likewise, illustrating the fiber loss term is amazingly
beneficial as a measure of the power loss during the trans-
mission process inside the fiber. Assuming that the length
of the fiber is L, the input power is Po, and the transmit-
ted power is Pt ; α is the attenuation real positive constant.
Then, the fiber losses can be calculated using the following
formula [6]:

αⅆb = −
10
L

log Pt

Po

� �
= −

10
L

log exp −αLð Þð Þ = 4,343α: ð4Þ
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Figure 6: A comparison of the split-step Fourier transform (SSFT) (a), the Fourier pseudospectral method (FPSM) (b), and the Hopscotch
method (HSM) (c) approximate solutions at for a lossy optical fiber α = 0:3 dB/km when the input pulse is a bright soliton at distances z
= 0:1, 1, 10 km, respectively.
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Obtaining a more realistic model to simulate and gov-
ern the actual wave propagation through the optical fiber
requires a generalization of Equation (1). This generaliza-
tion must include other terms and parameters to
demonstrate additional effects. Additionally, the perturbed
or generalized nonlinear Schrödinger equation (PNLSE)
models this realistic pulses’ propagation. If the perturba-
tion does not exist, the PNLSE will be reduced to the
canonical nonlinear Schrödinger equation (CNLSE),
presented in Equation (8), which has an exact analytical
solution that can be obtained using different regimes. On
the contrary, when the perturbations take place, its gov-
erned equation cannot analytically be solved. It is essential
to address different types of optical fiber perturbations, for
instance, higher-order and nonlinear dispersion, shock
effect, stimulated Raman scattering, self-steepening effects,
dissipation, amplification, along with others [32].

The dominance of either the dispersion or the nonlinear-
ity effects might depend on the values of the initial pulse’s
half-width at half amplitude T0 and the initial peak power
Po of the incident pulse. Thus, introducing two length scales,
which are the dispersion length LD and the nonlinear length
LNL is crucially advantageous because the relative magnitude
of these two lengths, along with the fiber length L, can con-
trol the pulses’ evolution to some extent. In this regard, we
apply a special normalization scale to the time, space, and
pulse amplitude as shown below:

T = t
T0

,

Z = z
L
,

U Z, Tð Þ = u Z, Tð Þffiffiffiffiffi
Po

p exp − αZ/2ð Þð Þ :

ð5Þ

These transformations yield

i
∂U Z, Tð Þ

∂Z
= L
LD

sgn β2ð Þ
2

∂2U Z, Tð Þ
∂T2

− exp −αLZð Þ L
LNL

U Z, Tð Þj j2U Z, Tð Þ,
ð6Þ

where sgn ðβ2Þ is the sign of the β2 coefficient, LD =
T0

2/jβ2j, and LNL = 1/ɣPo, where LD is called the dispersion
length that quantifies the pulse broadening per unit length,
whereas LNL is defined as the nonlinear length that quan-
tifies the nonlinear phase shift per unit length.

Equation (6) is another formula to represent the NLSE,
which might mostly be used in the fabrication process of
the fiber optics because this special formalism comprises
the fiber real parameters, such as the fiber length, the initial
pulse power, and the initial half-width of the input pulse.
Nevertheless, this equation may not commonly be employed
in the simulations [17, 31].

Moreover, it is fundamental to define the soliton order
parameter η by the following relation [25]:

η2 = LD
LNL

= ɣPoT0
2

β2j j , ð7Þ

when η has an integer value; it indicates a soliton pulse
solution, either bright or dark, depending on the group
velocity dispersion parameter’s sign β2. This integer value
manifests that the dispersion and the nonlinear effects com-
pensate each other, achieving a balance that results in an
unchanged and undistorted wave during propagation, which
is called a soliton.

2.2. Exact Analytical Solution for Solving the CNLSE. To con-
fidently navigate the validation of the proposed numerical
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Figure 7: A comparison of the split-step Fourier transform (SSFT) approximate solutions at a higher value of GVD of β2 = −20 ps2/km for a
lossless (a) and lossy optical fiber (b) when the input pulse is a bright soliton at distances z = 0:1, 1, 10 km, respectively.
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Figure 8: A comparison of the split-step Fourier transform (SSFT), the Fourier pseudospectral method (FPSM), and the Hopscotch method
(HSM) approximate solution for a lossless (a, b, c) and lossy (d, e, f) optical fiber when the input pulse is a dark soliton at distances z =
0:1, 1, 10 km, respectively.
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schemes, a fundamental initiative is to evoke the genuine
NLSE along with its exact soliton solution for the compari-
son purpose. This equation resembles the NLSE under study
in this research paper.

However, an interchange between the spatial and tempo-
ral variables occurs in each of the first- and second-order
derivatives. Beside this, the attenuation term is neglected.
Furthermore, it is a nonlinear second-order partial differen-
tial equation that is widely used in numerous applications
abreast of the optical fiber field. The original NLSE is repre-
sented as shown below [33]:

i
∂u z, tð Þ

∂t
+ ∂2u z, tð Þ

∂z2
+ ɣ u z, tð Þj j2u z, tð Þ = 0: ð8Þ

Similar to Equation (2), the unknown function uðz, tÞ
represents a wave. The second-order derivative ∂2uðz, tÞ/∂
z2 represents the dispersion, while the nonlinear term ɣ
juðz, tÞj2uðz, tÞ represents the nonlinearity of the problem.

In this work, we shall consider and select the single
bright soliton solution, shown in Equation (9), also named
the envelope solution, among all the other approved exact
analytical solutions because of its popularity, along with its
simplicity, as it has comprehensively been derived and uti-
lized in a plenty of previously published research articles
[14, 26, 33, 34]:

u z, tð Þ = 2λð Þ0:5ei 0:5cz+ λ−0:25c2ð Þt+Φoð Þ sech λð Þ0:5 z − ct − zoð Þ� �
,

ð9Þ

where zo,Φo, c, and λ are the initial position, initial
phase, propagation speed, and soliton amplitude,
respectively.

2.3. Numerical Approaches for Solving the CNLSE. In this
section, three powerful numerical techniques are presented

to report the CNLSE, represented in Equation (8). The three
methods are the SSFT, FPSM, and HSM [12, 16, 27, 35–40].

2.3.1. The Split-Step Fourier Transform. This method is a
straightforward and fast numerical technique that belongs
to the pseudospectral family. Moreover, it is unconditionally
stable, standing on the split of the NLSE into two subsequent
linear and nonlinear partial equations. Moreover, this easy
implemented scheme has a unique significance because it
represents the effects of the dispersion and nonlinearity sep-
arately in this problem.

Rearranging the terms of Equation (8), on the form of
∂tuðz, tÞ = ðL + NÞuðz, tÞ, to isolate the linear and nonlinear
terms yields

i∂tu z, tð Þ = −∂2zzu z, tð Þ − ɣ u z, tð Þj j2u z, tð Þ,
u z, 0ð Þ = u0 zð Þ:

ð10Þ

Assuming that the linear operator is L = i∂2zz and the
nonlinear operator is N = ɣijuðz, tÞj2. Then, we split it into
two parts to solve the problem as follows.

Part one, the nonlinear step is introduced as: ∂tuðz, tÞ
=Nuðz, tÞ, where N = ɣijuðz, t + τÞj2 ≈ ɣijuðz, tÞj2. Hence,
the analytical solution will be given as shown below:

u z, t + τð Þ = exp iτNð Þu z, tð Þ = exp iτɣ u z, tð Þj j2� �
u z, tð Þ:

ð11Þ

Part two, the linear step is introduced as i∂tuðz, tÞ = Lu
ðz, tÞ. We apply Fourier transform, to both sides to convert
the PDE into an ODE in the frequency domain to facilitate
its solution, as follows:

∂t û = −ik2û: ð12Þ
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Figure 9: The split-step Fourier transform (SSFT) approximate solution for a lossless (a) and lossy (b) optical fiber at a higher value of GVD
of β2 = +20 ps2/km when the input pulse is a dark soliton at distances z = 0:1, 1, 10 km, respectively.
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Equation (14) demonstrates the analytical solution of the
previous equation but computed in the frequency domain:

û z, t + τð Þ = exp −ik2τ
� �

:û z, tð Þ: ð13Þ

Eventually, we apply the inverse Fourier transform to
both sides to obtain the final equation represented below:

u z, t + τð Þ = F−1 exp −ik2τ
� �

:F exp iτɣ u z, tð Þj j2� �
u z, tð Þ� �� �

:

ð14Þ

2.3.2. The Fourier Pseudospectral Method. This approach is
deemed to be a member of the pseudospectral family as well,
and it can only be applied to the periodic functions over the
interval x ∈ ½−P, P�. Its key pillar stands on implementing
Fourier transform for the space second-order derivative,

while discretizing the first-order time derivative using an
appropriate finite difference relation.

In the first stage, we replace the temporal first derivative
by the following difference relation:

∂u
∂t

= u z, t + τð Þ − u z, tð Þ
τ

: ð15Þ

In the second stage, we substitute the above relation into
Equation (8) to get the following equation:

i
u z, t + τð Þ − u z, tð Þ

τ
= −F−1 i2k2

π2

P2 F uð Þ
� �

− ɣ u z, tð Þj j2u z, tð Þ,

ð16Þ
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Figure 10: Three-dimension graphs of the split-step Fourier transform (SSFT) approximate solution for a lossy optical fiber α = 0:3 dB/km
when the input pulse is a bright soliton (a) and a black dark soliton (b), respectively, at a distance z = 10 km.
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u z, t + τð Þ − u z, tð Þ = τiF−1 i2k2
π2

P2 F uð Þ
� �

+ iτɣ u z, tð Þj j2u z, tð Þ,

ð17Þ

u z, t + τð Þ = u z, tð Þ − τiF−1 k2
π2

P2 F uð Þ
� �

+ iτɣ u z, tð Þj j2u z, tð Þ:

ð18Þ
The solution exhibited in Equation (18) is only stable for

values of τ/ðhÞ2 < 1/π2.
Despite this, applying the Fornberg and Whitham prin-

ciples yields an unconditionally stable solution, as follows:

u z, t + τð Þ = u z, tð Þ − iF−1 sin k2
π2

P2 τ

� �
F u z, tð Þð Þ

� �
+ iτɣ u z, tð Þj j2u z, tð Þ:

ð19Þ

2.3.3. The Hopscotch Method. This scheme is a fast explicit
finite difference method, which operates on replacing the
nonlinear term by an average formula computed at the
row j, as shown in Equation (20). Besides, it is also an
unconditionally stable approach with a truncation error of

Oðh2Þ +Oðτ2Þ [27]; thus, the order of convergence is 2 in
both time and distance.

uð Þij =
ui−1,j
�� ��2 ∗ ui−1,j + ui+1,j

�� ��2ui+1,j
2

 !
: ð20Þ

We substitute the previous equation and the other
appropriate difference relations in Equation (8), subject to
the boundary and initial conditions, which yields

i
ui,j+1 − ui,j

τ
+
ui+1,j + ui−1,j − 2ui,j

h2

+ ɣ
ui−1,j
�� ��2 ∗ ui−1,j + ui+1,j

�� ��2ui+1,j
2 = 0,

ui,j+1 = ui,j + iτ
ui+1,j + ui−1,j − 2ui,j

h2

+ iɣ
τ

2 ui−1,j
�� ��2 ∗ ui−1,j + ui+1,j

�� ��2ui+1,j� 	
:

ð21Þ

Table 5: A comparison of the pulse powers using the split-step Fourier transform (SSFT), the Fourier pseudospectral method (FPSM), and
the Hopscotch method (HSM), at an attenuation constant α = 0:2 dB/km, computed at different distances z from 1 to 60 km.

z (km) Power (w)-SSFT CPU time (s) Power (w)-FPSM CPU time (s) Power (w)-HSM CPU time (s)

1 8:1873e − 01 0.066308 8:1890e − 01 0.07973 8:2207e − 01 0.20215

5 3:6788e − 01 0.31196 3:6802e − 01 0.35977 3:7538e − 01 0.82056

10 1:3534e − 01 0.55666 1:3557e − 01 0.65937 1:4107e − 01 1.5985

20 1:8316e − 02 1.1563 1:8436e − 02 1.2707 2:0021e − 02 3.0384

30 2:4788e − 03 1.6731 2:5091e − 03 2.0559 2:8636e − 03 4.5262

40 3:3546e − 04 2.2148 3:4151e − 04 2.5027 4:1551e − 04 5.8678

50 4:5400e − 05 2.7437 4:6481e − 05 3.1548 6:3139e − 05 7.2459

60 6:1442e − 06 3.3364 6:3267e − 06 3.7705 1:3284e − 05 9.1225

Table 4: A comparison of the pulse powers using the split-step Fourier transform (SSFT), the Fourier pseudospectral method (FPSM), and
the Hopscotch scheme (HSM), at a distance z = 20 km, computed at different attenuation constants values α from 0:1 to 0.45 dB/km.

α (dB/km) Power (w)-SSFT CPU time (s) Power (w)-FPSM CPU time (s) Power (w)-HSM CPU time (s)

0:1 1:3534e − 01 1.1251 1:3579e − 01 1.2936 1:4115e − 01 2.9371

0:15 4:9787e − 02 1.1236 5:0051e − 02 1.2766 5:3130e − 02 2.9356

0:2 1:8316e − 02 1.1046 1:8436e − 02 1.296 2:0022e − 02 2.85

0:25 6:7379e − 03 1.1287 6:7884e − 03 1.3048 7:5516e − 03 2.9818

0:3 2:4788e − 03 1.108 2:4988e − 03 1.3188 2:8516e − 03 2.9684

0:35 9:1188e − 04 1.1347 9:1961e − 04 1.2802 1:0824e − 03 3.0699

0:4 3:3546e − 04 1.1467 3:3838e − 04 1.2865 4:1209e − 04 3.1696

0:45 1:2341e − 04 1.1515 1:2450e − 04 1.2792 1:5625e − 04 3.0975
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Therefore, the final explicit formula is given by Equation
(22), where λ = τ/h2,

ui,j+1 = 1 − 2iλð Þui,j + iλ ui+1,j + ui−1,j
� �

+ iɣ
τ

2 ui−1,j
�� ��2 ∗ ui−1,j + ui+1,j

�� ��2ui+1,j� 	
:

ð22Þ

3. Modified Numerical Approaches for Solving
the Lossy Fiber Optics

In this section, two main actions were implemented to
obtain the modified versions. First, we have successfully
incorporated the loss term in the three suggested numerical
schemes, which are the SSFT, FSSM, and HSM. This unique
insertion is utterly essential in the simulation process
because it guarantees preserving a high accuracy level for
the obtained approximate solutions that should effectively
be employed to model the propagation of the solitons.
Second, an interchange has taken place between the tempo-
ral and spatial variables to cope with the requirements of the
problem, under study in this article. As a result, extended
versions of each of the three proposed numerical techniques
are derived to solve the 1D NLSE, comprising the attenua-
tion term, presented in Equation (1) or (2). Thereafter,
comparing their resulted approximate solutions to corrobo-
rate their reliability and creditability, here, the exact
analytical solution is an inadequate trend because the exact
solution cannot smoothly be obtained for this kind of equa-
tion, especially after inserting the term that is responsible for
the fiber losses. Roughly speaking, these modifications seek
an insightful approximation of the attenuation amount to
eradicate its undesired effects by using compensating
amplifiers, which guarantees the healthy delivery of the
transmitted signals.

3.1. The Extended Split-Step Fourier Transform. Starting with
the NLSE presented in Equation (1) and rewriting it as
shown below:

∂zu z, tð Þ = L + Nð Þu z, tð Þ: ð23Þ

While applying the initial condition uð0, tÞ = u0ðtÞ:
Then, define the time independent linear operator as L = −i
ðβ2/2Þ∂2tt − ðα/2Þ, and the nonlinear operator as N = iɣ
juðz, tÞj2.

First, the analytical solution of the nonlinear part will be
given by the following equation:

u z + h, tð Þ = exp ihɣ u z, tð Þj j2� �
u z, tð Þ: ð24Þ

Second, the analytical solution of the linear part can be
computed in the frequency domain, using the following
relation:

û z + h, tð Þ = exp i
β2
2 k2h

� �
:exp −

α

2 h
� 	

:û z, tð Þ: ð25Þ

Then, plugging Equation (24) into the previous equa-
tion:

û z + h, tð Þ = exp i
β2
2 k2h

� �
:exp −

α

2 h
� 	

:F

� exp ihɣ u z, tð Þj j2� �
u z, tð Þ� �

:

ð26Þ

Hence, the final equation can be written as

u z + h, tð Þ = F−1 exp i
β2
2 k2h

� �
:exp −

α

2 h
� 	

:F
�

� exp ihɣ u z, tð Þj j2� �
u z, tð Þ� ��

:

ð27Þ
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Figure 11: The split-step Fourier transform (SSFT) approximate solution for a lossy optical fiber α = 0:3 dB/km when the input pulse is a
sine squared function (a) and a rectangular pulse (b) at distances z = 0:1, 1, 10 km, respectively.
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3.2. The Extended Fourier Pseudospectral Method. Com-
mencing with the NLSE over the interval t ∈ ½−P, P�. First,
replacing the spatial first-order derivative by the following
difference relation:

∂u
∂z

= u z + h, tð Þ − u z, tð Þ
h

: ð28Þ

Second, substituting the above relation into Equation (1)
to get the following equation:

u z + h, tð Þ − u z, tð Þ
h

= −i
β2
2 F−1 i2k2

π2

P2 F uð Þ
� �

+ iɣ u z, tð Þj j2u z, tð Þ − α

2 u z, tð Þ,

u z + h, tð Þ − u z, tð Þ = −i
β2
2 hF−1 i2k2

π2

P2 F uð Þ
� �

+ iɣh u z, tð Þj j2u z, tð Þ − α

2 hu z, tð Þ:
ð29Þ

Then, substituting the difference relation in Equation
(28), the initial condition uð0, tÞ = u0ðtÞ, and the Fourier
transform of the second derivative term into Equation (1)
to obtain the following equation:

u z + h, tð Þ = u z, tð Þ + h
β2
2 iF−1 k2

π2

P2 F uð Þ
� �

+ iɣh u z, tð Þ2�� ��u z, tð Þ − α

2 hu z, tð Þ:
ð30Þ

Equation (30) is only stable for values of h/τ2 < 1/π2.
Despite this, making a modification in the previous

equation by using the Fornberg and Whitham principles
[27] yields an unconditionally stable solution, presented

u z + h, tð Þ = u z, tð Þ + β2
2 iF−1 sin k2

π2

P2 h
� �

F u z, tð Þð Þ
� �

+ iɣh u z, tð Þ2�� ��u z, tð Þ − α

2 hu z, tð Þ:
ð31Þ

3.3. The Extended Hopscotch Method. To kick off, we replace
the nonlinear term by an average formula computed at the
column i as illustrated below:

uð Þij =
ui,j−1
�� ��2 ∗ ui,j−1 + ui,j+1

�� ��2ui,j+1
2

 !
: ð32Þ

Substituting the appropriate FDM average and difference
relations in Equation (1), subject to the initial and boundary
conditions, to obtain

ui+1,j − ui,j
h

+
ui, j+1 + ui,j−1 − 2ui,j

τ2

+ iɣ
ui,j−1
�� ��2 ∗ ui,j−1 + ui,j+1

�� ��2ui,j+1
2

−
α

2 h
ui,j−1 + ui,j+1

2

� �
= 0,

ui+1,j = ui,j − i
β2
2 h

ui, j+1 + ui,j−1 − 2ui,j
τ2

� �

+ iɣ
h
2 ui,j−1
�� ��2 ∗ ui,j−1 + ui,j+1

�� ��2ui,j+1� 	
:

ð33Þ

The final explicit formula for this unconditionally stable
approach is given by

ui+1,j = 1 + iβ2λð Þui,j − i
β2
2 λ ui,j+1 + ui,j−1
� �

+ iɣ
h
2 ui,j−1
�� ��2 ∗ ui,j−1 + ui,j+1

�� ��2ui,j+1� 	
−
α

4 h ui,j−1 + ui,j+1
� �

,

ð34Þ

where λ = h/τ2.

4. The Error and Convergence Discussion

The convergent statement states that the numerical solutions
collapse onto the exact analytical solution, when the limit τ
⟶ 0; hence, the error reaches zero accordingly at all time
indices. In other words, if we shrink the temporal step
towards zero smaller and smaller, the absolute error, which
is the difference between the exact and approximate solu-
tion, will go smaller and smaller as well. The convergence
of the three numerical schemes is verified numerically in
the fifth section under systematic temporal mesh
refinement [41].

5. Numerical Results

Here, our strategy is to first investigate the behavior of our
original proposed numerical approaches against the exact
analytical solution for the CNLSE, which models the pulse
propagation in a lossless optical fiber. Then, the extended
versions of these numerical techniques are intensively
employed to solve the PNLSE, associated with the fiber loss
term.

5.1. Numerical Tests for the CNLSE. In this section, plenty of
designated numerical examples are conducted, as recently
followed elsewhere [42–47], to examine how efficient, fast,
and accurate the proposed numerical techniques are, espe-
cially when compared with the exact analytical solution.
Particularly, MATLAB software was used to run these tests,
which were performed to measure the accuracy among
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various numerical approaches, estimate the error, and decide
on the most reliable and fastest approach for solving the 1D
NLSE. In all the proposed methods, the NLSE is discretely
solved at different values of time and space [28]. For the
numerical experiment, we discretize the space domain x
from -40 to 40, setting the parameters, in Equation (9), ɣ
nad λ, to one unit and c, xo, and Φo to zero, respectively.
This leads to the hyperbolic secant initial condition [37]:

u z, 0ð Þ = 2ð Þ0:5ei 0:5zð Þ sech zð Þ: ð35Þ

Associated with the zero boundary conditions is shown
below:

u L, tð Þ = 0,
u −L, tð Þ = 0,

ð36Þ

occurring at z = −L, L, and for t ≥ 0.
Our simulation strategy stands on employing various

spatial steps h when the other parameters are fixed, and sub-
sequently, adapting various temporal steps τ while not
changing the rest of the parameters. These steps sizes are
dimensionless, and their values determine the accuracy of
the experiment. In particular, the smaller their values, the
more precise the approximate numerical solution becomes.
Figure 2 demonstrates the graph of the exact bright one sol-
iton solution in three dimensions to provide a rigorous focus
during the comparison process on the actual shape of this
pulse.

First, by using numerous space steps at a time step τ =
0:001 computed at time t = 20, we have compared the exact
solution, previously presented in Equation (9), and the three
suggested methods, which are the split-step Fourier method,
Fourier pseudospectral method, and Hopscotch method, in
the graphs presented in Figure 3. Second, although the same
process has been repeated, the values of the used time step
have been changed instead of the space step, which sustained
a constant value of 0.2, computed at the same time t = 20.
The graphs are presented in Figure 4.

Eventually, drawing a comparison to estimate the sum of
squares error (SSE) [48] of all the mentioned numerical
techniques and their exact solution, shown in Table 1, at
the selected spatial step h = 0:2, temporal step τ = 0:001,
and space domain x from -40 to 40, while selecting a domain
of time values from 35 to 105. In specific, the SSE is com-
puted by ∑n

i=1ðui − uexÞ2, where ui is the discrete numerical
approximate solution over the predefined domain x and
uex is the discrete exact analytical solution over the same
predefined spatial domain at a specific time value. As
endorsed by Figures 3 and 4, the three proposed approaches
are accuracy adjustable. The smaller the temporal and spatial
steps sizes, the more efficacy they achieve. Besides, as advo-
cated by Table 1, the SSFT approach exhibits the smallest
sum of squares error over the other demonstrated schemes.
Precisely, the errors are approximately in terms of 10e-21
when the time step is 10e-3, which substantiate that this
method almost renders the exact solution itself. However,
we can achieve less computational time by adjusting a higher

value of temporal step size, in a trade off with the accuracy of
the scheme that will be decreased accordingly, as demon-
strated in Tables 2 and 3. Additionally, it is obviously
noticed from Tables 1–3, using a fixed space step size while
employing different values of time steps τ = 0:008, τ =
0:001, and τ = 0:0001, that the obtained error diminishes
when the temporal step size value decreases in an attempt
to approach zero, which advocates the convergence behavior
of our three proposed schemes [41].

5.2. Numerical Tests for the PNLSE. Here, we shall divert our
attention to the PNLSE presented in Equation (1), in which
the fiber loss term deliberately appears so that we intensively
investigate this perturbation effect on the shape of the trans-
mitted pulse.

In order to examine such an effect, our numerical exper-
iments have been performed on both types of solitons
solutions, single bright and dark solitons.

To perform these tests, we shall use an initial bright
pulse soliton of [25]:

u 0, tð Þ =
ffiffiffiffiffi
Po

p
sech t

T0

� �
: ð37Þ

On the other hand, using an initial dark pulse soliton of

u 0, tð Þ =
ffiffiffiffiffi
Po

p 1
B2 − sech2 B t

T0

� �� �0:5
: ð38Þ

Setting Po and To to one unit for both initial conditions.
In Equation (38), B is called the darkness coefficient. In gen-
eral, the value of this coefficient varies between zero and one
0 < B ≤ 1.

Opting for B = 1, this soliton is called a “black soliton.”
In contrast, a grey soliton is produced, for any other value
of B [4]. Since the exact solution cannot be obtained for
these kinds of equations, the three proposed approaches
were examined for a lossy optical fiber. Generally, the simu-
lation process is divided into three fundamental consecutive
stages.

In the first stage, our simulation is focused on the anom-
alous dispersion, generating bright solitons for an optical
fiber of length L = 10 km. Moreover, this assessment was
performed, adhering to the following parameters β2 = −1
ps2/km, ɣ = 1W-1·km-1, when α = 0dB/km followed by α =
0:3dB/km. The graphs, representing the pulse at different
distances z = 0:1, 1, 10 km, are shown in Figures 5 and 6,
respectively. Likewise, repeating the previous experiment
for the same fiber but with different parameters’ values and
higher GVD such that β2 = −20ps2/km, ɣ = 2:5W-1 km-1,
and α = 0dB/km: Since the split-step Fourier transform
scheme is the only method that has endured under this
assessment, the graph of its approximate solution is shown
in Figure 7(a). Subsequently, the experiment was conducted
for a lossy optical fiber at the same length and parameters,
when α = 0:23dB/km: Figure 7(b) exhibits the pulses’ shapes
at different distances using the split-step Fourier transform
as well.

14 Journal of Function Spaces



In the second stage of this simulation, our goal is to test
the normal dispersion, introducing dark solitons pulses. For
this purpose, the approach was examined on the same length
of optical fiber, whenβ2 = +1ps2/km, and ɣ = 1W-1 km-1,
and for both values of attenuation constant α = 0 and
0.3 dB/km. The three numerical schemes were tested, and
their results are illustrated in Figure 8. Similarly, we have
repeated the previous experiment but with other parameters’
values such that β2 = +20 ps2/km, ɣ = 2:5W−1km−1, and for
both α = 0 and 0.23 dB/km. The results, by using the split-
step Fourier transform, are presented in Figure 9. In
Figures 10(a) and 10(b), we have plotted the split-step Fou-
rier transform numerical solution in 3D for a lossy optical
fiber α = 0:3dB/km when the input pulse is a single bright
and dark soliton, respectively, at a distance z = 10 km.

For a single bright soliton, a comparison is conducted
in Table 4, using the three proposed numerical schemes,
to present the variation of the pulse power values at a
distance z = 20 km, computed for different attenuation
constants, while Table 5 demonstrates the attenuation
effect on the transmitted pulse power, using the same
numerical approaches, when the attenuation constant is
α = 0:2dB/km but over different distances z from 1 to
60 km. The final stage is dedicated to applying the same
test but for various initial conditions, associated with dif-
ferent input pulses, which cannot be supported with the
exact solution that is only valid for some special initial
pulses. This means other signals rather than the bright
and dark solitons, such as the sine squared function,
which is a periodic travelling wave, and the rectangular
pulse in the presence of attenuation. Figure 11 presents
the outcome of this experiment, by using the split-step
Fourier transform to approximate the solution.

As evident by all the obtained numerical results, our sug-
gested approach, which is the extended split-step Fourier
transform, has a leading behavior in modeling the soliton
propagation through a lossy optical fiber, especially when
compared to the other proposed numerical approaches.
Based on the previously obtained findings, Figures 5 and
8(a)–8(c) reinforced that the input signal has retained its
shape and amplitude while propagation, in the absence of
the losses, creating a soliton. On the contrary, when the fiber
losses existed, the transmitted pulse has suffered from atten-
uation, which can be noticed as a decrease in the amplitude
and power of the pulse [49], as supported by Figures 6 and
8(d)–8(f), whereas Figure 10 bolstered that this amplitude
degradation gradually occurs in an exponential form over
the propagation distance. Hence, amplifiers are widely used
to overcome such a perturbed effect. Moreover, when the
GVD parameter maintained a value less than 4, the three
proposed schemes have provided a reliable solution for this
problem, as referred in Figures 5, 6, and 8. Nevertheless,
when this parameter was assigned a value greater than or
equal to five, the extended split-step Fourier transform was
the only approach that has provided reasonable behavior
under this experiment and achieved the best accuracy
among the other proposed techniques, as explained in
Figures 7 and 9. Eventually, Table 4 endorsed that increasing

the fiber losses has inversely decreased the transmitted pulse
power. Meanwhile, transmitting the pulse through longer
propagation distance in a lossy optical fiber has conversely
attenuated the power of the initial pulse, as illustrated by
Table 5.

Despite the three extended numerical approaches have
achieved slightly close results, as clearly shown in Tables 4
and 5, our superior approach, the extended SSFT, has cor-
roborated the fastest performance, through achieving the
least elapsed time among the other extended versions of
the other demonstrated techniques.

6. Conclusion

To recapitulate, although the pulse propagation through a
lossy optical fiber is modeled by the well-known 1D NLSE,
the exact solution of this equation cannot invariably be
reached, especially after comprising the attenuation term.
Thus, an extended version of the SSFT approach was suc-
cessfully developed in this paper by including the fiber loss
effects to accurately obtain an approximate numerical solu-
tion that simulates this notable phenomenon. This precise
inclusion is extremely crucial because these losses, associated
with any realistic optical fiber, cannot be ignored due to their
inevitable repercussions in decreasing the amplitude and
power of the soliton during propagation over the transmis-
sion path. Additionally, to advocate the efficacy and accu-
racy of our proposed approach, two other extensions of
numerical schemes were introduced, named the FPSM and
HSM, and assessed by drawing a plethora of graphs and
tables for the comparison purpose. Eventually, the per-
formed experiments findings have corroborated that our
remarkable approach, the extended SSFT, has provided
prominence performance when compared to its suggested
counterparts, in the presence and absence of fiber losses. In
specific, when the losses were utterly neglected, our
approach has achieved the least sum of squares error,
whereas when the losses were considered, this superb
approach has demonstrated compatible results with the
other proposed approaches, along with rendering the least
processing time, which places it in the first rank as the fastest
scheme. Moreover, it was the only technique to survive when
handling higher values of the GVD parameter. Therefore,
the extended SSFT is deemed to be an accurate, straightfor-
ward, and fast approach for manipulating this significant
problem.
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