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In this manuscript, two new classes of generalized weakly contractions are introduced and common fixed point results concerning
the new contractions are proved in the context of rectangular b-metric spaces. Also, some examples are included to present the
validity of our theorems. As an application, we provide the existence and uniqueness of solution of an integral equation.

1. Introduction

In the field of nonlinear analysis, Banach fixed point theo-
rem, which is introduced by Banach [1], is a powerful and
classical means to deal with problems on fixed points in
metric spaces. It is widely used in many disciplines of math-
ematics and has been promoted in many aspects. One impor-
tant extension is to extend the concept of metric spaces. b
-metric spaces and rectangular metric spaces are regarded
as two well-known generalizations of metric spaces.

As a extension of a metric space, b-metric space was
firstly introduced by Czerwik [2], by modifying the third
condition of metric function. In that paper, the author pro-
vided fixed point results for contraction conditions in this
type space. Afterwards, some authors have obtained many
excellent results concerning fixed point theory of a lot of
new types of contractive mappings on b-metric spaces. Gen-
eralizing the results of Berinde [3], Zada et al. [4] obtained
fixed point results for mappings with rational type and
Pacurar [5] got fixed point theorems of ¢-contractions. In
[6], common fixed point results for weak ¢-contraction
mappings were proved in this type spaces by Aydi et al. In
2019, problems about periodic common fixed point were
studied by Hussain et al. [7]. Recently, in [8], Gopal et al.
explored the latest researches and developments on theory
of fixed point in the framework of b-metric spaces. Younis

et al. [9] introduced new fixed point results for the underly-
ing mappings in the framework of dislocated b-metric
spaces. In [10], in b-metric-like spaces, the authors extended
the concept of Kannan mappings in view of F-contraction.
Lately, Younis et al. [11] presented the notion of graphical
extended b-metric spaces and discussed the framework of
an open ball in this new type space.

In 2000, by changing triangular inequality to quadrilat-
eral inequality, more general inequality, Branciari [12]
introduced the concept of rectangular metric spaces. Also,
the author extended the Banach contraction mapping
principle for this new context. Subsequently, a lot of fixed
point theorems of various contractive conditions in rectan-
gular metric spaces were obtained. Lakzian et al. [13]
established fixed point theorems dealing with (y,¢)
-weakly contraction conditions in this type space, which
was ulteriorly extended by Erhan et al. in [14]. Bari and
Vetro [15] got common fixed point results on given func-
tions with (v, ¢)-weakly contractive conditions. In [16],
George and Rajagopalan studied problems of common
fixed points of (y,¢)-contractive mappings. Lately, in
complete rectangular metric spaces, Wang and Pei-Sheng
[17] gave generalised O-contraction mappings which can
be regarded as generalized Suzuki-Berinde type 0-con-
traction mappings and provided conditions which ensured
this type mapping possesses a unique fixed point. By the
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help of C-functions, in [18], some fixed point results were
established by Budhia et al. In graphical rectangular b
-metric spaces, some errors from literature [19] were recti-
fied by Younis et al. in [20].

Inspired by results of Czerwik [2] and Branciari [12],
George et al. [21] extended b-metric space and rectangular
metric space by introduced rectangular b-metric space. In
that paper, the authors presented an analogue of Banach
fixed point theorem and fixed point theorem of Kannan.
After that, many researchers had solved problems of fixed
point of new type of contractive mappings on this type
space. Kadelburg and Radenovic [22] and Mitrovic [23] pre-
sented common fixed point theorems in this type space. In
the setting of rectangular b-metric spaces, a Boyd-Wong
type theorem was studied by Ding et al. in [24]. Sukprasert
et al. [25] presented the concept of weak altering distance
function and discussed fixed point result of a new general-
ized contractive mapping. Roshan et al. [26] gave some fixed
point theorems concerning almost generalized weakly con-
tractive mappings and rational type contractions. In [27],
Mitrovic obtained an analogue of Banach contractive map-
ping principle and solved an open problem arose in [21].
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Recently, Sunarsini et al. [28] introduced a new extension
of metric space named as complex valued rectangular b
— metric space and gave an example of Banach contractive
mapping principle at linear equation system. In [29], com-
mon coupled fixed point theorems concerning generalised
T — contraction conditions were studied by George and
Reshma. Lately, in ordered partial rectangular b — metric
spaces, Asim et al. [30] established some ordered-
theoretic fixed point results of Geraghty-weak contractive
mappings.

In 1997, by using the notion of weak contractive map-
pings, Alber et al. [31] extended Banach contraction map-
ping principle in Hilbert spaces. In [32], weak contraction
principle was generalized to metric spaces by Rhoades. After
that, many authors had generalised the weak contraction
principle. For example, in [33], the authors obtained the
fixed point results involving a-y contraction conditions
and applied them to solve quadratic integral equations. In
[34], Jamal et al. used (v, $)-weak contraction to extend
coincidence point theorems obtained in partially ordered b
-metric spaces.

Set

¥ = {y : [0,+00) — [0,+00)is a continuous and increasing function},

(1)

D = {¢ : [0,+00) — [0,+0c0)is a lower semi continuous and nondecreasing function and ¢(¢) = 0 if and only if t = 0}.

Hao and Guan [35] proved common fixed point result
dealing with a new class of generalized weakly contraction
conditions in complete b-metric spaces as follows.

Theorem 1 (see [35]). Let (&, p) be a complete b -metric
space with coefficient s> 1. Let O,R : & — & be self-map-
pings such that R is injective and O(&) c R(&) where R(&)
is closed. Assume that p>2 is a fixed number and ¢ : &
—> [0,400) is lower semicontinuous. If there exist €'V
and ¢ € O satisfying

V(s [p(OF, On) + ¢(08) + ¢(On)])

2
<y(I(&np, O, R 9)) = ¢(J(§, 1 p» O, R, @), 2

where

1661 0, ) = e { (RE, ) + (RE) + (). 3 (p(OF ) +9(08)
+@(RE) + p(On, Rn) + ¢(On) + ¢(Ra) }, ZLS{P(OE, Re)

+@(0&) + @(Rn) + p(On, RE) + ¢(On) + 9(RE) }},

J(& 1, p, O, R, ) = max {p(RE, Rny) + ¢(RE) + ¢(Ry), p(On, Ry)
+9(On) +9(Ry)},

3)

then O and R possess a unique coincidence point in &. Fur-

ther, if O and R are weakly compatible, then O and R have
a unique common fixed point.

Continuing in the same direction, our aim is to give two
new classes of generalized weakly contractions and establish
some common fixed point theorems dealing with the new
contractions in the setting of rectangular b-metric spaces.
Moreover, we present some examples that elaborate the
validity of our theorems. Also, as an application, we prove
the existence of solution of an integral equation.

2. Preliminaries
First, we recall some definitions and lemmas as follows:
Definition 2 (see [2]). Let J be a nonempty set and s > 1 be

a constant. A function o : M X M —> [0,+00) is said to be a
b -metric iff

(i) o(&n)=0iff =7 for & ne.lt
(ii) o(& 1) =0(n,§) for &, ne s

(iii) there exists a real number s> 1 satisfying o (&, %) <
s(0(&9)+0(n,9)) for &, n,9e¢ M

Usually, we call (#, o) a b-metric space with coeflicient
s> 1.
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Definition 3 (see [12]). Let . be a nonempty set. A function
p M X M—> [0,+00) is said to be a rectangular metric iff

n)=0iff E=nforé&,ne
(ll)P n) =p(n.&) for &, ne sl

(iii) p(&n) <p& x)+p(k,v)+ p(v,y) for & ne M and
all different points «, v € 4 — {&,n}

p(&,
(&

In general, we call (., p) a rectangular metric space.

Definition 4 (see [21]). Let .4 be a nonempty set and s > 1 be
a constant. A function @ : # x M — [0,4+00) is said to be a
rectangular b -metric iff

i) e n)=0iff E=nfor&nes
(i) e(§, 1) =a(n, &) for &, ne .t

(iii) there exists a real number s > 1 satisfying (&, %) <
s(e(& k) +o(x,v) +0(v, 1)) for &, € A and all dif-
ferent points x,v € M4 —{&,n}

As usual, we call (#,Q) a rectangular b-metric space
with coefficient s > 1.

Remark 5. It is obvious that a rectangular metric function
becomes a metric function when x=v and a rectangular b
-metric function becomes a rectangular metric function
when s =1, whereas the converse of this statement may not
be true (see [21], Examples 1.4 and 1.5).

Example 1. Let # =AU B, where A={1/2,1/3,1/4,1/5}, B
=[1,2]. Define @ : M x M — [0,+00) with (&, 1) =0(n, &
) for x,y € X and

Ly _ LN
el303)7Cl3 7)1 5) 7 5

LY ot L) =o0s
o(5 ) =e(5 5 ) =008

11 (4)
o N =06,
Q2 5
o(&, 1) = |& — 1|, otherwise

By calculation, we get (., Q) is a rectangular b-metric
space as s = 4, whereas we obtain the following results:

(1) (A, Q) is not a metric space, as

LD 06500301, 1) oL, 2 (5)
N2’ N2°3) %55
(2) (A, Q) is not a rectangular metric space, as

11 —0.6>0.15= 11 . 11 11
Q§>§—~ do=Q Q34 Qz,g

(6)

(3) (A, Q) is not a b-metric space with s =4, as

QG, é) =0.6>0.52=4. (QG, %) +QG, %)) (7)

Example 2. Assume (/,Q*) is a metric space. For p>2,
define @(&,7) = (@*(&,7%))?. Then, (/, Q) is a rectangular b
-metric space with parameter s =3/"!.

Proof. One can verify easily the conditions (i) and (ii) hold
by definition of Q(&,#). In order to check (iii), we can infer
from the following inequality:

(m+n+1)f <327 (mf +n” + ), forany m,n,[>0and p > 2.

(8)

Then, for £, € # and all different points 7,v € A — {&
, 1}, we have

=@ &) <@ (7)) +Q" (rv)+Q" (vy))
3771 (&, 7) +a(T, v) + (v, 1))

IN

That is, (., Q) is a rectangular b-metric space when s
=30 O

Definition 6 (see [21]). Let (., @) be a rectangular b-metric
space with coeflicient s > 1. A sequence {§,} in / is called:

(i) convergent sequence iff there is £ € .4 such that o(
£,8)—0asn— +00

(i) a Cauchy sequence iff @(&,,&,) — 0 when n,m
— +00

Furthermore, a rectangular b-metric space is called com-
pleteness iff every Cauchy sequence is convergent.

Remark 9. In rectangular b -metric spaces, one can show that
the limit of a sequence may not unique and every convergent
sequence in a rectangular b -metric space may not be a Cau-
chy sequence(see [21], Example 1.7).



Definition 8 (see [36]). Let O and R be two self-maps defined
on a nonempty set /. If v = O& = RE, for some & € .4, then
v is called the point of coincidence of O and R, where & is
said to be the coincidence point of O and R. Let C(O, R) rep-
resent the collection of all coincidence points of O and R.

Definition 9 (see [36]). Let O and R be two self-maps defined
on a nonempty set .#. Then, O and R are called weakly com-
patible mappings when they commute at each coincidence
point, i.e., O = RE = ORE = ROE for each £ € C(O, R).

Lemma 10 (see [26]). Let (M, Q) be a rectangular b -metric
space with parameter s> 1. Assume that {&,} and {n,} are
convergent to & and 1, respectively. Then, one can get

o( ) <lim info(E, ) <lim supa(§, ) < (6.

n—s+00 H—st+00
(10)

Moreover, if & =v, then we have lim,_, 0(¢,,n,)=0.
Further, for { € M, we deduce

L0(6:¢) <lim info(§,,¢) <lim supo(§,, ) <50(6,). (1)

n—+00

3. Main Results

In this section, a few of new common fixed point results on
generalized weakly contractive conditions in a complete
rectangular b-metric space will be presented. Moreover,
two examples will be provided to prove the validity of our
theorems.

Suppose (A, Q) is a rectangular b-metric space. A map-
ping O : M —> [0,+00) is named as a lower semicontinuous
mapping if, for & € # and {&,} is convergent to &, one get

O(&) <lim infO(&,,). (12)

n—+00

Let Q represent the set of all functions §: R,* — [0, 1
/s). We shall consider the contractive conditions defined by
the family ©:

®={0: [0,+00) — [0,+00)is a continuous and increasing function, for all «
>0,0(x) < kand 0(x) = 0iff £ = 0}.

(13)

Lemma 11 (see [37]). Let 6 : [0,+00) — [0,4+00) be a non-
decreasing and upper semicontinuous mapping. Then, 0(x)
<x for any x > 0 iff 0" (x) — 0 as n —> oo.

Definition 12. Let (M, p) be a rectangular b -metric space
with coefficient s> 1. Let o : M x M —> [0,+00) and O, R
: M — M be given functions and p>2 be a real number.
A function O : M —> M is called R - a, -admissible func-
tion if, for all &, 17 € #,a(RE, Ry) > s implies a(OE, On) > sP.

Definition 13. Let (M, Q) be a rectangular b -metric space
with coefficient s> 1. Let o : M x M —> [0,+00) and O, R
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: M — M be three given mappings. Suppose that p >2 is
a real number and ¢ : .4 — [0,+00) is a lower semicontin-
uous function. A mapping O is called a generalized (R - a,,
,0,¢) contractive mapping, if there exist 0 € ®, f € Q and
L>0,1/s+L <1 satisfying

(e (RE, Ryp)[(O, On) + ¢(O&) + ¢(On)])
<BO(h(& 1.0, 0,R, 9)))0(h(§, 1,0, O, R, 9))  (14)
+L0(q(§, 1.0, O, R, 9)),

for all &, 1€ ./ with a(RE, Ry) > s and o(OE, On) + ¢(0¥)
+¢(O0n) #0, where

(0n, On) +(On) + ¢(Rn)
1+ (O, RE) + ¢ (0F) + ¢(RE)
- {Q(RE, Rn) + ¢(RE) + p(Rn) }, % {e(O&, On) + 9(0F) + ¢(On)
+Q(RE, Ry) + 9(RE) + @(Rn) } }

H(E. 7,0, O, R, ) = max {e(OE, On) + 9(OF) + (O,

q(&, 1,0, O, R, 9) = 5 min {Q(O, On) + ¢(O8) + ¢(On), o(RE, Ry)

1
2
+@(RE) + ¢(Ry)}.

(15)

Let a : M x M —> [0,+00) be a mapping. Set

(Ay) If {&,} is a sequence in / satisfying RE,, — RE as
n — +00, then there is a subsequence {RE,, } of {RE, } with
a(RE, ,RE) > for ke N

(By) For x,y € C(O, R), one can get the condition of a(
Rx,Ry) >¢” and a(Rx,Ry) > s

Theorem 14. Let (M, Q) be a complete rectangular b -metric
space with coefficient s > 1. Let O, R : M — M be given self-
mappings satisfying O(M) CR(M) and R(M) is closed.
Assume that ¢ : M —> [0,400) is a lower semicontinuous
mapping and o : M x M —> [0,+00). If

(i) O is R-a,-admissible

(ii) O is generalized (R — ay, 0, @) contractive
(iii) there is &, € M satisfying a(RE,, OE,) > s
(iv) properties (Ay) and (B ) are fulfilled

(v) « satisfies transitive property, i.e., for &, n,{ € M

an) 2 anda(n.{) =¥ > aE ()25 (16)

then O and R possess a unique point of coincidence. Fur-
thermore, if O and R are weakly compatible, then O and R
possess a unique common fixed point in M.

Proof. It follows from condition (iii) that one can choose an
&y € M with a(RE, O,) > sP. Define sequences {§,} and {
n,} in M by n,=0E,=RE, | for neN. If ,=1,,, for
some n, then we deduce #,=7,,,=0&,,, =R, ., and O
and R possess a point of coincidence. Next, we suppose that
1, # Y,y for n € N. In light of contraction condition (i), we
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obtain

a(REp, RE, ) = a(REy, O, ) > &,
a(RE;, REy) = a(0&, OF,) 2 ¢, (17)
a(RE,, RE) = a(OE,, O,) > &F.

Hence, for all n € N, we deduce «(RE,,RE,,,) =a(y,_;,
n,) = s'. Applying (14) with =&, and n=¢,,,,

01> M) + (1) + @(M41)) <O [, Myir) + 9(1,) + P(M,01)])
<O(a(RE,, RE,,1)[0(08,, OF,,,1) + 9(OF,,) + 9(OF,,,1)])
<BO"(EEni1>0 O R 9))0(h(E, 1150, O R, 9))

+10(q(8, €412 O: R, ),

(18)
where

B8 8010 O, R 9)

= max {Q(O‘Ens O€n+1> + §0<O‘En) +‘P(O§n+1)> Q(OE,,H, REH+1) + (P(OE,,H) + @(REnH)

1+0(08,, RE,)) + ¢(O8,,) +9(RE,)
QURE, RE, 1) + (RE, ) + 9(RE, 1)}, 3 10(08,0 OF,)

(08, + 9(OF 1) + Q(RE,, RE, 1) + (RE,) +¢<an+l>}}

Q1> M) + (i) + ¢(1,)
L+ Q1 Myt) + 9(1,) + @(1,-1)

Ao 1,) + 9 (1,0) + 901,) 1 %{Q(m, Mast) + (1)

= max {Q(% M) + (1) + @ (1)

+ (1) + Q1o M) + () + <P(m)}}

< max {Q(H,1> M) + (1) + P(1)s Q1> M) + P(Mi1) +9(1,) 1

(19)

q(En’ €n+1’ Q O, R, (P) = % min {Q(OEW OEnJrl) + (P(OE,,)
+ (P(Ofnﬂ)’ Q(Rgn’ R£n+1) + (P(an> + (P(REnJrl)}
= % min {Q(y> 1) + (1) + P (Mr1)> Q11> 1)

+9(M,-1) +9(1,)}
(20)

If we assume that Q{1 11,,1) + 9(11,) + @(1,..,) > (1,
N._1) +9(n,) +9(n,_,) for some neN, according to (18),

(19), and (20), we have

Q0 y11) * 901, + 9(1,01)) < O (E1r§y100 O R 9)
+L0(q(S €410 O, R, 9))
= %9(9(%1, M) + @(Ma1) + 9(1,)) + LOQ(1,111:1,)

+ (M) +9(1,)) <OQ(M Marr) +9(1,) + 9(M,1))>
(21)

which is a contradiction. Thus,

(M M) + P(1,) + P(Mir) QM M) + (1) + (1,1)>
(22)

h(fn’ EnJrl’ Q’ O’ R’ (P) < Q(r]n’ ;/In—l) + (p(’/ln) + (P(nn—l)’ (23)

q(gn’ €n+1’ Q O’ R’ (P) < Q(ﬂn’ ﬂn—l) + q’(ﬂn) + (P(rln—l)'
(24)

It follows from (22) that {Q(#,, 1) +¢(11,) + ¢(71,.11)}
is decreasing. It follows that there exists a real number y >0

satisfying

im (e, M) + (1,) + 9(1M,00)) =Y. (25)

n—+00

In view of (18), (23), and (24), one can obtain

00, Ms1) + 9(1,) + P(M11))
<BO(E 1> 0 O, R 9))0(h(E,, €110 O R, 9))
+L0(9(§> &> 0 O, R, 9))
<01 Myer) +0(1,) + 9(1,,-1))-
(26)

If y > 0, putting n — ©0 in (26), we obtain
(27)
a contradiction. Hence,

lim (1, 1) + P(1,) + (1M,41)) =y=0,  (28)

n—-+00

which implies that lim,_, 0(%,,%,,;) =0 and lim,
¢(n,) =0. In view of hypothesis (v), we have a(1,_,,#,) >
sP. Taking £ =&, | and n=¢,,, in (14), we obtain

0Q(M-1>Ms1) + @(M-1) + @(M,11))
SOy 1) [Q(HM-1> Mir) + P(Me1) + @(1,111)])
<BO(En-1 80410 0 R 9))0(h(E, 158,11, 0. O R, 9)
+10(q(§,-1> €010 O, R, 9)),
(29)

where

h(§,-1> €415 @ O R, @) =max {Q(OF,_1, O, 1) + (08, ;) + ¢(OE,.,1),
. Q(Ofnﬂ’ ng,“) + (P(OEYH»I) + (P(REnH)
1+0(0%, 1, R, 1) +9(08,_;) + p(RE,_;)
: {Q(R'Sn—l’ REYH—I) + (P(R'En—l) + (p(RgnH)}’

! % {Q(O‘fnfl’ OEHI) + (P(Ofnfl) + (p(ofnﬂ)

+ Q(Rgnfl > REnH) + (P(anfl) + (p(REnH)}}
< max {Q(’/Infl’ ’1n+1) + (P(YIYI*I) + ¢(’1n+1)’ Q(’?n—p r]rx)
+¢(2) +9(1,)}>

(30)



q(gnfl’ £n+1’ Q O’ R’ (P) = % min {Q(Ognfl’ O£n+1) + (P(Ognfl)

+ (P(Ognﬂ)’ Q(Rgn—l’ RErH—l) + (p(REn—l)
+ (P(RE,,H)}

.
= 5 min {01 M) + 9 (M,21)

+Q(M11)> QM2 M,) + @(M,2) + 9(1,) }-

(31)

If for some 7 € N, Q1,15 1) + @(1,-1) + P(1,,1) > @l
Moo M,) +9(1,_,) +9(n,), according to (29), (30), and
(31), we get

0Q(My-1>Mps1) + P(Mr) + P(M01))
< ée(h(fn—l’ 8010 O R 9)) +L0(q(8,,-1,&,41, 0, O R, 9))

<Oy M) + P(Mm1) + 9 (M11))s
(32)

which is a contradiction. It follows that

QMo M) + P(Mt) + @ (Mit) Q0o M) + @(Mn) + 9(1,,)5
(33)

h(§-15 €@ O, R @) <01, 55 1,) + 9(1,2) +9(1,,),
(34)

q(En—l’ £n+1’ Q O’ R’ §0) < Q(rln—Z’ nn) + (P(rln—z) + (P(rln)
(35)
Inequality (33) yields that {e(n,_,.7,) + ¢(1,-,) + ¢(7,

)} is non-increasing and which yields that there exists € >
0 satistying

lim (Q(1,1,) +9(1,-,) +(n,)) =€ (36)

n—+00

In light of (32), (34), and (35), one can deduce

0(Q(M-1>Mur1) + @(M-1) + @(M,11))
<BO(En-1 841> 0 O R, 9))0(A(E,_1, 8,415 0 O R, 9))
+ Le(q(En—l’ &0 O, R, ?))
<0120 1,) + @(1,-5) + 9(1,.))-
(37)

Assume that € > 0. Letting n — 00 in (37), we derive

0(€) = lim H(Q(Vln—l’ ’7n+1) + (p(rln—l) +(p(7]n+l))

n—-s+00

< hm /‘;(G(h(gnfl’ En+1’ Q O’ R’ (P))e(h(fnfl’ En+1’ Q O’ R’ (P))

n—+0o

+ Lnirgoo(?(q(fn_p €ni1> @ O, R, (p))>
< lim 6(Q(1-5> 1) + 9(1,-2) + @(11,,)) = 6(€)s

n—+00
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which gives a contradiction. This yields that

lim (Q(#,-21,) + ¢(M,-,) +¢(n,)) =€=0. (39)

n—+00

It follows that lim,_,, 0(#,_,.%,) =0.

Now, we aim to show that {#,} is a Cauchy sequence.
Assume on the contrary that, {#, } is not Cauchy. So, there
exists € >0 for which we can choose sequences {nmk} and

{n, } of {n,} such that n; is the smallest index for which
nk > mk > k,

£<Q (nmk, flnk)’ (40)

Q(nmk, ﬂnkq) <e. (41)

In light of the rectangular inequality and (40) and (41),
we have

€< Q(ﬂmk’ ”lnk) <s [Q <17mk’ ’7nk—1) + Q(ﬂnk—l’ ’7nk+1> + Q<77nk+1’ ’7nk>}
e seltnts) (o)
(42)

Taking the superior limit as k — +00, we have

e <lim supg (nmk, nnk) < se. (43)

k—+00

Similarly,

Q(ﬂW mk) <s [Q (nmk» nmkﬂ) + Q(WWP ﬂmﬂ) + Q(nmfp n)] ;
(44)

Q (ka’ ”Ink) <s [Q (’7mk> rlm,(—l) + Q(kafl’ ’7nk—1> + Q(”lnk—l’ Wnk)} >
(45)

Qo101 ) <5 [@ (s ) + (1 s ) + @01 ) |

(46)

It follows from (40), (41), and (42) that

€

— <li , <e. 4

S S iriilifg(ﬂ’”" ﬂnk_l) <e (47)
By (40), (41), (44), and (46), we get

e

S <lim supg(qu_l, an) < se. (48)

k—+00

By the similar method, we have

Q(nm,pmkfl) §5[Q(’1mk71”7mk> + Q(nmk,mk) +Q(f1nk,'7nk71)],
(49)
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SO is

™

- <lim supQ(nmk . )_ Se. (50)

k—+00

%Y

According to the definition of h(&,7,0, O, R, ¢), we get

B(E,,5 &, 0 0, R ) = max {Q(OE,, , OF, ) +¢(0E,, )
Q(0,,. RE, ) + (08, ) + (R, )
+o(0h) 17 (08, . RE,, ) + (08, ) +9(RE,, )

(R, RE,) + 9(RE,, ) + 9(RE, )}, 5 {0(0F,,, 08,,) + 9(0E,,)

+¢(0E, ) +Q(RE,, . RE, ) +¢(RE, ) +¢(RE, ) }}
QU Mo M1 ) ¥ @M, ) + P\ M1
=max {Q(r’mk’r’nk) +(p(’/’mk) +¢(”Vlk)) 1 +Q((7/m Mo )]) +£(”1 ) +((P(”m)])
: {Q(’?mrv mﬂ) +e nmﬂ) + <P(mk,1) } % {Q(V/W mu) + w(nm‘) + w(m,‘)

+ Q(nm,p mﬂ) + ¢(f1mk,1) + <P(nnk,l) }}-

(51)

Taking the superior limit as k — +00 in (51), we get

g
lim suph(§,, &, .0 O, R, ¢) < max {ss, 0, ¢ 25 s} <.

k—+00

(52)
Also, we have

4(80580,@ O, R @) = = min {Q(OE,, , OF, ) + (08, ) + (08, ), (RS, . RE, )
+<P(Rfmk) +o(RE,) }

= 3 min {01, ) 91 ) + 0(1, )50 (071 )
9 (r) + 9 (1) }-

(53)
It follows that

lim supq(&,, ., .0 O, R, ¢) <s’c. (54)

k—+00

The transitivity property of « yields that a(RE,, , RE, )
>sf. Taking §=¢,, and #=¢, in (14), one can deduce

6(525) <0(sPe) < 9<a(Rfmk, ank)lirn sup {Q(ng ﬂnk) + ‘P(ka) + ‘P(’?m)])
<lim supB(6(h (&, &, 0, R )))0(h(E,, &, 0 O, R 9))
+lim supLO(q(&,,,€,,-2 O, R, )

< é@(szs) + LB(szs) < 9(528),
(55)

a contradiction. Hence, {#,} is Cauchy. Since (., p) is

complete, there is a 9 € # such that

Jim o(n,,9)= lim o(0§,,9)= lim o(RE,..9)=lm o(n,H,)=0.
(56)

Since R(.#) is closed, we have 9 e R(.). Hence,we
choose a z € / satistying 9 = Rz. We write (56) as

lim o(#,, Rz)— hm Q(Of Rz)= lim Q(RE,,,Rz) =
n—>+00

o (57)
It follows from the definition of ¢ that
¢(Rz) = ¢(9) < liminfo(y,) = 0, (58)
which implies that ¢(Rz) = ¢(9) =0.

The property (Ay) ensures that there exists a subse-
quence {n, } of {n,} with a(r, _;,Rz) > for ke N. If o(

Oz,Rz) + ¢(0z) #0, taking =&,
deduce that

and =z in (14), one

0(e(0§,,, Oz) + (p(OEnk) +¢(0z))
<0(s"[Q(08,, 0z) + (08, ) + ¢(0z)])
< G(a (an_l, Rz) [Q(0§,,, 0z) + (08, ) + go(Oz)])
< B(O(H(£,2:0.0.R. 9))) 646,210, 0. R )

+ LG(q(Enk, %0, 0,R 9)),
(59)

where

h(fnk, 2,0, O R, (p) = max {Q(OEW Oz) + (p(Ofﬂk) +¢(0z2),
) 0(Oz, Rz) + ¢(0z) + ¢(Rz)
1+ P(OEW’ REV’k) + (P(OEW) + (p(REVlk)
{Q(RE,, . Rz) + 9 (RE,, ) + 9(Rz) },
5 {0(08,,,02) +9(0k,,) + 9(02)
+ Q(Rz, ank) +¢(Rz) + (p(REnk) }}
= max {Q(’?W OZ) + w(mk) +¢(0z),
0(Oz, Rz) + ¢(0z) + ¢(Rz)

1 Qs ) + 0 (1, ) + 9 (11
: {Q(’?nk-l’Rz> +¢(mk_1) + sv(RZ)},
: % {e(1,02) +9(1,, ) + 0(02) + (1,1, Re)

+ sv(%_l) + fP(RZ)}})

(60)



min {Q(0§,, Oz) +¢ (0, )
9(02),Q(RE,,, Rz) +9(RE,, ) + p(Rz) }
- % min {o(n,,.02) + (1, ) +9(02). (1, Re)
+o (nn,;l) + (p(Rz)}.
(61)

By simple calculation, we get

lim suph(§, .z, @, O, R, ¢) <s5(Q(0z, Rz) + ¢(0z2)), (62)

k—+00

lim supq(&, .z @ O, R, @) <s(p(0z Rz) + 9(0z)).

k—>+00

(63)

Letting k — +o00 in (59), using (62) and (63), we obtain

0(s(0(0z, Rz) + ¢(0z2))) < 9<szlim sup (Q(Ofnk, Oz) + q)(Oan) + (p(OZ)))

k—s00

<6 <lim sup (Ot (VIH;H , Rz) [0(08,,, 0z) + ¢ (0, ) + q)(Oz)])

k—00
< %9(S<Q<OZ, Rz) + ¢(0z))) + LO(s(e(Oz, Rz) + ¢(0z)))
<0(s(e(Oz, Rz) + ¢(0z))).
(64)

It follows that 9(Oz, Rz) + ¢(Oz) = 0, which implies that
Oz =Rz, ¢(0z) =0.

Next, we show that O and R possess the unique point of
coincidence 9. Assume on the contrary, there exist z,z' € C
(O,R) and Oz+# Oz'. By the property of (B,), one can
obtain

oc(Rz’,Rz) >4 (65)
Taking & =z" and 7=z in (14), we obtain

9(g(0z’, OZ) +<p(0z’> +(p(Oz))
< e(sP [g (0z’, OZ) ¥ <p(0z’) + <p(0z)D
s@(oc(Rz',Rz) [g(Oz’, OZ) +¢(Oz'> +(p(Oz)D
sﬁ(@(h(z',z,g, O,R,(p)))@(h(z',z,Q, O,R,(p))

+ Le(q(z’, z,0, O, R, go))
(66)
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where

h<z’, z,0, O, R, (p> =max {Q(Oz', Oz) + (p(Oz') +¢(0z),
. 0(0z, Rz) + ¢(0z) + ¢(Rz)
1+ Q(Oz’,Rz'> + (p(OZ’) + <p<Rz'>
. {Q(Rz',Rz) +<p<Rz') +(p(Rz)},
: % {Q(Oz', Oz) + <p(Oz') +9(0z2)
+ Q(Rz', Rz) + (p(RZ') + q)(Rz)}}

< Q(Rz', Rz) + (p(Rz'),

q(z',z, 0, O, R, go) = % min {Q(OZI, Oz) +<p(Oz'>
+¢(0z), Q(Rz', Rz> + (p(RZ’) + (p(Rz)}
< Q(Rz', Rz) + (p(Rz').

In view of (66), we have

9(g(Rz’,Rz> +<p(Rz’)) < ée(Q(Rz',Rz) +(p(Rz' )
+L6(Q(Rz',Rz) +(p(RZ'>)
<9<Q(Rz',Rz> +(p(Rz'> .

(68)

Therefore, one can obtain that g(Rz, Rz') + ¢(Rz') = 0,
that is, Rz=Rz' =9 and @(Rz') =0. Hence, 9 is a unique
point of coincidence for O and R. Furthermore, if O and R
are weak compatible mappings, it is easy to prove that O
and R have a unique common fixed point z. The proof is
complete.(] O

Example 3. Let (M, Q) be the same as it is in Example 1.
Define mappings O, R : M — M by

1
ga £€A3
O =
E ! EeB
g; >
1 1
g: fzg)
) ) (69)
R g; gziy
=1 1 gl
5: _g)
1
1, fE{E}UB.
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Define mappings « : M x M — [0,+00) by

a(§n) = {

Define 0 : [0,+00) — [0,400), ¢ : M —> [0,4+00) as fol-
lows:

1111 1 1
SP,E,qe{g,Z,g,i}withfin,orfzq:g,orE:r/:I,orE:ng,

0, otherwise.

(70)

0(8) =

>

!

11
0.15¢ —0.03, €=, =,
¢ ¢ (5 3}

| = N

0, &e [0, -

1
11.976 -3.97, &e¢ <§,+oo>.

Defined (&) = 1/5 for all £ > 0, then 5 € Q2. We can show
that O(M#) c R(M), R(M) is closed. For &,y € M such that
a(RE, Ryp) > P, we get that RE, Ry € {1/5,1/4,1/3,1/2} with
RE + Ry, or RE =Ry =1/5, or RE =Ry = 1. This implies that
& ne{l1/5,1/4,1/3} with £+, or E=n=1/50r E=n=1/
4, or &,y € {1/2} UB. So we obtain O&, Oy € {1/5,1/3} and
a(O&, On) = sP. Combining with the condition o(O&, On) +
@(O&) + ¢(0On) +0, the following cases are considered:

Case 1. £E=1/2,5eB (or n=1/2,& € B).

0(a(RE, Ry)[e(O8, On) + 9(08) + p(On)])

e b ) o) )] o

BOh(E 1.0, 0,R, 9)))0(h(&. 1,0, O, R, ¢)) + LO(q(§, 1,0, O, R, 9))
> B(O(h(&, 1,0, 0, R, 9)))0(h(§, 1,0, O, R, ¢))

> é . % : %%G%) +(p(é> +(p(§) +Q(1:1)+¢(1)+(P(1)}

1
=—-(0.1+8+8)>0.8.
20

(72)
In view of above inequalities, one can get that

6(a(RE, Ry)[(O8, On) + 9(OF) + (On)))
<POh(E 1.0 0, R, 9))0(h(& 10 O, R, 9)) + LO(q(§, 11,0, O, R, 9)),
(73)

with L>0,1/s+L<1and s=4,p=2.

Case 2. £, €B.

0(a(RE, Ry)[@(OE, On) + ¢(0F) + ¢(On)])
i) o) oo

BO(h(&, 1,0 O, R, 9)))0(h(§, 1,0, O, R, 9)) + LO(q(§, 11,0, O R, 9))
= B(O(h(§ 1,0, O, R, 9)))0(h(&, 11, @, O, R, 9))
1

Sy %{QG ;) +¢(§) +¢(§) +g(1,1>+<p<1>+¢<1>}
= % -(0.04 +8+8) >0.32.

(74)
That is, for &,7 € B,

0(a(RE, Rn)[(OE, On) + ¢(08) + 9(On)])
<BO(& 1,0, 0,R, 9)))0(h(E 1,0,0,R 9))  (75)
+10(q(& 1.0, O, R, ),

with L>0,1/s+L <1 and s=4,p=2.

In summary, all requirements of Theorem 14 are satis-
fied. O and R have a unique common fixed point 1/5.

In Theorem 14, letting ¢ = 0, we can obtain the following
result.

Corollary 15. Let (M, p) be a complete rectangular b -metric
space with coefficient s> 1. Let o : M x M — [0,+00) and
O,R: M —> M be given mappings with O(M) C R(M)
and R(M) is closed. Assume that p > 2 is a arbitrary constant
and ¢ : M —> [0,+00) is a lower semi-continuous function.

If
(i) O is R-ay-admissible

(ii) for &, n e M such that a(RE, Ryy) > s and (O, On)
#0, there exist 0€®,BeQ and L>0,1/s+L<1

satisfying:

O(a(RE, Ri)o(OE, On) < B(O(m(E: 1,0 O, R))O(m(E: 71,0, O, R)
+L0(n(§, 1,0, O, R)),

(76)
where
_ Q(On, Rn)
m(&, 1, @, O, R) = max {Q(Of) On), 1+ Q(OF RE)
a(RE i), (2(08, R) o6 R |
(77)
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and

n(& 1,0 O,R) = é min {Q(O, On),Q(RE, Ry)}  (78)

(iii) there is &, € M such that a(RE,, O)) = ¢
(iv) properties (A, ) and (By) are fulfilled

(v) « satisfies transitive property, i.e., for & n,z € M

a&,n)>Landa(n,z) > = a(&,2)>, (79)

then, O and R possess a unique point of coincidence in M.
Further, if O and R are weakly compatible, then O and R pos-
sess a unique common fixed point

If =0, R=1I, and L=0 in Theorem 14, we have the
following.

Corollary 16. Let (M, Q) be a complete rectangular b -metric
space with coefficient s> 2 and M be closed. Let o : M x M
—> [0,400) and O : M —> M be given mappings. Suppose
p =2 is a arbitrary constant. If

(i) O is ap-admissible

(ii) for &, € M such that a(&,n) > s» and o(OE, On) # 0,
there exists 0 € @ satisfying:

O(a(& 1)e(08, On)) < pO(m™ (S, 7,0, 0)),  (80)
where 3 € (0,1/s) is a constant and

Q(On, 1)
T 1+0(0&,¢)

(& 1.0.0)=max { (0%, On) a(e ). S(@(08 1) +olEn) |

(81)

(iii) there is &, € M with a(,, OF,) > s
(iv) properties (A, ) and (By) are fulfilled when R=1

(v) « satisfies transitive property, i.e., for &, n,z € M

ET

a(z) 2" = a(t,z) >, (82)

then O possesses a unique fixed point

Definition 17. The self-mappings O, R : M —> M are called
a, orbital admissible mapping, if the following condition
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holds:

a (&, 08) > ¢, a (& RE) > s imply a (O, ROE) > s, a (RE, ORE) > ¢,
(83)

for a constant p > 3.

Definition 18. Let O,R : M — M be two self-maps and p
> 3 be a real number. The pair (O, R) is said to be triangular
a, orbital admissible if

(i) O,R: M —> M are a, orbital admissible

(il) a (& 7) =", a,(n7, On) = s? and a (17, Rny) > &
(8, On) = o7, o (&, Rnp) = o

imply

Lemma 19. Let O,R : M — M be two self-mappings satis-
fying the pair (O, R) is triangular o, orbital admissible. Sup-
pose that there is &, € M satisfying a,(§,, OE,) > s'. Define a
sequence {§,} in M by &) =08y, 8y, =REy, where i=
0,1,2,---. Then a,(&,,¢,,) > for m,n e NU{0} with m>
n,.

Proof. Since a(&,, O;) = a (&, &,) = s” and (O, R) is trian-
gular «, orbital admissible, a(&,, O;) > s” implies a (OE,,
ROE)) = (&, RE)) = (£, 8,) 2 5, (&), RE;) > ¢ implies
ay(RE;, ORE, ) = a (&5, OF,) = (85, &5) 2 7, a8y, OF,) =
implies a,(0&,, ROE,) = (&5, RE;3) = (3, &,) = 5. Apply-
ing the above argument repeated, we obtain «(&,,¢,,,) >
P for all ne NU{0}. Since (O,R) is triangular «, orbital
admissible, o (&,,&,,) = s for n,m e NU {0} with m>n.0

]

Definition 20. Let (M, Q) be a rectangular b -metric space
with coefficient s>1. Let O,R: # — M be two self-
mappings. Suppose that « : # x M — [0,400) and ¢
: M —> [0,400) is a lower semicontinuous function and p
>3 is an arbitrary constant. The mappings O, R are said to
be generalized a, - 0 -Geraghty contractions, if there exist
0e®,B,L>0and f+L<1,0<A<1/4 such that

a,(& 1) [e(O8, Ry) + ¢(O8) + p(R)]

(84)
< BO(s(, 1,0, O, R, 9)) + LO(t(§, 1,0, O, 9)),

for all &1 e/ with a,(&,7) =" and (O, Ry) + ¢(OF) +
¢(Rn) #0, where

s(&: 1,0, 0, R, ¢) = A max {o(§, 1) + ¢(§) + ¢(1),
1+0(8,08) + 9(8) +9(OF)
L+e(&n) + (&) +o(n)
- [e(O, Rn) + ¢(OF) + ¢(Rn)],
Q1 Rn) + 9(n) + ¢(Rn)
L+e(6n) + (&) + (1)
-[0(&, OF) + 9(8) + 9(08)]},
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1(8: 1@, 0,¢) = A min {o(&, 0F) + ¢(8) +¢(OF), (17, OF) + (1) + p(O5) }.
(85)
Let a, : M X M —> [0,+00) be a given mapping. Set.

(Cy) For all £ € M, we have a (§°,&") > &
(Dy) For all x,y € C(O, R), one can get the condition of
a(x,y) =P or a(y,x) >

Theorem 21. Let (M, Q) be a complete rectangular b -metric
space with coefficient s> 1. Let O,R : M —> M be general-
ized o, - 0 -Geraghty contractions and one of O and R is con-
tinuous. If

(i) O, R are triangular o orbital admissible
(ii) there is &, € M with satisfying ay(§,, OF,) = s
(iii) properties (Cy) and (Dy) are satisfied

then O and R possess a unique common fixed point

Proof. For &, € M, define a sequence {§,} by &,;,, = O,
&2jr2 = REy;,, for j=0,1,2, . We show that O and R have
at most one common fixed point. Assume that v+ w are
two common fixed points, then R(v) = O(v) =v# w = R(w)
= O(w). Therefore, o(O(v), R(w)) =o(v, w) > 0. It follows
from the property of (D) that (v, w) > s or a(w,v) >
. Without loss of generality, suppose that a (v, w) > s*. Let-
ting & =v and #=w in (84), we have

(v, w) +9(v) + o(w) <’ [(Ov, Rw) + ¢(Ov) + ¢(Rw)]
< a (v, w)[e(Ov, Rw) + ¢(Ov) + ¢(Rw)]
<PO(s(v,w, 0, O, R, 9)) + LO(t(v, w, 0, 0, 9)),
(86)

where

1+Q(v, Ov) +@(v) + @(Ov)
L+Q(rw) +9(v) +p(w)

Q(w, Rw) + ¢(w) + ¢(Rw)

L+ (v, w) +9(v) +9(w)

s(v,w, Q, O, R, @) = A max {Q(V> w) +o(v) + p(w),
- [e(Ov, Rw) + ¢(Ov) + ¢(Rw)],

“[e(v, Ov) + @(v) + @(Ov)]}

< i max {Q(vw) +¢(v) + p(w), 2[e(vw) + ¢(v) + 9(w)]. 4[o(v: w)
+9(v) + p(w)]} = (v, w) + p(v) + p(w),
(87)
and
t(v,w, @, 0, 9) = A min {Q(v, Ov) + @(v) + ¢(Ov), (w, Ov) + p(w) + ¢(Ov)}

< i min {Q(v, v) +@(v) + ¢(v), (w, v) + p(w) + ¢(v)}
<Q(nw) +9(v) +o(w).

(88)

11

In view of (86), we have

(v w) +¢(v) +o(w))

p(w),

+ () <6((nw) + 9V )

<Q(v,w) +¢(v) +
which implies that (v, w) + ¢(v) + (w) = 0. That is, v=w
and ¢@(v) =0. Hence, O, R have at most one common fixed
point.

Now, assume Q(§,,&,,,) >0 for neN. Otherwise, for
some k, &, =&,;,,, by assumption (ii) and Lemma 19, we
have a (&, &xpiq) = 5. According to (84), if &5,y #&op00
we obtain

Q(&akr1> Sakrz) + P(Eakar) + 9 (Eaks2)
< [Q(O&3 REyi1) + (O 3) + (RE )]
< o (§a Eaki1 ) [Q(O8 s REp1) + (08 5) + 9(RE )]
< BO(s(Eak Eakr1> @ Os R, 9)) + LO(H (810 E31415 @ O ),
(90)
where
$(&ak Eake1> @ O, R, @) = A max {Q(8r0 Eatn) + 9(Eak) + @ (&)
1+0(850 O85) + @(8ak) + 9(O85)
1+ 0(&a Saret) + 9 (8ak) + @(Ekin)
[0(O&5 REypi1) + 9(O8 ) + 9(REp01 )]s
08k REpps1) + @(8aki1) + P(RE11)
1+ (8o Sarrt) + 9(Eak) + P(Eaki1)
“[0(Eak O831) + @(Eak) + @(O80)] }
< i max {Q(&x &ati) + P(Eak) + P (Eaks1)>
148k Sorar) + 9 (k) + @(8akir)
1+ 0(8a Saret) + 9 (8ak) + @(Eki1)
“[0(akr1> Sariz) + P(Eaki1) + @(8aki2)]>
. Q(&akr1> Sakrz) + P(8aker) + @(Eakia)
1+ (800 Sart) + 9(8ak) + P(Eakar)
“[Q(8ak Eak1) + 9 (Eak) + 9 (Eain)]}
<Q(&aken S2ke2) + 9(8aki1) + 9(S2k12)>

(o1)

t(Eao Eaker> @ 05 @) = A min {Q(Exs O8) + 9 (k) + 9(O8x) @(Eakrr O8)
+9(Eoe1) + (08}

< % min {0(Ea0 &) + 9(Ea0) + 9Bk ©Eaters b

+9(8ar1) + (o) < 0(E0ki1 Sarrz) + 0 (Eakrr) + 9(Eai2)-
(92)

In light of (90) and above inequalities, we have

Q(&aki1> Eakrz) + P (Eakrt) + 9 (Eai2) < PO(S(8210 k12 @ O Ry @)
+ LO(t(Ea Sake1> @ 05 9)) + LO(@(Eaks1> Eakrz) + (Ekr) + (ki)
<0(Q(Eaks1r Sake2) + P(Eakr1) + P(82tr2)) < Q(Eakr1s Saraa) + @(E2ki1)
+9(Eaki2)s

(93)



12

which yields that Q(&.1 §oxi2) + P(Eti1) + @(Ekin) = 0. Tt
follows that &,,,, =&,.,.

Thus, &, is a common fixed point. Similarly, we can
prove that &,;,, is a common fixed point of O and R when

Eake1 = Sakra-
Now, assume that g(£,,,€,,,) > 0 for each n € N. Apply-

ing (84) with £=¢&,,,n=¢,,.,,, we get

S(Q(EZHH’ €2n+2) + (P(EZnH) + (P(Ezn+2))
< BO(s(820 E2n11- @ Os R, @) + LO(t (82, 31150, 05 9)),
(94)

where

$(8an> Eane1> @ O Ry @) = A max {Q(Ean> §2ni1) + @(E2n) + @(Eae1)>
14080 Sant) + 9(820) + 9(82011)
1+ 0(8m Eani1) + 0(82n) + 9(E2001)
[0anir Eani2) + 9(Eani1) + (Eonia)s
Qa1 Sansa) + (&anit) + 9(82n12)
1+ 0(8am Sanet) + 0(82n) + 9(E2011)
“[0(Gam &) + @(82n) + P(E2ni1)]}

< ;1 max {Q(&rm &omer) + 9(820)

+ 9(8an11)> @& Eanra) + 0(Eaner) T P(62i2) }>
(95)

t(&2m §2ne1> @ O, @) = A min {0(&51> E311) + P(E20)
+9(Ean1)> Q(Eans1> S2nr1) + P(E201)
+0(&ame1) } <Q(&am Eanit) + 9(820)
+9(Ern11)-
(96)

If Q&1 Sansn) + P(Eanat) +0(8202) > P(E2 E2nit) + @
(&) + 9(&5,,1) for some n, then by (94), (95), and (96),

we have

$(Q(&2ns1> Sanez) + 9(E2ni1) + P(82ns2)
< BO(Ean1> Gan2) + P(Eani1) + P(E2ni2)) + LO(Q(E2mi1> E2ns2)
+0(Eane1) + P(Canr2)) <0Gt Eaniz) + 9 (Eans1) + P(62n42))
<& Sanea) + 9 (E2ni1) + (E2ni2)s
(97)

which yields that
Q&1 Sansa) + P(Eans1) + P(§2002) = 0. (98)

That is, 0(&,,,,1>&5,42) =0, a contradiction. Therefore,

Q(&2ne1> Eanaz) T @(E2nr1) + @(82m2) <@(&2m Sani1) + 0(820) + @(8200)>
(99)

for n € IN. It follows from (94),(95), and (96) that

$(Q(€anr> Sanvz) + P (Canir) + P(82i2)) <2 Eanar) + 9(820) + (201
(100)
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Using the same technique, we have

$(Q(&am2> Eanez) + P(82mi2) + 9(E2n43)) < Q(Eane1> Eanea) + @(Eani1) + P(E2na2)>
(101)

which implies that {Q(&,,&,.,;) +¢(&,) +@(§,,;)} is a non-
increasing sequence satistying

S(Q(Erzﬂ’ En+2) + (P(Enﬂ) + (P(£n+2)) < Q(En’ £n+l) + (P(En) + (P(Eml)'
(102)

So there exists a A > 0 satisfying

lim (Q(En’ £n+1) + q’(gn) + (p(£n+1)) =\

n—-+00

(103)

Now, we suppose A > 0. By virtue of (94), (95), (96), and
(99), one can get that

Q&ans1> Samra) T P (Ean1) + (Eans2) < BOQ(E2> Eanr) + 9(E20)
+@(&one1)) +LO(Q(Eom Sanet) + P(E2n) + @(E20a1)-
(104)

Letting n — +00 in (104), we have

A= Tim (@1 Sane2) + 9(8ani1) T 9(82002))
<B lim 0(Q(8om Sann) + P(E20) + 9(82011))
+L lim 0(Q(S2m Saner) +9(820) + P(E2041))
< 1lim 0(Q(Eane1> Sansa) + P(E2011) + 9(E2042)) = 0(A) < A,

o (105)
a contradiction. It follows that
tim (@, Eu1) +0(E) +9(E,) =0 (106)
Hence,
Jim 0(8,,8,,0) =0, lim (&) =0. (107)
O

Now, we will show that {£,} is Cauchy. It is sufficient to
show that {&;,},{&;,,1}> and {&;,,,} are Cauchy. First of
all, we prove {¢,,} is Cauchy. We take into consideration
the following.:
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Case 1. k=2m + 1, where m > 1 and 3 is an odd number. By
means of rectangular inequality and (102), we deduce that

Q(&am E3nasi) <5105 &) + 0(E3me1> Sania) + (€320 Eanant)]
< 5[0 Eanet) + Q(Esnet> E3e2)] + Q302 Eanes)
+ 08343 E3nea) Q€300 Eanian)] < S[0(E300 E3na1)
+0(&sm1> E3nan)] + s* (0830420 E3ne3) + Q&35 G304
+ 5[40 Eanes) + QEaness Eaneg) 4o

+57 [Q (53n+3(2m+1)73’ €3n+3(2m+1)72)

+ Q(€3n+3 2m+1)-2> E3n+3(2m+1)71> + Q(EW 2me1)-12 E3me3 2m+1))]

HE07)A07-07)

] (080 &1) + 9(&0) + 9(&1))
+} (080> &1) + (&) + 9(81))
3n+1 2
(1) {1 ++(3) +] (0lEw ) + 9(E) + 9(61)

~(3) T e ) o) +9(6) — Oasn— o
(108)

The case that 37 is an even number is similar to the case
that 37 is an odd number.

Case 2. k=2m, where m>1 and 3n is an odd number. In
view of rectangular inequality again, we get that

(&3 Eanear) < 5[0(8am E3nar) + QEsne1> Eamea) + @342 E3naat)]
<[ Enn) + Q31> E3ne2)] + 5103025 E3es)
+ Q&35 Eanea) + Q3000 Eaneat)]
<5[0(85 &) + @(E3ne1> §3042)]
+ 51032 Eanrs) + Q&3> Esnea)]
+ 5[0 Eanrs) + Q635> Esnss)]

Freer +5"10(Esnrsm-3> Exnsom—z) + QEsusom2 Eansemot1)

+Q(smm,l,sw M=l 6)7)

3n+2 3n+3 1 3n+6m+2
+s < ) Hooegs. SO (; :| (Q(€p- &)
3n

+<p(su)+<p<fl>>ss(§) {H () }< (60 £1) + 0E)

1 1

roens(2)” {1 oLy <>+} (06 &) + 9(E) +9(8))

~(3) g b+ 0(e) +9l8) — Oasn— oo
(109)

The case that 3n is an even number is similar to the case
that 3n is an odd number.

Hence, {&;,} is a Cauchy sequence. Similarly, {&;,,,},
{&;,:,} are also Cauchy sequences. That is, {¢,} is Cauchy.
According to the completeness of (., p), we obtain that
there is a £* in J satisfying
(110)

lim O, = lim RE, =&
n—+00 n—-+00

13

In view of the definition of ¢, we have

¢(&") <lim infp(&,) =0. (111)

n—+00
Next, we show that O&* = RE" =& provided O or R is
continuous. Without loss of generality, assume that O is con-
tinuous. By (110), we get

£ = lim O, = o(ngqmﬁzn) =0(&").

n—+0o

(112)

This implies that £* is a fixed point of O.
Using property (C, ), we have o (§%,&") > sP. IfE* +# RE™,
from condition (84), one can deduce

Q&' RE) + (&) +9(RE") < s[o(0F", RE") +9(0F") + p(RE")]
<o (E%,E") [Q(OE", RE) + ¢(OE") + ¢ (RE™)]
<PO(s(£°.8", 0. O, R 9)) + LO(t(E". €7, 0. 0, 9)),
(113)
where
S(E*,£*>Q,O,R,§0):Amax {Q(f*’g*)+¢( )+ (E )
1+0(8, 08) +¢(&7) +¢(0F)
L+(887) +9(87) +o(87)
-[Q(0F", RE") +9(0") +¢(RE")],

¢
Q&% RET) +9(87) +o(RE”

&
(R
)
)

T+ E) re) roE
e 087) +o (&) + 9(0F) ]}
(&% RE") +(RE),
(114)
H(E,E,0,0,9) =0<Q(E", RE") +(RE"). (115)

It follows from (113) that

Q(E RE") + ¢ (RE") < O(p(E", RE") + 9 (RE")) + LO(o(E", RE")
+9(RE")) <O(e(87 RET) +9(RE7))

<ot RE) + o(RE),

(116)

which implies that (£*, RE™) + ¢(RE™) =0, that is, & = RE™

and @(RE") = 0. It follows that O and R possess the unique
common fixed point £. This completes the proof.
Example 4. Let = [0,+c0) and (&, 7) = (£ —#)*. Define
mappings O, R : M — M by
szi,RE=i,E€[0,+oo). (117)
72 63
Define mappings «, : M x M — [0,+00) by
a (& 1) =5",&n¢€0,+00). (118)
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Define 0 : [0,400) — [0,+00) and ¢ : M —> M with
0(8)=&/2,p(8) =& . Let B=1/3 and A = 1/6.

For &,1 € M with a,(§,77) > s>, we can know that for &,
7 € [0,400) such that £+ 0 or 1 #0,

&, (6 )[Q(08, Ra) +9(08) + p(R)] =3 {(752 ) () (%)Z}
g () e or)

BO(s(& 1> Q’O R ¢)) +LO(t(& 1@ O, fp)) BO(s(&: 1m0 O, R, 9))
255 gl + o)+ o(n)] = 52 (-0 +E 4]

(119)

In view of above inequalities, one can obtain that

a,(&,1)[e(O&, Rn) + ¢(O&) + ¢(Ry)]
+L0(t(§, 1,0, 0, 9)),

<pO(s(§ 1m0, O,R 9))

(120)

for &, ne M with a (&, 1) >s" and Q(OE, Ry) + ¢(O&) + (R
1) # 0. Hence, all requirements of Theorem 21 are fulfilled
with p =3, s=3, and L < 2/3. It is obvious that O and R pos-
sess the unique common fixed point 0.

Taking ¢ =0 in Theorem 21, one can obtain the follow-
ing result.

Corollary 22. Let (M, Q) be a complete rectangular b -metric
space with coefficient s > 1. Suppose O, R : M — M are two
given mappings and one of O and R is a continuous mapping.
Assume that o : M X M —> [0,400) and p > 1 is a constant
and there exist 0 € ®,3,L >0 and B+ L < 1,0< A< 1/4 such
that

a,(§,1)Q(08, Rn) < BO(s* (8, 1. @, O, R)) + LO(t (&, 1, 0, 0)),
(121)

for &, ne M with a (&) > s and o(OE, Ry) # 0, where

, O
(&m0 00 =Amax {oft ), UG q(08, ), A

t*(§,1,0,0) = A min {Q(§, O%), o(1, OF)}.

oE os>}
(122)

If

(i) O, R are triangular o, orbital admissible

(ii) there is &, € M with satisfying a,(§,, O8,)) > &
(iii) properties (Cp) and (D) are satisfied

then O and R possess a unique common fixed point
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4. Application

In this part, we shall prove the existence and uniqueness of
solution to the integral equation:

K

F(9,1,E(1))dA

0

£(9) :J (123)

Let ./ = C([0, K]) denote the collection of all continuous
mappings on [0, K]. For p > 2, define
(124)

(& 1) = sup [§(9) —n(9)| forallé, ne 4.

9€[0,K]

Hence, (/, p) is a complete rectangular b-metric space
with s =371,

O AE
(00, +00) bea

Theorem 23. Let O : M —> M by OE(9 fo
dA and & : (—00, +00) X (—00, + 00) —
given mapping. Suppose that

(i) F:[0,K] x[0,K] x (—00,4+00) — [0,+00) is
continuous
(ii) for all 9€[0,K] and &ned, 5(E(9),n(9))=0
implies §(0&(9), On(9)) = 0
(iii) there exists &, e M satisfying 8(&,(9), O&,(9)) =0
for 9€0,K],

(iv) properties (Ay) and (B, ) are fulfilled when R=1

(v) there is a continuous mapping v : [0,K] % [0, K]

—> [0,400) such that

K
sup J y(9,A)dr <1 (125)

9e[0.k]J 0

(vi) there exists a real number 3 € (0, 1/s) satisfying for
(9, 1) € [0,K] x [0, K],

|F(9, A, &(X)) = F(9, A, n(1))| < {’/%y(& MIEA) = n (M)l
(126)

Then, the integral equation (123) possesses a unique
solution &(9) € /.

Proof. Define « : M x M —> [0,4+00) by

s,
M&m={
0,

For &, 1€, according to assumptions (i)-(vi), we

if 8(5(9).1

otherwise.

(9)) 20, -
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obtain

$Q(0&(9), On(9)) = 9:{3% |0E(9) - On(9)F

=4 sup
9€[0,K]

JKF(S, LE))dA

0

- JKF(S, rnondr|

0

< sup (JK|F(9, L EA)) - F(9, L, (1)) dA)p

9¢(0,.k] \Jo

X »
< sup ([ Ly —n(A)dA)

9efo.k] \ Jo V 25

K B P
<s su J V1 =p(9, M)dA
Se[o,g] < 0 ZSPY( )

- sup [(9) —n(9)[’
9€[0,K]

- B. %Q(g, 1) < pO(m’ (&1, 0)).
(128)

Letting 6(9) = 9/2, one can verify that all the conditions
of Corollary 16 hold. As a result, O possesses a unique fixed
point & € /, that is, £(9) is the unique solution of integral
equation (123). This completes the proof.(J O
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