
Research Article
Some Sharp Results on Coefficient Estimate Problems for
Four-Leaf-Type Bounded Turning Functions

Pongsakorn Sunthrayuth ,1 Yousef Jawarneh,2 Muhammad Naeem ,3 Naveed Iqbal,2

and Jeevan Kafle 4

1Department of Mathematics and Computer Science, Faculty of Science and Technology, Rajamangala University of Technology
Thanyaburi (RMUTT) Thanyaburi, Pathumthani, Thailand
2Department of Mathematics, College of Science, University of Ha’il, Ha’il 2440, Saudi Arabia
3Deanship of Joint First Year Umm Al-Qura University Makkah, P.O. Box 715, Saudi Arabia
4Central Department of Mathematics, Tribhuvan University, Kritipur, Kathmandu, Nepal

Correspondence should be addressed to Muhammad Naeem; mfaridoon@uqu.edu.sa
and Jeevan Kafle; jeevan.kafle@cdmath.tu.edu.np

Received 31 May 2022; Revised 30 June 2022; Accepted 14 July 2022; Published 2 August 2022

Academic Editor: Sarfraz Nawaz Malik

Copyright © 2022 Pongsakorn Sunthrayuth et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

In this study, we focused on a subclass of bounded turning functions that are linked with a four-leaf-type domain. The primary
goal of this study is to explore the limits of the first four initial coefficients, the Fekete-Szegö type inequality, the Zalcman
inequality, the Kruskal inequality, and the estimation of the second-order Hankel determinant for functions in this class. All of
the obtained findings have been sharp.

1. Introduction and Definitions

Before getting into the key findings, some prior information
on function theory fundamentals is required. In this case, the
symbols A and S indicate the families of normalised holo-
morphic and univalent functions, respectively. These fami-
lies are specified in the set-builder form:

A = g ∈Q Udð Þ: g 0ð Þ = g′ 0ð Þ − 1 = 0 z ∈Udð Þ
n o

, ð1Þ

S = g ∈A : g is univalent inUdf g, ð2Þ
where QðUdÞ stands for the set of analytic (holomorphic)
functions in the disc Ud = fz ∈ℂandjzj < 1g: Thus, if g ∈
A , then, it can be stated in the series expansion form by

g zð Þ = z + 〠
∞

k=2
akz

k z ∈Udð Þ: ð3Þ

For the given functions G1,G2 ∈QðUdÞ, the function G1
is subordinated by G2 (stated mathematically by G1 ≺G2) if
there exists a holomorphic function v in Ud with the restric-
tions vð0Þ = 0 and jvðzÞj < 1 such that G1ðzÞ =G2ðvðzÞÞ:
Moreover, if G2 is univalent in Ud , then

G1 zð Þ ≺G2 zð Þ, z ∈Udð Þ⇔G1 0ð Þ =G2 0ð Þ andG1 Udð Þ ⊂G2 Udð Þ:
ð4Þ

Although the function theory was created in 1851, Biber-
bach [1] presented the coefficient hypothesis in 1916, and it
made the topic a hit as a promising new research field. De-
Brages [2] proved this conjecture in 1985. From 1916 to
1985, many of the world’s most distinguished scholars
sought to prove or disprove this claim. As a result, they
investigated a number of subfamilies of the class S of univa-
lent functions that are associated with various image
domains [3–5]. The most fundamental and significant
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subclasses of the set S are the families of starlike and convex
functions, represented by S∗ and K , respectively. Ma and
Minda [6] defined the unified form of the family in 1992 as

S∗ ϕð Þ≔ g ∈A :
zg′ zð Þ
g zð Þ ≺ ϕ zð Þ z ∈Udð Þ

( )
, ð5Þ

where ϕ indicates the analytic function with ϕ′ð0Þ > 0 and
Reϕ > 0. Also, the region ϕðUdÞ is star-shaped about ϕð0Þ
= 1 and is symmetric along the real axis. They examined
some interesting aspects of this class. Some significant sub-
families of the collection A have recently been investigated
as unique instances of the class S∗ðϕÞ. In particular;

(i) The class S∗½L,M� ≡ S∗ð1 + Lz/1 +MzÞ, −1 ≤M <
L ≤ 1, is obtained by selecting ϕðzÞ = 1 + Lz/1 +Mz
and was established in [7]. Moreover, S∗ðξÞ≔
S∗½1 − 2ξ,−1� displays the well-known order ξ
(0 ≤ ξ < 1) starlike function class

(ii) The class S∗
L ≔ S∗ðϕðzÞÞ with ϕðzÞ = ffiffiffiffiffiffiffiffiffiffi

1 + z
p

was
designed by the researchers Sokól and Stankiewicz
in [8]. Also, they showed that the image of the func-
tion ϕðzÞ = ffiffiffiffiffiffiffiffiffiffi

1 + z
p

is bounded by jw2 − 1j < 1:
(iii) The set S∗

car ≔ S∗ðϕðzÞÞ with ϕðzÞ = 1 + 4/3z + 2/3
z2 has been deduced by Sharma and his coauthors
[9] in which they located the image domain of ϕðzÞ
= 1 + 4/3z + 2/3z2, which is bounded by the below
cardioid

9x2 + 9y2 − 18x + 5
À Á2 − 16 9x2 + 9y2 − 6x + 1

À Á
= 0: ð6Þ

(iv) By selecting ϕðzÞ = 1 + sin z, we get the class S∗ðϕ
ðzÞÞ = S∗

sin, which was defined in [10] while S∗
e ≡

S∗ðezÞ was contributed by the authors [11] and,
subsequently, explored some more properties of
it in [12]. This class was recently generalized by
Srivastava et al. [13] in which the authors deter-
mined upper bound of Hankel determinant of order
three

(v) The family S∗
cos ≔ S∗ðcos ðzÞÞ and S∗

cosh ≔ S∗ðcosh
ðzÞÞ were offered, respectively, by Raza and Bano
[14] and Alotaibi et al. [15]. In both the papers, the
authors studied some good properties of these
families

(vi) By choosing ϕðzÞ = 1 + sinh−1z, we obtain the
recently studied class S∗

ρ ≔ S∗ð1 + sinh−1zÞ created
by Al-Sawalha [16]. Barukab and his coauthors
[17] studied the sharp Hankel determinant of
third-order for the following class in 2021

Rs = g ∈A : g′ zð Þ ≺ 1 + sinh−1z, z ∈Ud

n o
: ð7Þ

In [18, 19], Pommerenke provided the following Hankel
determinantDq,nðgÞ containing coefficients of a function g ∈ S

Dq,n gð Þ≔

an an+1 ⋯ an+q−1

an+1 an+2 ⋯ an+q

⋮ ⋮ ⋯ ⋮

an+q−1 an+q ⋯ an+2q−2

�����������

�����������
, ð8Þ

with q, n ∈ℕ = f1, 2,⋯g. By varying the parameters q and n,
we get the determinants listed below:

D2,1 gð Þ =
1 a2

a2 a3

�����
����� = a3 − a22, ð9Þ

D2,2 gð Þ =
a2 a3

a3 a4

�����
����� = a2a4 − a23, ð10Þ

D3,1 gð Þ =
1 a2 a3

a2 a3 a4

a3 a4 a5

���������

���������
= a3 a2a4 − a23

À Á
− a4 a4 − a2a3ð Þ + a5 a3 − a22

À Á
,
ð11Þ

that referred as first-, second-, and third-order Hankel determi-
nants, respectively. The Hankel determinant for functions
belonging to the general family S has just a few references in
the literature. The best established sharp inequality for the func-
tion g ∈ S is jD2,nðgÞj ≤ λ

ffiffiffi
n

p , where λ is a constant, and it is
because of Hayman [20]. Additionally, it was determined in
[21] for the class S that

D2,2 gð Þ�� �� ≤ λ, for 1 ≤ λ ≤
11
3 , ð12Þ

D3,1 gð Þ�� �� ≤ μ, for 49 ≤ μ ≤
32 +

ffiffiffiffiffiffiffi
285

p

15 : ð13Þ

Several mathematicians were drawn to the problem of find-
ing the sharp bounds of Hankel determinants in a given family
of functions. In this context, Janteng et al. [22, 23] estimated the
sharp bounds of jD2,2ðgÞj, for three basic subfamilies of the set
S. These families are K ,S∗, and R (functions of a bounded
turning class), and these bounds are stated as

D2,2 gð Þ�� �� ≤
1
8 , for g ∈K ,

1, for g ∈ S∗,
4
9 , for g ∈R:

8>>>>><
>>>>>:

ð14Þ
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This determinant’s exact bound for the unified collection
S∗ðϕÞ was determined in [24] and subsequently investigated
in [25]. In [26–28], this problem was also solved for various
families of biunivalent functions.

The formulae provided in (11) make it abundantly evi-
dent that the computation of jD3,1ðgÞj is much more diffi-
cult than determining the bound of jD2,2ðgÞj. Babalola [29]
was the first mathematician who studied third-order Hankel
determinant for the K ,S∗, and R families in 2010. Follow-
ing that, several academics [30–34] used the same method to
publish papers regarding jD3,1ðgÞj for specific subclasses of
univalent functions. However, Zaprawa’s work [35] caught
the researcher’s attention, in which he improved Babalola’s
results by utilising a revolutionary method to show that

D3,1 gð Þ�� �� ≤
49
540 , forg ∈K ,

1, forg ∈ S∗,
41
60 , forg ∈R:

8>>>>><
>>>>>:

ð15Þ

He also pointed out that these bounds are not sharp. In
2018, Kwon et al. [36] achieved a more acceptable finding
for g ∈ S∗ and demonstrated that jD3,1ðgÞj ≤ 8/8, and this
limit was further enhanced by Zaprawa and his coauthors
[37] in 2021. They got jD3,1ðgÞj ≤ 5/9 for g ∈ S∗: In recent
years, Kowalczyk et al. [38] and Lecko et al. [39] got a sharp
bound of third Hankel determinant given by

D3,1 gð Þ�� �� ≤
4
135 , forg ∈K ,

1
9 , forg ∈ S∗ 1

2

� �
,

8>><
>>: ð16Þ

where S∗ð1/2Þ is the starlike functions family of order 1/2:
In [40], the authors obtained the sharp bounds of third Han-
kel determinant for the subclass of S∗

sin, and Mahmood et al.
[41] calculated the third Hankel determinant for starlike
functions in q-analogue. For some new literature on sharp
third-order Hankel determinant, see [42–45].

In [46], Gandhi introduced a family of bounded turning
function connected with a four-leaf function defined by

S∗
4L ≔ g ∈ S :

zg′ zð Þ
g zð Þ ≺ 1 + 5

6 z +
1
6 z

5, z ∈Udð Þ
( )

, ð17Þ

and characterized it with some important properties.
Similar to the definition of S∗

4L , we now define a new
subfamily of bounded turning functions by the following
set builder notation:

BT 4L ≔ g ∈ S : g′ zð Þ ≺ 1 + 5
6 z +

1
6 z

5, z ∈Udð Þ
� �

: ð18Þ

The aim of the current manuscript is to determine the
exact bounds of the coefficient inequalities, Fekete-Szegö

type problem, Kruskal inequality, and Hankel determinant
of order two for functions of bounded turning class linked
with four-leaf domain.

2. A Set of Lemmas

We say a function p ∈P if and only if it has the series
expansion

p zð Þ = 1 + 〠
∞

n=1
cnz

n z ∈Udð Þ, ð19Þ

along with the RpðzÞ ≥ 0ðz ∈UdÞ:

Lemma 1. Let p ∈P be represented by (19). Then

cnj j ≤ 2 n ≥ 1: ð20Þ

cn+k − μcnckj j ≤ 2 max 1, 2μ − 1j jf g =
2 for 0 ≤ μ ≤ 1 ;
2 2μ − 1j j otherwise:

(

ð21Þ
Also, If B ∈ ½0, 1� with Bð2B − 1Þ ≤D ≤ B, we have

c3 − 2Bc1c2 +Dc31
�� �� ≤ 2: ð22Þ

These inequalities (20), (21), and (22) are taken from
[47, 48]:

Lemma 2. Let p ∈P and be given by (19). Then, for x, δ, ρ
∈ �Ud , we have

2c2 = c21 + x 4 − c21
À Á

, ð23Þ

4c3 = c31 + 2 4 − c21
À Á

c1x − c1 4 − c21
À Á

x2 + 2 4 − c21
À Á

1 − xj j2À Á
δ,

ð24Þ
For the formula c2, see [48]. The formula c3 was due to

Zlotkiewicz and Libera [49] while the formula for c4 was
proved in [50].

Lemma 3 [51]. Let α, β, γ, and a satisfy that a, α ∈ ð0, 1Þ and

8a 1 − að Þ αβ − 2γð Þ2 + α a + αð Þ − βð Þ2À Á
+ α 1 − αð Þ β − 2aαð Þ2 ≤ 4aα2 1 − αð Þ2 1 − að Þ:

ð25Þ

If p ∈P and be given by (19), then

γc41 + ac22 + 2αc1c3 −
3
2βc

2
1c2 − c4

����
���� ≤ 2: ð26Þ

3. Coefficient Inequalities for the Class BT 4L

We begin this section by finding the absolute values of the
first four initial coefficients for the function BT 4L :
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Theorem 4. If g ∈BT 4L and has the series representation
(3), then

a2j j ≤ 5
12

, ð27Þ

a3j j ≤ 5
18

, ð28Þ

a4j j ≤ 5
24

, ð29Þ

a5j j ≤ 1
6
: ð30Þ

These bounds are best possible.

Proof. Let g ∈BT 4L : Then, (18) can be written in the form
of Schwarz function as

g′ zð Þ = 1 + 5
6ω zð Þ + 1

6 ω zð Þð Þ5, z ∈Udð Þ: ð31Þ

If p ∈P , and it may be written in terms of Schwarz func-
tion wðzÞ as

p zð Þ = 1 +w zð Þ
1 −w zð Þ = 1 + c1z + c2z

2 + c3z
3+⋯: ð32Þ

Equivalently, we have

w zð Þ = p zð Þ − 1
p zð Þ + 1 = c1z + c2z

2 + c3z
3 + c4z

4+⋯
2 + c1z + c2z2 + c3z3 + c4z4+⋯

: ð33Þ

where

ω zð Þ = 1
2 c1z +

1
2 c2 −

1
4 c

2
1

� �
z2 + 1

8 c
3
1 −

1
2 c1c2 +

1
2 c3

� �
z3

+ 1
2 c4 −

1
2 c1c3 −

1
4 c

2
2 −

1
16 c

4
1 +

3
8 c

2
1c2

� �
z4+⋯:

ð34Þ

From (3), we get

g′ zð Þ = 1 + 2a2z + 3a3z2 + 4a4z3 + 5a5z4+⋯: ð35Þ

By simplication and using the series expansion of (34),
we get

1 + 5
6ω zð Þ + 1

6 ω zð Þð Þ5 = 1 + 5
12 c1

� �
z + −

5
24 c

2
1 +

5
12 c2

� �
z2

+ −
5
12 c1c2

�
+ 5
12 c3 +

5
48 c

3
1

�
z3

+ 5
12 c4 +

5
16 c

2
1c2 −

5
96 c

4
1

�
−
5
24 c

2
2

−
5
12 c1c3

�
z4+⋯:

ð36Þ

By comparing (35) and (36), we obtain

a2 =
5
24 c1,

ð37Þ

a3 =
1
3 −

5
24 c

2
1 +

5
12 c2

� �
, ð38Þ

a4 =
1
4 −

5
12 c1c2 +

5
12 c3 +

5
48 c

3
1

� �
, ð39Þ

a5 =
1
5

5
12 c4 +

5
16 c

2
1c2 −

5
96 c

4
1 −

5
24 c

2
2 −

5
12 c1c3

� �
: ð40Þ

For a2, implementing (20), in (37), we get

a2j j ≤ 5
12 : ð41Þ

For a3, (38) can be written as

a3 =
5
36 c2 −

1
2 c

2
1

� �
: ð42Þ

Using (21), we get

a3j j ≤ 5
18 : ð43Þ

For a4, we can write (39) as

a4j j = 5
48 c3 − 2 1

2

� �
c1c2 +

1
4 c

3
1

� �����
����: ð44Þ

From (22), we have

0 ≤ B = 1
2 ≤ 1, B = 1

2 ≥D = 1
4 ,

ð45Þ

B 2B − 1ð Þ = 0 ≤D = 1
4 :

ð46Þ

Application of triangle inequality plus (22) leads us to

a4j j ≤ 5
24 : ð47Þ
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For a5, we may write (40) as

a5j j = −
1
96 c

4
1 −

1
24 c

2
2 −

1
12 c1c3 +

1
16 c

2
1c2 +

1
12 c4

����
����: ð48Þ

After simplifying, we have

a5j j = 1
12

1
8 c

4
1 +

1
2 c

2
2 + 2 1

2

� �
c1c3 −

3
2

1
2

� �
c21c2 − c4

����
����: ð49Þ

Comparing the right side of (49) with

γc41 + ac22 + 2αc1c3 −
3
2βc

2
1c2 − c4

����
����, ð50Þ

we get

γ = 1
8 , a =

1
2 , α =

1
2 , β = 1

2 : ð51Þ

It follows that

8a 1 − að Þ αβ − 2γð Þ2 + α a + αð Þ − βð Þ2À Á
+ α 1 − αð Þ β − 2aαð Þ2 = 0,

ð52Þ

4aα2 1 − αð Þ2 1 − að Þ = 1
16 :

ð53Þ

From (26), we deduce that

a5j j ≤ 1
6 : ð54Þ

These bounds are best possible and can be determined
by the following extremal functions:

g0 zð Þ =
ðz
0

1 + 5
6 tð Þ + 1

6 t5
À Á� �

dt = z + 5
12 z

2 + 1
36 z

6+⋯,

ð55Þ

g1 zð Þ =
ðz
0

1 + 5
6 t2
À Á

+ 1
6 t10
À Á� �

dt = z + 5
18 z

3 + 1
66 z

11+⋯,

ð56Þ

g2 zð Þ =
ðz
0

1 + 5
6 t3
À Á

+ 1
6 t15
À Á� �

dt = z + 5
24 z

4 + 1
96 z

16+⋯,

ð57Þ

g3 zð Þ =
ðz
0

1 + 5
6 t4
À Á

+ 1
6 t20
À Á� �

dt = z + 1
6 z

5 + 1
126 z

21+⋯:

ð58Þ

Theorem 5. If g is of the form (3) belongs to BT 4L , then

a3 − γa22
�� �� ≤max 5

18
, 25 γj j
144

� �
, for γ ∈ℂ: ð59Þ

This inequality is sharp.

Proof. By using (37) and (38), we may have

a3 − γa22
�� �� = 5

36 c2 −
5
72 c

2
1 −

25
576 γc

2
1

����
����: ð60Þ

By rearranging, it yields

a3 − γa22
�� �� = 5

36 c2 −
5γ + 8
16

� �
c21

� �����
����: ð61Þ

Application of (21) leads us to

a3 − γa22
�� �� ≤ 10

36 max 1, 5γ + 8
8 − 1

����
����

� �
: ð62Þ

After the simplification, we get

a3 − γa22
�� �� ≤max 5

18 ,
25 γj j
144

� �
: ð63Þ

This required result is sharp and is determined by

g1 zð Þ =
ðz
0

1 + 5
6 t2
À Á

+ 1
6 t10
À Á� �

dt = z + 5
18 z

3 + 1
66 z

11+⋯:

ð64Þ

Theorem 6. If g has the form (3) belongs to BT 4L , then

a2a3 − a4j j ≤ 5
24

: ð65Þ

This inequality is best possible.

Proof. By employing (37), (38), and (39), we have

a2a3 − a4j j = 5
48 c3 − 2 23

36

� �
c1c2 +

7
18 c

3
1

����
����: ð66Þ

From (22), we have

0 ≤ B = 23
36 ≤ 1, B = 23

36 ≥D = 7
18 ,

ð67Þ

B 2B − 1ð Þ = 115
648 ≤D = 7

18 :
ð68Þ
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Using (22), we obtain

a2a3 − a4j j ≤ 5
24 : ð69Þ

This inequality is best possible and can be obtained by

g2 zð Þ =
ðz
0

1 + 5
6 t3
À Á

+ 1
6 t15
À Á� �

dt = z + 5
24 z

4 + 1
96 z

16+⋯:

ð70Þ

Theorem 7. If g belongs to BT 4L , and be of the form (3).
Then

a5 − a2a4j j ≤ 1
6
: ð71Þ

This result is sharp.

Proof. From (37), (39), and (40), we obtain

a5 − a2a4j j = −
73
4608 c

4
1 −

1
24 c

2
2 −

121
1152 c1c3 +

97
1152 c

2
1c2 +

1
12 c4

����
����:

ð72Þ

After simplifying, we have

a5 − a2a4j j = 1
12

73
384 c

4
1 +

1
2 c

2
2 + 2 121

192

� �
c1c3 −

3
2

97
144

� �
c21c2 − c4

����
����:

ð73Þ

Comparing the right side of (73) with

γc41 + ac22 + 2αc1c3 −
3
2βc

2
1c2 − c4

����
����, ð74Þ

we get

γ = 73
384 , a =

1
2 , α =

121
192 , β = 97

144 : ð75Þ

It follows that

8a 1 − að Þ αβ − 2γð Þ2 + α a + αð Þ − βð Þ2À Á
+ α 1 − αð Þ β − 2aαð Þ2 = 0:00735,

ð76Þ

and

4aα2 1 − αð Þ2 1 − að Þ = 0:05431: ð77Þ

From (26), we deduce that

a5 − a2a4j j ≤ 1
6 : ð78Þ

The required result is sharp and can be determined by

g3 zð Þ =
ðz
0

1 + 5
6 t4
À Á

+ 1
6 t20
À Á� �

dt = z + 1
6 z

5 + 1
126 z

21+⋯:

ð79Þ

Theorem 8. If g ∈BT 4L , and be of the form (3). Then

a5 − a23
�� �� ≤ 1

6
: ð80Þ

This inequality is best possible.

Proof. By using (38) and (40), we have

a5 − a23
�� �� = −

79
5184 c

4
1 −

79
1296 c

2
2 −

1
12 c1c3 +

53
648 c

2
1c2 +

1
12 c4

����
����:

ð81Þ

After simplifying, we have

a5 − a23
�� �� = 1

12
79
432 c

4
1 +

79
108 c

2
2 + 2 1

2

� �
c1c3 −

3
2

53
81

� �
c21c2 − c4

����
����:

ð82Þ

Comparing the right side of (82) with

γc41 + ac22 + 2αc1c3 −
3
2βc

2
1c2 − c4

����
����, ð83Þ

we get

γ = 79
432 , a =

79
108 , α =

1
2 , β = 53

81 : ð84Þ

It follows that

8a 1 − að Þ αβ − 2γð Þ2 + α a + αð Þ − βð Þ2À Á
+ α 1 − αð Þ β − 2aαð Þ2 = 0:00616,

ð85Þ

4aα2 1 − αð Þ2 1 − að Þ = 0:04910: ð86Þ
From (26), we deduce that

a5 − a23
�� �� ≤ 1

6 : ð87Þ

This inequality is best possible and can be achieved by

g3 zð Þ =
ðz
0

1 + 5
6 t4
À Á

+ 1
6 t20
À Á� �

dt = z + 1
6 z

5 + 1
126 z

21+⋯:

ð88Þ
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4. Kruskal Inequality for the Class BT 4L

In this section, we will give a direct proof of the inequality

apn − ap n−1ð Þ
2

��� ��� ≤ 2p n−1ð Þ − np, ð89Þ

over the class BT 4L for the choice of n = 4,p = 1, and for
n = 5,p = 1: Krushkal introduced and proved this inequality
for the whole class of univalent functions in [52].

Theorem 9. If g belongs to BT 4L , and be of the form (3).
Then

a4 − a32
�� �� ≤ 5

24
: ð90Þ

This result is sharp.

Proof. From (37) and (39), we obtain

a4 − a32
�� �� = 5

48 c3 − 2 1
2

� �
c1c2 +

47
288 c

3
1

����
����: ð91Þ

From (22), we have

0 ≤ B = 1
2 ≤ 1, B = 1

2 ≥D = 47
288 ,

ð92Þ

B 2B − 1ð Þ = 0 ≤D = 47
288 :

ð93Þ

Using (22), we obtain

a4 − a32
�� �� ≤ 5

24 : ð94Þ

This result is sharp and can be obtained by

g2 zð Þ =
ðz
0

1 + 5
6 t3
À Á

+ 1
6 t15
À Á� �

dt = z + 5
24 z

4 + 1
96 z

16+⋯:

ð95Þ

Theorem 10. If g belongs to BT 4L , and be of the form (3).
Then

a5 − a42
�� �� ≤ 1

6
: ð96Þ

This inequality is best possible.

Proof. From (37) and (40), we obtain

a5 − a42
�� �� = −

4081
331776 c

4
1 −

1
24 c

2
2 −

1
12 c1c3 +

1
16 c

2
1c2 +

1
12 c4

����
����:

ð97Þ

After simplifying, we have

a5 − a42
�� �� = 1

12
4081
27648 c

4
1 +

1
2 c

2
2 + 2 1

2

� �
c1c3 −

3
2

1
2

� �
c21c2 − c4

����
����:

ð98Þ

Comparing the right side of (98) with

γc41 + ac22 + 2αc1c3 −
3
2βc

2
1c2 − c4

����
����, ð99Þ

we get

γ = 4081
27648 , a =

1
2 , α =

1
2 , β = 1

2 : ð100Þ

It follows that

8a 1 − að Þ αβ − 2γð Þ2 + α a + αð Þ − βð Þ2À Á
+ α 1 − αð Þ β − 2aαð Þ2 = 0:00408,

ð101Þ

4aα2 1 − αð Þ2 1 − að Þ = 1
16 :

ð102Þ

From (26), we deduce that

a5 − a42
�� �� ≤ 1

6 : ð103Þ

This inequality is best possible and can be achieved by

g3 zð Þ =
ðz
0

1 + 5
6 t4
À Á

+ 1
6 t20
À Á� �

dt = z + 1
6 z

5 + 1
126 z

21+⋯:

ð104Þ

Next, we will calculate the Hankel determinant of order
two jD2,2ðgÞj for the class g ∈BT 4L :

Theorem 11. If g belongs to BT 4L , then

D2,2 gð Þ�� �� ≤ 25
324

: ð105Þ

This inequality is sharp.

Proof. The D2,2ðgÞ can be written as follows:

D2,2 gð Þ = a2a4 − a23: ð106Þ

From (37), (38), and (39), we have

D2,2 gð Þ = 25
1152 c1c3 −

25
10368 c

2
1c2 +

25
41472 c

4
1 −

25
1296 c

2
2:

ð107Þ

Using (23) and (24) to express c2 and c3 in terms of c1
and, noting that without loss in generality we can write
c1 = c, with 0 ≤ c ≤ 2, we obtain
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D2,2 gð Þ�� �� = −
25
4608 c

2 4 − c2
À Á

x2 + 25
2304 c 4 − c2

À Á
1 − xj j2À Á

δ

����
−

25
5184 4 − c2

À Á2
x2
����,

ð108Þ

with the aid of the triangle inequality and replacing jδj ≤
1, jxj = k, where k ≤ 1 and taking c ∈ ½0, 2�. So,

D2,2 gð Þ�� �� ≤ 25
4608 c

2 4 − c2
À Á

k2 + 25
2304 c 4 − c2

À Á
1 − k2
À Á

+ 25
5184 4 − c2

À Á2
k2 ≔ Ξ c, kð Þ:

ð109Þ

It is not hard to observe that Ξ′ðc, kÞ ≥ 0 for ½0, 1�, so
we have Ξðc, kÞ ≤ Ξðc, 1Þ: Putting k = 1 gives

D2,2 gð Þ�� �� ≤ 25
4608 c

2 4 − c2
À Á

+ 25
5184 4 − c2

À Á2 ≔ Ξ c, 1ð Þ:
ð110Þ

It is clear that Ξ′ðc, 1Þ < 0, so Ξðc, 1Þ is a decreasing
function and attains its maximum value at c = 0: Thus,
we have

D2,2 gð Þ�� �� ≤ 25
324 : ð111Þ

The required second Hankel determinant is sharp and
is obtained by

g1 zð Þ =
ðz
0

1 + 5
6 t2
À Á

+ 1
6 t10
À Á� �

dt = z + 5
18 z

3 + 1
66 z

11+⋯:

ð112Þ

5. Conclusion

In our present investigation, we considered a subclass of
bounded turning functions associated with a four-leaf-type
domain. We obtained some useful results for such a class,
such as the limits of the first four initial coefficients, as well
as the Fekete-Szego type inequality, the Zalcman inequality,
the Kruskal inequality, and the estimation of the second-
order Hankel determinant. All of the obtained results have
been proven to be sharp. This work has been used to obtain
higher-order Hankel determinants, such as in the investiga-
tion of the bounds of fourth-order and fifth-order Hankel
determinants. These two determinants have been studied
in [45, 53–56], respectively. Also, one can easily use this
new methodology to obtain sharp bounds of the third-
order Hankel determinant for other subclasses of univalent
functions.
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