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Let S be any bounded linear operator defined on a complex Hilbert space % . In this paper, we present some numerical radius
inequalities involving the generalized Aluthge transform to attain upper bounds for numerical radius. Numerical computations

are carried out for some particular cases of generalized Aluthge transform.

1. Introduction

Mathematical inequalities play an essential role in develop-
ing various areas of pure and applied mathematics. The
usefulness of mathematical inequalities is to estimate the
solutions of real-life problems in engineering and other
fields of science. In mathematics, particularly in functional
analysis, the study of numerical radius inequalities has
become the attention of many researchers due to the appli-
cations of numerical radius in operator theory and numeri-
cal analysis, etc. (see [1-4]). Various mathematicians have
developed number of numerical radius inequalities to esti-
mate the upper and lower bounds for numerical radius. It
is interesting for researchers to get the refinements and
generalization of these inequalities. The aim of this paper
is to study the generalization and refinements of existing
inequalities for numerical radius. Now, we recall some
notions to proceed our work.

Let B() be the C*-algebra of all bounded linear oper-
ators defined on a complex Hilbert space % . For S € B (%),
the usual operator norm is defined as

[IS]| = sup {[|Sx]|: x € Z, ||x]| =1}, (1)

and the numerical radius is defined as
w(S) =sup {|(Sx, x)|: x e Z, ||x|| = 1}. (2)

It is well known that the numerical radius defines an
equivalent operator norm on %(%), and for Se€ B(¥),
we have

SISl <w(s)<is]. ()

Many authors worked on the refinement of inequality
(3) (see [5-7]). Kittaneh developed the following upper
bound of numerical radius:

w) <3 (I8l +[]), (4)

which is a refinement of inequality (3) (see [5]). For Se
RB() having polar decomposition S= U|S| where U is a

partial isometry and |§| = (8*S)"?, the Aluthge transform
is defined as

5= s US|, 5)
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see [8]. Yamazaki developed an upper bound of numerical
radius involving Aluthge transform given by

3 (1s1+w(3)). (©

which is an improvement of bounds (3) and (4) (see [9]).
Bhunia et al. developed a bound of the numerical radius
given by

w(S) <

w(8) < ;}(HSH +w'(8) +w(|58+3s))).  (7)

and proved that it is a refinement of bound (6) (see [10]).
Okubo introduced a generalization of Aluthge transform
which is defined as

Si=1s/'uls), (8)

for A€[0,1], known as A-Aluthge transform (see [11]).
After that, a number of numerical radius inequalities were
established involving A-Aluthge transform (see [12-14]).
Abu Omar and Kittaneh using A-Aluthge transform gener-
alized bound (6) given by

5 (1s1+w(s)), )

see [12]. Shebrawi and Bakherad introduced another gen-
eralization of Aluthge transform which is defined as

w(S) <

Sre=F(ISHUA(IS)), (10)

where f and g are nonnegative and continuous functions
such that f(x)g(x) = x(x > 0), known as generalized Aluthge
transform. The authors generalized inequality (9) given by

w(s) < %(||S||+w(§;g>>, (11)

w(s) < g IP0S) + 20D+ 3w(Sr). (12

see [15].

In this paper, we establish some new inequalities of the
numerical radius using generalized Aluthge transform.
Specifically, we generalize inequality (7) and improve the
inequalities (3), (4), and (12). Some examples of operators
are presented for which the bounds of numerical radius are
computed from these inequalities for some choices of f,g
in (10).

2. Main Results

Now, we recall a lemma that will be used to achieve our
goals.
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Lemma 1 (see [9]). Let S € B(F); then, for 0 € R, we have

w(S) =sup||Hyl|| = supHRe (eiBS) , (13)
0eR OeR

where Hy = (7S + e705%)/2.

Polarization identity: [15] For each x,, y, € #, we have

1
(royn) = g (I + 2007 = e =P

il + iy | = dl|x = i)

(14)

Now, we establish an inequality of numerical radius
which is a generalization of inequality (7) and a refinement
of inequality (12).

Theorem 2. Let S € B(). Then,

) I N —
w(8)< QU7+ 507 (1) + 52(Qrg +575Q), (15)

where Q= (f(|S]))> + (9(|S|))* and f.g is nonnegative con-
tinuous functions defined on [0, 00) such that f(t)g(t) = t.

Proof. Let S = US| be the polar decomposition of S. Then, by
polarization identity, we have

(50x) = (¢U[Sl x) = (S Ug([S|)f([S])% x)
= (&7 (I8))% g(1S)U"x)
- 5 ([le=rasnegaspu|
- |lemasix - gishua
[#es s +ig(s)U

e sse=igtishus| ).

~.

+

~

Therefore,
Re<e"95x,x>
2Of(S]) + 9(|S)U"x
- 3|leerasn -
< [le=rash + saspur
4\\(2'9 (181)+ (1)U ) (£ (1s1) + g(1SHU*) |

= [ (e rash+aushu) (e sas + vats) |

4

‘ 2

g(|SHU"x

‘ 2
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= 2| ¢Sy + (atsn)? + e shuasy
(1S U f(S))|

(FOSD) + (g8 + 2757+ e(5;,)
orane (5,

(Q +2 Re (ezje%)>2

o~ 2 iy~
Q> +4Re (ezlesf,g> +2QRe <e2"’sf)g)

172

|
e B B B N B N

1/2

“+

2 Re (ewS/};) Q

1 2 2100 2
=1 Q +4Re (e Sf)g>

2i0 o c 12
+2Re (e (st)g+sf>gQ))H
1 AL
i (10 e (2253)|

o ({5520 )

IN

(17)

Now taking supremum over 0 € R in the last inequality
and then applying Lemma 1, we obtain

w(S) < i6||Q\| +ow (sfg)+ w(Qng+ngQ), (18)

as desired. O
Theorem 2 includes some particular cases of generalized
Aluthge transform for different choices of continuous func-

tions f and g in (10) as follows.

Corollary 3. Let S€ B(Z'). Then, for A € [0, 1], we have

wZ(S) <

1176”QH2+ éwz(S:) + éw(QSNe +§eQ)s (19)

2 2 ~ .
where Q = (e‘s‘l) + (|S|e‘|5‘l) and S, = st UNER "

Corollary 4. Let S€ B(F). Then, for A € [0, 1], we have
Q| + 1w2(§) + fw(Qé“ +§Q), (20)
e 8 e e

2 2 ~ }
where Q = (|S|e‘|S‘A) + (e'S‘A) and S, = |S|elS! "Ues!,

Corollary 5. Let S € B(). Then, for A € [0, 1], we have

W(5)< el + 0 (5) + gu(Qi+8Q). @)

where Q= |S|* + |S|2<17’\). In particular,

(||S\| +w ( )+w(|5|§+§|5|)). (22)

Remark 6. By using the inequality

w’(8) <

»-lkl’N

w(YA + AY*) <2|Y|w(A), (23)

forall Y,A € B() (see [16]) in inequality (15) obtained in
Theorem 2, we have

s (2lQlw(s,))

1
w(9) < e QI+ 7w (57,) +

2 (24)
=( HQ||+ S sfg)> .
Hence,
1
w(s)< Q| + —w(Sf)g), (25)
where Q= (f(|S))* + (g(|S]))*>. Thus, inequality (15)

obtained in Theorem 2 is better than inequality (12).

Remark 7. For continuous functions f and g in (10), if
§;4 =0, then inequality (15) becomes

1
w(S) < 2 [ (FUSD)* + (98D’ (26)
In particular, if we take £(|S]) = |S|"* and g(|S]) = |S]">,
for this choice of f and g if S;, =0, then inequality (15)

becomes w(S) < 1/2||S||, and combined with inequality (3),
we get w(S) = 1/2]|S]|.

Theorem 8. Let S € B(F). Then, we have

w'(9) < % (LS55 a3 2 1)’
+

1
~w(S’P+PS7) + — ||p|\ ,
8 16

where P=S8"S+ SS* and f,g is nonnegative continuous func-

tions defined on [0, o) such that f(t)g(t) =t.

Proof. Since Hy = (€S + e75*)/2 for all § € R, then we have

Hy' = (8 42057 158" +5°s)

(28)

e N ]

(eziesz 4o 2i0ge2 +P),



4
which yields
g 1 202 , 202\, 200 (2 2
Hy' = = ( (8 +2052) 4 (S + PS)
16

420 (S*ZP + PS*Z) + P2)

. . 2
<ezlesz n e-z,es*z)

+e-2f9f<|8|)g<|8|>U*f<|8\>g<lsl>U*>2
) )

(2081557 15D + 7507, " 15"
+2 (Re <e2i9 (P + PSZ))) - Pz) :

1
16

(29)
O

Since Hy, is self-adjoint, so |Hg*|| = ||Hp||*. Hence, using
the properties of operator norm ||-|| on B(%’), we have

4
([l

<36 ((

<

IN

@7Ug(|S))Sy o (IS))
+ e (15057, a(SH V)’
o (505 07

y ((HUg SDS;f (IS | + [ F(1S)S7 " g(shU”
o (55 07
116((IIUIIIIg(ISI)IIHS}V,@HIIf(ISI)II
+IFGSDI|S5” Jlatisnmosn)’

+2HRe (e2f9(52p+psz))) H + ||p|2>
11—6(4(f<|8>HS};HHg(snn)z

r2fRe (9(5'P+ 25| + 1217

)

(30)
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where the equality holds because ||S||=]|S*||. Now taking
supremum over 0 € R in last equality, then applying Lemma
1, yields

w'(9)< 3 (IFASD IS5 aisn)’
+ %w(szmpsz) + 1_16 |P]-

For different choices of f and g in (10), we obtain the
following inequalities of numerical radius from Theorem 8.

Corollary 9. Let S € B(). Then, for A € [0, 1], we have

1 <£ .
v ( T4 (H o ) (32)
+

w(S°P+PS?) + 1—6 I1P|I°,

Co| ~

where P=S*S+SS* and S, = e‘S|AU\S|e‘|5‘A.
Corollary 10. Let S€ B (). Then, for A € [0, 1], we have

w(S°P + PS?%) t o ||P|\

1
+ —
8
where P=S$*S+SS* and S, = |S|e‘s‘4 Uels'".
Corollary 11. Let S€ B('). Then, for A € [0, 1], we have
1 ~ N2 1 1
4 2 2 2
w'(8)< 5 (ISI|Si])” + gw(sP+PS) + 1P (34)
where P =S*S+ 8§8. In particular,
w(8) < £(||SH||§||)2 + lw(SZP+P82) + iHP||2 (35)
4 8 16

Remark 12. Tt is easy to check that ||S|| < 182"

details). Using the following inequality

(see [9] for

w(YA +AY") <2||Y[|lw(A), (36)
for all Y, A € B(F) (see [14]), Corollary 11 yields
1 N2 1 1
w(s)< 3 (ISISI1) + gw(s’P+PS’) + 1P’
2 1 1
< 3 (ISHIS™) + Jw() 12l + 1 121

a2\2 1o 1 2
<2 (ISUIS1™%) "+ ISPl + 1P

1 oz 1 2
3 I S1P1)

/\m»—m
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We know that [|S*S+SS*|| <[|S?|| +||S||* (see [17]).
Hence,

HI/Z

1 1
SISIHIS?(| ™ + 11S7S + 887
2 4

HI/Z

1 1 1
< SISUIS" + 1+ G 0sE (a8

1 1 2
- (EHSZHUZ + E”S|) .

Thus, the bound given in Corollary 11 is better than
bound (4).

Remark 13. If Sffv)g =0 in inequality (27) obtained in Theo-

rem 8 for different choices of f and g in (10), then inequality
(27) becomes

—

1
4 2 2 2
w*(S) < gw(s P+PS§*) + T (39)

If $=0 and S};=0 are equivalent conditions, then
inequality (27) becomes

1
w*(8) = 2 1P (40)
Theorem 14. Let S € B(H). Then, we have

1 o 2 * * *
OES (\|qu|>anf,gH lg(S)I| +w(s’S" +8°8?+ 58 S)))
(41)
where f,g is nonnegative continuous functions defined on [0

,00) such that f(t)g(t) =t.
Proof. Since Hy = (¢S + ¢75*)/2 for all § € R, then we have
1 . )
He = (e2’952 +e 20872 4 58" 4 s*s), (42)

which implies
1 ) . ) )
Hy'= ¢ ((e"’s + e*l"s*) (e2’952 +e 20872 4 58" 4 s*s))

1/, . 4

5 (7847057 12 Re (7(SS" 4+ 5°S +5575) ) ).

(43)
O

In the last equality, Re (e?(S2S* +S*S? +85*S)) = (e
(S7S2 + S5+ 5785 ) + ¢ 0(S2S* + S*S2 + S5*S))/2. Hence,

Il < g | va(sD (57,) 7050

e F(S0)(S7,) (IS U"

+|[2Re (7(8" + 582+ 55°9) ) |

+

<3 <||U|||g<|8|>||H%Hznmswn

+ LSO 5 [ Natishi"

+ ZHRe (eie(SZS* +8°8% + SS*S)) H)
- 5 (nrason|sz [ rsison

+||Re ((875" +5°57 +55°5)) H)

The first inequality holds because ||A; + A, | < ||A || +
A, || where A, A;, A, € B(I), the second inequality holds
because ||A A, <||A,||||A,]| and ||A"]| <||A||"Vn € N, and
the third equality holds because ||A| =]||A*| and ||UJ| =
lU*]|=1. Now taking supremum over 6€R in above
equality the using Lemma 1, we obtain

g

3 1 117 2 o* * Q2 *
()= 5 (1FUSDI|[ S| Na0SDI+w(ss" +5782 4 5575) ),

(45)
as desired.

Corollary 15. Let S€ B(). Then, for A € [0, 1], we have

R (R

+w (58" +8°8 + ss*s)),
(46)
where S, = e‘S|AU|S|e’|S‘A.

Corollary 16. Let S€ B(Z). Then, for A € [0, 1], we have

1 2
(T

+w (58" +8°8 + ss*s)>,
(47)
where S, = |S|e‘s‘4 Uels!".

Corollary 17. Let S€ B('). Then, for A € [0, 1], we have

3 1 = |12 2 ok * Q2 *
w(S)< HSHHSAH Fw (ST + ST 48S°S) ). (48)



In particular,
1 ~
wi(S) <, (ISIIS]"+w(ss" +5'8+55°5) ). (49)
Remark 18. Yan et al. proved that
2 1 . 1 * *
w(8) < SIFUSHI Sy Iatisy I + 8" s+ 551 (50)

see [18]. Inequality (41) obtained in Theorem 14 gives better
bounds of numerical radius of S for different choices of f
and g in (10) when
0 5 0
S=10 0 3. (51)
1 0 0

Then, S = US| is a polar decomposition of S, where

o

0 0
5 2|, (52)
0 3

1S]=

[ )

and

[«]
—
o

is partial isometry.

Bounds (41) and (50) are computed for some choices of
f and g in (10) for the given S in Table 1, whereas the
numerical radius of S is

w(S) =2.9154. (54)
The spectral radius of an operator is defined as

r(S) = sup {|A|: A€ a(S)}, (55)

[l¢[I=1

where r denotes the spectral radius. For further inforamtion
on spectral radius, see [19]. The following theorem will be
used to develop the next inequality of numerical radius.

Theorem 19 (see [17]). Let M, M,,N,,N, € B(I). Then,
r(M;N; + M;N,)

< é(w(N1M1) +w(N,M;))

1
+ 3 \/w(N1M1) —w(N,M,) + 4[N, M,||[|[N,M,]|.

(56)
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TaBLE 1: Bounds (41) and (50) for different choices of f and g
in (10).

,9) Bound (50) Bound (41)
(|S|”2 NES) 4.2640 3.2655
(117, 187) 4.0704 3.0724
(e‘s‘”w 'S‘“m) 43582 3.3622
(e‘s‘”” 19| *'S‘”'“) 42055 32031
Theorem 20. Let S € B (). Then,

1

w(9)= 3 (w(S) + LD 57 s

—w(8°S* + 578+ 85°S),

(57)

where f,g is nonnegative continuous functions defined on
[0,00) such that f(t)g(t)=t.

Proof. Since Hy = (€S + ¢75*)/2 for all 6 € R, then we have

1/ .. )
Hy'= (ezl@s2 e 205" 4 58" + S*s), (58)
which implies
1
HJ3="_
73

(¢ +e7s") (8" + 577 1 55" +5°5)

Hq' = ¢ (£ Ua(s) (57, )
+e6(8)) (37,7) as)U

+2Re (¢7(85" +8°8+ ss*s))) .

(59)
O
Now by using the properties of operator norm ||-|| on
B(H ), we have
s L[| s )
1Holl* < 5 ( [€*Ua(S1) (S ) F(SI)

+e6(9)) (37,7 a(s)U

+2||Re (&(85" +5°8” +55°5) ) H)
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= 5 (e uatsn(s5,) s
- 15 (57,) a0
+2HRe (e"e(szs* % +ss*s))”> (60)
1

=3 (r(MlNl +M,N,)

+2HRe (e""(szs* +8S+ ss*s)) H)

. —~ 2 .
where M, =e"Ug(|8)(S;,)"s Ny =£(IS]), My =ef(|S])

(S}T;)Z, and N, =g(|S|)U*; the first equality holds for
Hermitian operator satisfying r(A) = ||A||. Now applying
Theorem 19 on last equality with w(aA)=|ajw(A) and
w(A) =w(A*), we obtain

Il = (w(57)

+ N4H<f<|8>>2HH (57" Hicatis2 57|
),
(%)

N o ol W P o

+2||Re ((S5" +5°57 +55°5) ) H)

IN

IN

5 (2(5") sz ratsnn)
N %HRe (eie(szs* L5t ss*s)) H
(61)

Taking supremum over 6 € R in last inequality, then
applying Lemma 1, we obtain

()< (w(sf”,j) + ||f<|S|>||Hsff,gHanusnn)

1
+ —w (88" +5°8* +85°9).
4
Corollary 21. Let S€ B(X). Then, for A €0, 1] we have

=4 (o) AT I)

+ fw(SZS* +88° +55*S),
4

? |S|e—\S\A

S.

where S, = e|S|AU|S|e“S‘A.

Corollary 22. Let S€ B(F'). Then, for A € [0, 1] we have

o= (@) f IS emT)

+ fw(szs* +8°8% +55%S),
4

? |S‘e—\5|A

S.

where S, = |S|e‘5“ Ues’".

Corollary 23. Let S€ B(Z'). Then, for A € [0, 1] we have

1 ~ ~ 1|2 1
wi(S)< 3 <w(S,\3) + ||S||HSAH ) + (S8 485 455°).

(65)
In particular,

1 T R 1 * * *
w(S)< 3 (w<83) + HsHHsHZ) + (S8 4887+ 85°S).
(66)

Remark 24. 1t is easy to observe that inequality (57) obtained
in Theorem 20 is better than inequality (41).

Now, we exhibit some examples where numerical radius
bounds are computed from inequalities (15), (27), (41), and
(57) for some choices of pair f, g in (10) and for a given
operator S.

Example 1. Given

0 3 0
S=]0 0 2. (67)
1 00

Then, S=U|S| is a polar decomposition of S, where

IS =

o
W
o

(68)

o
o
[\

and

is partial isometry.



TaBLE 2: Bounds (15), (27), (41), and (57) for different choices of f
and g in (10).

f Bound Bound Bound Bound

(>9) (15) 27) (41) (57)

(1'%, 18]"2) 22704 23596 24662 23811

(181", 181*%) 23596 23264 24346 23332

(181", 181 24817 23244 24327 23632

(181", 18*%) 25826 23510 24579 23462
172 112

(e‘s‘ ,|S|e ) 87223 24234 25284  2.3854
‘5‘1/3 —|S\”3

(e > |Sle ) 5.3389 2.3492 2.4563 2.3459
1/4 1/4

(e‘s‘ I8 ) 44307 23277 24311 23314

(e‘s‘”s S| "5‘“) 40333 23380 24456  2.3394

TaBLE 3: Bounds (15), (27
and g in (10).

), (41), and (57) for different choices of f

Bound Bound Bound Bound
(>9) (15) 27) (41) (57)
(1812, 15]"%) 1.5047 1.5065 1.4500 1.3880
(1S, 1S]7) 1.5416 1.5425 1.4901 1.4059
(IS, 151 15754 15637 15130  1.4432
(181", 151*7) 16026 15769 15276 14513
‘S‘uz —|S\”2
(e |Sle ) 4.7336 1.5272 1.4726 1.4004
1/3 1
(e‘s‘/ Sle”™s! ”) 36923 15335 14794 14250
‘5‘1/4 —|S\”4
(e »|Sle ) 3.3318 1.5585 1.5069 1.4399
‘S‘I/S —|S\”>
(e »|Sle ) 3.1529 1.5729 1.5231 1.4488

Bounds (15), (27), (41), and (57) are computed for some
choices of f and g in (10) for the given S in Table 2, whereas
the numerical radius of S is

w(S) =2.0565. (70)
Example 2. Let
01 0
S=]0 0 2. (71)
1 0 0

Then, S= US| is a polar decomposition of S, where
1 0 0
ISi=]0 1 o |, (72)
0 0 2
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and

010
u=|o0 0 1]. (73)
100

Bounds (15), (27), (41), and (57) are computed for some
choices of f and g in (10) for the given S in Table 3, whereas
the numerical radius of S is

w(S) = 1.3662. (74)

3. Conclusion

From the results of this paper, we conclude that the inequal-
ities of numerical radius involving generalized Aluthge
transform have variety of upper bounds for numerical radius
due to the choice of f, g in generalized Aluthge transform
(10). The inequalities (15), (27), (41) and (57) obtained in
Theorem 2, Theorem 8, Theorem 20, and Theorem 14 are
new and generalized upper bounds for numerical radius.
These generalized upper bounds can be useful to find better
bounds of numerical radius already existing in literature for
some choices of f, g in generalized Aluthge transform (10)
and certain operators. It is proved that inequality (15) of
Theorem 2 generalizes inequality (7) and improves inequal-
ity (12) for any choice of f, g in (10). Inequality (27) of
Theorem 8 is sharper than inequality (12) for the choice of
f(t)=g(t) =t"* in (10). Inequality (41) of Theorem 14 is
better than inequality (57) of Theorem 20. But for inequality
(57) of Theorem 20, we can find such matrix and pairs of
f> g for which the inequality of Theorem 20 can give better
bound of numerical radius available in literature. To sup-
port theoretical investigations, some examples are pre-
sented where numerical radius and its upper bounds are
computed for the pairs f, g in generalized Aluthge trans-
form. Examples 1 and 2 show that there is no comparison
between the bounds obtained from the inequalities (15),
(27), and (41) of Theorem 2, Theorem 8, and Theorem
20; however, generalized Aluthge transform has choices
of the pair f,g in (10) for which better upper bounds
can be computed for certain operators.
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