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Let S be any bounded linear operator defined on a complex Hilbert space H : In this paper, we present some numerical radius
inequalities involving the generalized Aluthge transform to attain upper bounds for numerical radius. Numerical computations
are carried out for some particular cases of generalized Aluthge transform.

1. Introduction

Mathematical inequalities play an essential role in develop-
ing various areas of pure and applied mathematics. The
usefulness of mathematical inequalities is to estimate the
solutions of real-life problems in engineering and other
fields of science. In mathematics, particularly in functional
analysis, the study of numerical radius inequalities has
become the attention of many researchers due to the appli-
cations of numerical radius in operator theory and numeri-
cal analysis, etc. (see [1–4]). Various mathematicians have
developed number of numerical radius inequalities to esti-
mate the upper and lower bounds for numerical radius. It
is interesting for researchers to get the refinements and
generalization of these inequalities. The aim of this paper
is to study the generalization and refinements of existing
inequalities for numerical radius. Now, we recall some
notions to proceed our work.

Let BðHÞ be the C∗-algebra of all bounded linear oper-
ators defined on a complex Hilbert space H : For S ∈BðHÞ,
the usual operator norm is defined as

Sk k = sup Sxk k: x ∈H , xk k = 1f g, ð1Þ

and the numerical radius is defined as

w Sð Þ = sup Sx, xh ij j: x ∈H , xk k = 1f g: ð2Þ

It is well known that the numerical radius defines an
equivalent operator norm on BðHÞ, and for S ∈BðHÞ,
we have

1
2 Sk k ≤w Sð Þ ≤ Sk k: ð3Þ

Many authors worked on the refinement of inequality
(3) (see [5–7]). Kittaneh developed the following upper
bound of numerical radius:

w Sð Þ ≤ 1
2 Sk k + S2

�� ��1/2� �
, ð4Þ

which is a refinement of inequality (3) (see [5]). For S ∈
BðHÞ having polar decomposition S =U jSj where U is a
partial isometry and jSj = ðS∗SÞ1/2, the Aluthge transform
is defined as

~S = Sj j1/2U Sj j1/2, ð5Þ
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see [8]. Yamazaki developed an upper bound of numerical
radius involving Aluthge transform given by

w Sð Þ ≤ 1
2 Sk k +w ~S

� �� �
, ð6Þ

which is an improvement of bounds (3) and (4) (see [9]).
Bhunia et al. developed a bound of the numerical radius
given by

w2 Sð Þ ≤ 1
4 Sk k2 +w2 ~S

� �
+w Sj j~S + ~S Sj j

� �� �
, ð7Þ

and proved that it is a refinement of bound (6) (see [10]).
Okubo introduced a generalization of Aluthge transform
which is defined as

eSλ = Sj jλU Sj j1−λ, ð8Þ

for λ ∈ ½0, 1�, known as λ-Aluthge transform (see [11]).
After that, a number of numerical radius inequalities were
established involving λ-Aluthge transform (see [12–14]).
Abu Omar and Kittaneh using λ-Aluthge transform gener-
alized bound (6) given by

w Sð Þ ≤ 1
2 Sk k +w eSλ� �� �

, ð9Þ

see [12]. Shebrawi and Bakherad introduced another gen-
eralization of Aluthge transform which is defined as

fSf ,g = f Sj jð ÞUg Sj jð Þ, ð10Þ

where f and g are nonnegative and continuous functions
such that f ðxÞgðxÞ = xðx ≥ 0Þ, known as generalized Aluthge
transform. The authors generalized inequality (9) given by

w Sð Þ ≤ 1
2 Sk k +w fSf ,g� �� �

, ð11Þ

w Sð Þ ≤ 1
4 f 2 Sj jð Þ + g2 Sj jð Þ�� �� + 1

2w
fSf ,g� �

, ð12Þ

see [15].
In this paper, we establish some new inequalities of the

numerical radius using generalized Aluthge transform.
Specifically, we generalize inequality (7) and improve the
inequalities (3), (4), and (12). Some examples of operators
are presented for which the bounds of numerical radius are
computed from these inequalities for some choices of f ,g
in (10).

2. Main Results

Now, we recall a lemma that will be used to achieve our
goals.

Lemma 1 (see [9]). Let S ∈BðHÞ; then, for θ ∈ℝ, we have

w Sð Þ = sup
θ∈ℝ

Hθk k = sup
θ∈ℝ

Re eiθS
� ���� ���, ð13Þ

where Hθ = ðeiθS + e−iθS∗Þ/2:

Polarization identity: [15] For each x1, y1 ∈H , we have

x1, y1h i = 1
4 x1 + y1k k2 − x1 − y1k k2�
+ i x1 + iy1k k2 − i x1 − iy1k k2�: ð14Þ

Now, we establish an inequality of numerical radius
which is a generalization of inequality (7) and a refinement
of inequality (12).

Theorem 2. Let S ∈BðHÞ. Then,

w2 Sð Þ ≤ 1
16

Qk k2 + 1
4
w2 fSf ,g� �

+ 1
8
w QfSf ,g + fSf ,gQ� �

, ð15Þ

where Q = ð f ðjSjÞÞ2 + ðgðjSjÞÞ2 and f ,g is nonnegative con-
tinuous functions defined on ½0,∞Þ such that f ðtÞgðtÞ = t:

Proof. Let S =U jSj be the polar decomposition of S: Then, by
polarization identity, we have

eiθSx, x
D E

= eiθU Sj jx, x
D E

= eiθUg Sj jð Þf Sj jð Þx, x
D E

= eiθ f Sj jð Þx, g Sj jð ÞU∗x
D E

= 1
4 e2iθ f Sj jð Þx + g Sj jð ÞU∗x

��� ���2�

− e2iθ f Sj jð Þx − g Sj jð ÞU∗x
��� ���2

+ i e2iθ f Sj jð Þx + ig Sj jð ÞU∗x
��� ���2

− i e2iθ f Sj jð Þx − ig Sj jð ÞU∗x
��� ���2�:

ð16Þ

Therefore,

Re eiθSx, x
D E
= 1
4 e2iθ f Sj jð Þ + g Sj jð ÞU∗x
��� ���2

−
1
4 e2iθ f Sj jð Þ − g Sj jð ÞU∗x
��� ���2

≤
1
4 e2iθ f Sj jð Þ + g Sj jð ÞU∗
��� ���2

= 1
4 e2iθ f Sj jð Þ + g Sj jð ÞU∗

� �
e2iθ f Sj jð Þ + g Sj jð ÞU∗

� �∗��� ���
= 1
4 e2iθ f Sj jð Þ + g Sj jð ÞU∗

� �
e−2iθ f Sj jð Þ +Ug Sj jð Þ

� ���� ���
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= 1
4 f Sj jð Þð Þ2 + g Sj jð Þð Þ2 + e2iθ f Sj jð ÞUg Sj jð Þ
���

+ e−2iθg Sj jð ÞU∗ f Sj jð Þ
���

= 1
4 f Sj jð Þð Þ2 + g Sj jð Þð Þ2 + e2iθ fSf ,g + e−2iθ fSf ,g� �∗��� ���

= 1
4 Q + 2 Re e2iθ fSf ,g� ���� ���

= 1
4 Q + 2 Re e2iθ fSf ,g� �� �2
����

����1/2

= 1
4 Q2 + 4 Re e2iθ fSf ,g� �2

+ 2Q Re e2iθ fSf ,g� �����
+ 2 Re e2iθ fSf ,g� �

Q
���1/2

= 1
4 Q2 + 4 Re e2iθ fSf ,g� �2
����

+ 2 Re e2iθ QfSf ,g + fSf ,gQ� �� ����1/2
≤
1
4 Qk k2 + 4 Re e2iθ fSf ,g� ���� ���2�

+ 2 Re e2iθ QfSf ,g + fSf ,gQ� �� ���� ����1/2
:

ð17Þ

Now taking supremum over θ ∈ℝ in the last inequality
and then applying Lemma 1, we obtain

w2 Sð Þ ≤ 1
16 Qk k2 + 1

4w
2 fSf ,g� �

+ 1
8w QfSf ,g + fSf ,gQ� �

, ð18Þ

as desired.

Theorem 2 includes some particular cases of generalized
Aluthge transform for different choices of continuous func-
tions f and g in (10) as follows.

Corollary 3. Let S ∈BðHÞ. Then, for λ ∈ ½0, 1�, we have

w2 Sð Þ ≤ 1
16

Qk k2 + 1
4
w2 eSe� �

+ 1
8
w QeSe + eSeQ� �

, ð19Þ

where Q = ðejSjλÞ2 + ðjSje−jSjλÞ2 and eSe = ejSj
λ

U jSjejSj−λ :

Corollary 4. Let S ∈BðHÞ. Then, for λ ∈ ½0, 1�, we have

w2 Sð Þ ≤ 1
16

Qk k2 + 1
4
w2 eSe� �

+ 1
8
w QeSe + eSeQ� �

, ð20Þ

where Q = ðjSje−jSjλÞ2 + ðejSjλÞ2 and eSe = jSjejSj−λUejSj
λ

:

Corollary 5. Let S ∈BðHÞ. Then, for λ ∈ ½0, 1�, we have

w2 Sð Þ ≤ 1
16

Qk k2 + 1
4
w2 eSλ� �

+ 1
8
w QeSλ + eSλQ� �

, ð21Þ

where Q = jSj2λ + jSj2ð1−λÞ: In particular,

w2 Sð Þ ≤ 1
4

Sk k2 +w2 ~S
� �

+w Sj j~S + ~S Sj j
� �� �

: ð22Þ

Remark 6. By using the inequality

w YA + AY∗ð Þ ≤ 2 Yk kw Að Þ, ð23Þ

for all Y , A ∈BðHÞ (see [16]) in inequality (15) obtained in
Theorem 2, we have

w2 Sð Þ ≤ 1
16 Qk k2 + 1

4w
2 fSf ,g� �

+ 1
8 2 Qk kw fSf ,g� �� �

= 1
4 Qk k + 1

2w
fSf ,g� �� �2

:

ð24Þ

Hence,

w Sð Þ ≤ 1
4 Qk k + 1

2w
fSf ,g� �

, ð25Þ

where Q = ð f ðjSjÞÞ2 + ðgðjSjÞÞ2: Thus, inequality (15)
obtained in Theorem 2 is better than inequality (12).

Remark 7. For continuous functions f and g in (10), iffSf ,g = 0, then inequality (15) becomes

w Sð Þ ≤ 1
4 f Sj jð Þð Þ2 + g Sj jð Þð Þ2�� ��: ð26Þ

In particular, if we take f ðjSjÞ = jSj1/2 and gðjSjÞ = jSj1/2,
for this choice of f and g if fSf ,g = 0, then inequality (15)
becomes wðSÞ ≤ 1/2kSk, and combined with inequality (3),
we get wðSÞ = 1/2kSk:

Theorem 8. Let S ∈BðHÞ. Then, we have

w4 Sð Þ ≤ 1
4

f Sj jð Þk k fSf ,g��� ��� g Sj jð Þk k
� �2

+ 1
8
w S2P + PS2
� �

+ 1
16

Pk k2,
ð27Þ

where P = S∗S + SS∗ and f ,g is nonnegative continuous func-
tions defined on ½0,∞Þ such that f ðtÞgðtÞ = t:

Proof. Since Hθ = ðeiθS + e−iθS∗Þ/2 for all θ ∈ℝ, then we have

Hθ
2 = 1

4 e2iθS2 + e−2iθS∗2 + SS∗ + S∗S
� �

= 1
4 e2iθS2 + e−2iθS∗2 + P
� �

,
ð28Þ
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which yields

Hθ
4 = 1

16 e2iθS2 + e−2iθS∗2
� �2

+ e2iθ S2P + PS2
� ��

+ e−2iθ S∗2P + PS∗2
� �

+ P2
�

= 1
16 e2iθS2 + e−2iθS∗2

� �2
�

+ 2 Re e2iθ S2P + PS2
� �� �� �

+ P2
�

= 1
16 e2iθU Sj jU Sj j + e−2iθ Sj jU∗ Sj jU∗

� �2
�

+ 2 Re e2iθ S2P + PS2
� �� �� �

+ P2
�

= 1
16 e2iθUg Sj jð Þf Sj jð ÞUg Sj jð Þf Sj jð Þ

��

+ e−2iθ f Sj jð Þg Sj jð ÞU∗ f Sj jð Þg Sj jð ÞU∗
�2

+ 2 Re e2iθ S2P + PS2
� �� �� �

+ P2
�

= 1
16 e2iθUg Sj jð ÞfSf ,gf Sj jð Þ + e−2iθ f Sj jð ÞfSf ,g∗g Sj jð ÞU∗

� �2
�

+ 2 Re e2iθ S2P + PS2
� �� �� �

+ P2
�
:

ð29Þ

Since Hθ is self-adjoint, so kHθ
4k = kHθk4: Hence, using

the properties of operator norm k·k on BðHÞ, we have

Hθk k4 ≤ 1
16 e2iθUg Sj jð ÞfSf ,g f Sj jð Þ

�����

+ e−2iθ f Sj jð ÞfSf ,g∗g Sj jð ÞU∗
����2

+ 2 Re e2iθ S2P + PS2
� �� ����� ��� + Pk k2

�

≤
1
16 Ug Sj jð ÞfSf ,g f Sj jð Þ

��� ��� + f Sj jð ÞfSf ,g∗g Sj jð ÞU∗
��� ���� �2

�

+ 2 Re e2iθ S2P + PS2
� �� ����� ��� + Pk k2

�

≤
1
16 Uk k g Sj jð Þk k fSf ,g��� ��� f Sj jð Þk k

��

+ f Sj jð Þk k fSf ,g∗��� ��� g Sj jð Þk k U∗k k
�2

+ 2 Re e2iθ S2P + PS2
� �� ����� ��� + Pk k2

�

= 1
16 4 f Sj jð Þk k fSf ,g��� ��� g Sj jð Þk k

� �2
�

+ 2 Re e2iθ S2P + PS2
� �� ���� ��� + Pk k2

�
,

ð30Þ

where the equality holds because kSk = kS∗k: Now taking
supremum over θ ∈ℝ in last equality, then applying Lemma
1, yields

w4 Sð Þ ≤ 1
4 f Sj jð Þk k fSf ,g��� ��� g Sj jð Þk k
� �2

+ 1
8w S2P + PS2

� �
+ 1
16 Pk k:

ð31Þ

For different choices of f and g in (10), we obtain the
following inequalities of numerical radius from Theorem 8.

Corollary 9. Let S ∈BðHÞ. Then, for λ ∈ ½0, 1�, we have

w4 Sð Þ ≤ 1
4

e Sj jλ
��� ��� eSe��� ��� Sj je− Sj jλ

��� ���� �2

+ 1
8
w S2P + PS2
� �

+ 1
16

Pk k2,
ð32Þ

where P = S∗S + SS∗ and eSe = ejSj
λ

U jSje−jSjλ :

Corollary 10. Let S ∈BðHÞ. Then, for λ ∈ ½0, 1�, we have

w4 Sð Þ ≤ 1
4

e Sj jλ
��� ��� eSe��� ��� Sj je− Sj jλ

��� ���� �2

+ 1
8
w S2P + PS2
� �

+ 1
16

Pk k2,
ð33Þ

where P = S∗S + SS∗ and eSe = jSjejSj−λUejSj
λ

:

Corollary 11. Let S ∈BðHÞ. Then, for λ ∈ ½0, 1�, we have

w4 Sð Þ ≤ 1
4

Sk k eSλ��� ���� �2
+ 1
8
w S2P + PS2
� �

+ 1
16

Pk k2, ð34Þ

where P = S∗S + SS∗: In particular,

w4 Sð Þ ≤ 1
4

Sk k ~S
�� ��� �2

+ 1
8
w S2P + PS2
� �

+ 1
16

Pk k2: ð35Þ

Remark 12. It is easy to check that k~Sk ≤ kS2k1/2 (see [9] for
details). Using the following inequality

w YA + AY∗ð Þ ≤ 2 Yk kw Að Þ, ð36Þ

for all Y , A ∈BðHÞ (see [14]), Corollary 11 yields

w4 Sð Þ ≤ 1
4 Sk k ~S

�� ��� �2
+ 1
8w S2P + PS2

� �
+ 1
16 Pk k2

≤
1
4 Sk k S2

�� ��1/2� �2
+ 1
4w S2

� �
Pk k + 1

16 Pk k2

≤
1
4 Sk k S2

�� ��1/2� �2
+ 1
4 S2
�� �� Pk k + 1

16 Pk k2

= 1
2 Sk k S2

�� ��1/2 + 1
4 Pk k

� �2
:

ð37Þ
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We know that kS∗S + SS∗k ≤ kS2k + kSk2 (see [17]).
Hence,

1
2 Sk k S2

�� ��1/2 + 1
4 S∗S + SS∗k k

≤
1
2 Sk k S2

�� ��1/2 + 1
4 S2
�� �� + 1

4 Sk k2

= 1
2 S2
�� ��1/2 + 1

2 Sk k
� �2

:

ð38Þ

Thus, the bound given in Corollary 11 is better than
bound (4).

Remark 13. If fSf ,g = 0 in inequality (27) obtained in Theo-
rem 8 for different choices of f and g in (10), then inequality
(27) becomes

w4 Sð Þ ≤ 1
8w S2P + PS2

� �
+ 1
16 Pk k2: ð39Þ

If S2 = 0 and fSf ,g = 0 are equivalent conditions, then
inequality (27) becomes

w2 Sð Þ = 1
4 Pk k: ð40Þ

Theorem 14. Let S ∈BðHÞ. Then, we have

w3 Sð Þ ≤ 1
4

f Sj jð Þk k fSf ,g��� ���2 g Sj jð Þk k +w S2S∗ + S∗S2 + SS∗S
� �� �

,

ð41Þ

where f ,g is nonnegative continuous functions defined on ½0
,∞Þ such that f ðtÞgðtÞ = t:

Proof. Since Hθ = ðeiθS + e−iθS∗Þ/2 for all θ ∈ℝ, then we have

Hθ
2 = 1

4 e2iθS2 + e−2iθS∗2 + SS∗ + S∗S
� �

, ð42Þ

which implies

Hθ
3 = 1

8 eiθS + e−iθS∗
� �

e2iθS2 + e−2iθS∗2 + SS∗ + S∗S
� �� �

= 1
8 e3iθS3 + e−3iθS∗3 + 2 Re eiθ S2S∗ + S∗S2 + SS∗S

� �� �� �
:

ð43Þ

In the last equality, Re ðeiθðS2S∗ + S∗S2 + SS∗SÞÞ = ðeiθ
ðS∗S2 + S∗2S + S∗SS∗Þ + e−iθðS2S∗ + S∗S2 + SS∗SÞÞ/2. Hence,

Hθk k3 ≤ 1
8 e3iθUg Sj jð Þ fSf ,g� �2

f Sj jð Þ
����

����
+ e−3iθ f Sj jð Þ fSf ,g∗� �2

g Sj jð ÞU∗
����

����
+ 2 Re eiθ S2S∗ + S∗S2 + SS∗S

� �� ���� ���
≤
1
8 Uk k g Sj jð Þk k fSf ,g��� ���2 f Sj jð Þk k
�

+ f Sj jð Þk k fSf ,g∗��� ���2 g Sj jð Þk k U∗k k

+ 2 Re eiθ S2S∗ + S∗S2 + SS∗S
� �� ���� ����

= 1
4 f Sj jð Þk k fSf ,g��� ���2 g Sj jð Þk k
�

+ Re eiθ S2S∗ + S∗S2 + SS∗S
� �� ���� ����:

ð44Þ

The first inequality holds because kA1 + A2k ≤ kA1k +
kA2k where A, A1, A2 ∈BðHÞ, the second inequality holds
because kA1A2k ≤ kA1kkA2k and kAnk ≤ kAkn∀n ∈ℕ, and
the third equality holds because kAk = kA∗k and kUk =
kU∗k = 1: Now taking supremum over θ ∈ℝ in above
equality the using Lemma 1, we obtain

w3 Sð Þ ≤ 1
4 f Sj jð Þk k fSf ,g��� ���2 g Sj jð Þk k +w S2S∗ + S∗S2 + SS∗S

� �� �
,

ð45Þ

as desired.

Corollary 15. Let S ∈BðHÞ. Then, for λ ∈ ½0, 1�, we have

w3 Sð Þ ≤ 1
4

e Sj jλ
��� ��� eSe��� ���2 Sj je− Sj jλ

��� ��� +w S2S∗ + S∗S2 + SS∗S
� �� �

,

ð46Þ

where eSe = ejSj
λ

U jSje−jSjλ :

Corollary 16. Let S ∈BðHÞ. Then, for λ ∈ ½0, 1�, we have

w3 Sð Þ ≤ 1
4

e Sj jλ
��� ��� eSe��� ���2 Sj je− Sj jλ

��� ��� +w S2S∗ + S∗S2 + SS∗S
� �� �

,

ð47Þ

where eSe = jSjejSj−λUejSj
λ

:

Corollary 17. Let S ∈BðHÞ. Then, for λ ∈ ½0, 1�, we have

w3 Sð Þ ≤ 1
4

Sk k eSλ��� ���2 +w S2S∗ + S∗S2 + SS∗S
� �� �

: ð48Þ
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In particular,

w3 Sð Þ ≤ 1
4

Sk k ~S
�� ��2 +w S2S∗ + S∗S2 + SS∗S

� �� �
: ð49Þ

Remark 18. Yan et al. proved that

w2 Sð Þ ≤ 1
2 f Sj jð Þk k fSf ,g��� ��� g Sj jð Þk k + 1

4 S∗S + SS∗k k, ð50Þ

see [18]. Inequality (41) obtained in Theorem 14 gives better
bounds of numerical radius of S for different choices of f
and g in (10) when

S =
0 5 0
0 0 3
1 0 0

0
BB@

1
CCA: ð51Þ

Then, S =U jSj is a polar decomposition of S, where

Sj j =
0 0 0
0 5 2
0 0 3

0
BB@

1
CCA, ð52Þ

and

U =
0 1 0
0 0 1
1 0 0

0
BB@

1
CCA ð53Þ

is partial isometry.

Bounds (41) and (50) are computed for some choices of
f and g in (10) for the given S in Table 1, whereas the
numerical radius of S is

w Sð Þ = 2:9154: ð54Þ

The spectral radius of an operator is defined as

r Sð Þ = sup
xk k=1

λj j: λ ∈ σ Sð Þf g, ð55Þ

where r denotes the spectral radius. For further inforamtion
on spectral radius, see [19]. The following theorem will be
used to develop the next inequality of numerical radius.

Theorem 19 (see [17]). Let M1,M2,N1,N2 ∈BðHÞ: Then,

r M1N1 +M2N2ð Þ
≤
1
2

w N1M1ð Þ +w N2M2ð Þð Þ

+ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w N1M1ð Þ −w N2M2ð Þ + 4 N1M2k k N2M1k k

p
:

ð56Þ

Theorem 20. Let S ∈BðHÞ. Then,

w3 Sð Þ ≤ 1
8

w fSf ,g3� �
+ f Sj jð Þk k fSf ,g��� ���2 g Sj jð Þk k

� �

+ 1
4
w S2S∗ + S∗S2 + SS∗S
� �

,
ð57Þ

where f ,g is nonnegative continuous functions defined on
½0,∞Þ such that f ðtÞgðtÞ = t:

Proof. Since Hθ = ðeiθS + e−iθS∗Þ/2 for all θ ∈ℝ, then we have

Hθ
2 = 1

4 e2iθS2 + e−2iθS∗2 + SS∗ + S∗S
� �

, ð58Þ

which implies

Hθ
3 = 1

8 eiθS + e−iθS∗
� �

e2iθS2 + e−2iθS∗2 + SS∗ + S∗S
� �

Hθ
3 = 1

8 e3iθUg Sj jð Þ fSf ,g� �2
f Sj jð Þ

�

+ e−3iθ f Sj jð Þ fSf ,g∗� �2
g Sj jð ÞU∗

+ 2 Re eiθ S2S∗ + S∗S2 + SS∗S
� �� ��

:

ð59Þ

Now by using the properties of operator norm k·k on
BðHÞ, we have

Hθk k3 ≤ 1
8 e3iθUg Sj jð Þ fSf ,g� �2

f Sj jð Þ
����

�

+ e−3iθ f Sj jð Þ fSf ,g∗� �2
g Sj jð ÞU∗

����
+ 2 Re eiθ S2S∗ + S∗S2 + SS∗S

� �� ���� ����

Table 1: Bounds (41) and (50) for different choices of f and g
in (10).

f , gð Þ Bound (50) Bound (41)

Sj j1/2, Sj j1/2� �
4.2640 3.2655

Sj j1/7, Sj j6/7� �
4.0704 3.0724

e Sj j1/10 , Sj je− Sj j1/10
� �

4.3582 3.3622

e Sj j1/10 , Sj je− Sj j1/10
� �

4.2055 3.2031
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= 1
8 r e3iθUg Sj jð Þ fSf ,g� �2

f Sj jð Þ
��

+ e−3iθ f Sj jð Þ fSf ,g∗� �2
g Sj jð ÞU∗

�

+ 2 Re eiθ S2S∗ + S∗S2 + SS∗S
� �� ���� ����

= 1
8 r M1N1 +M2N2ð Þ
�

+ 2 Re eiθ S2S∗ + S∗S2 + SS∗S
� �� ���� ����,

ð60Þ

where M1 = e3iθUgðjSjÞðfSf ,gÞ2, N1 = f ðjSjÞ, M2 = e−3iθ f ðjSjÞ
ðfSf ,g∗Þ2, and N2 = gðjSjÞU∗; the first equality holds for
Hermitian operator satisfying rðAÞ = kAk: Now applying
Theorem 19 on last equality with wðαAÞ = jαjwðAÞ and
wðAÞ =wðA∗Þ, we obtain

Hθk k3 ≤ 1
8 w fSf ,g3� ��

+ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 f Sj jð Þð Þ2�� �� fSf ,g∗� �2��� ��� g Sj jð Þð Þ2�� �� fSf ,g2��� ���

r

+ 2 Re eiθ S2S∗ + S∗S2 + SS∗S
� �� ���� ����

≤
1
8 w fSf ,g3� ��

+ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 f Sj jð Þk k2 fSf ,g∗��� ���2 g Sj jð Þk k2 fSf ,g��� ���2

r

+ 2 Re eiθ S2S∗ + S∗S2 + SS∗S
� �� ���� ����

≤
1
8 w fSf ,g3� �

+ f Sj jð Þk k fSf ,g��� ���2 g Sj jð Þk k
� �

+ 1
4 Re eiθ S2S∗ + S∗S2 + SS∗S

� �� ���� ���:
ð61Þ

Taking supremum over θ ∈ℝ in last inequality, then
applying Lemma 1, we obtain

w3 Sð Þ ≤ 1
8 w fSf ,g3� �

+ f Sj jð Þk k fSf ,g��� ���2 g Sj jð Þk k
� �

+ 1
4w S2S∗ + S∗S2 + SS∗S

� �
:

ð62Þ

Corollary 21. Let S ∈BðHÞ. Then, for λ ∈ ½0, 1� we have

w3 Sð Þ ≤ 1
8

w eSe3� �
+ e Sj jλ
��� ��� eSe��� ���2 Sj je− Sj jλ

��� ���� �

+ 1
4
w S2S∗ + S∗S2 + SS∗S
� �

,
ð63Þ

where eSe = ejSj
λ

UjSje−jSjλ :

Corollary 22. Let S ∈BðHÞ. Then, for λ ∈ ½0, 1� we have

w3 Sð Þ ≤ 1
8

w eSe3� �
+ e Sj jλ
��� ��� eSe��� ���2 Sj je− Sj jλ

��� ���� �

+ 1
4
w S2S∗ + S∗S2 + SS∗S
� �

,
ð64Þ

where eSe = jSjejSj−λUejSj
λ

:

Corollary 23. Let S ∈BðHÞ. Then, for λ ∈ ½0, 1� we have

w3 Sð Þ ≤ 1
8

w eSλ3� �
+ Sk k eSλ��� ���2� �

+ 1
4
w S2S∗ + S∗S2 + SS∗S
� �

:

ð65Þ

In particular,

w3 Sð Þ ≤ 1
8

w ~S
3

� �
+ Sk k ~S

�� ��2� �
+ 1
4
w S2S∗ + S∗S2 + SS∗S
� �

:

ð66Þ

Remark 24. It is easy to observe that inequality (57) obtained
in Theorem 20 is better than inequality (41).

Now, we exhibit some examples where numerical radius
bounds are computed from inequalities (15), (27), (41), and
(57) for some choices of pair f , g in (10) and for a given
operator S.

Example 1. Given

S =
0 3 0
0 0 2
1 0 0

0
BB@

1
CCA: ð67Þ

Then, S = UjSj is a polar decomposition of S, where

Sj j =
1 0 0
0 3 0
0 0 2

0
BB@

1
CCA, ð68Þ

and

U =
0 1 0
0 0 1
1 0 0

0
BB@

1
CCA ð69Þ

is partial isometry.
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Bounds (15), (27), (41), and (57) are computed for some
choices of f and g in (10) for the given S in Table 2, whereas
the numerical radius of S is

w Sð Þ = 2:0565: ð70Þ

Example 2. Let

S =
0 1 0
0 0 2
1 0 0

0
BB@

1
CCA: ð71Þ

Then, S =U jSj is a polar decomposition of S, where

Sj j =
1 0 0
0 1 0
0 0 2

0
BB@

1
CCA, ð72Þ

and

U =
0 1 0
0 0 1
1 0 0

0
BB@

1
CCA: ð73Þ

Bounds (15), (27), (41), and (57) are computed for some
choices of f and g in (10) for the given S in Table 3, whereas
the numerical radius of S is

w Sð Þ = 1:3662: ð74Þ

3. Conclusion

From the results of this paper, we conclude that the inequal-
ities of numerical radius involving generalized Aluthge
transform have variety of upper bounds for numerical radius
due to the choice of f , g in generalized Aluthge transform
(10). The inequalities (15), (27), (41) and (57) obtained in
Theorem 2, Theorem 8, Theorem 20, and Theorem 14 are
new and generalized upper bounds for numerical radius.
These generalized upper bounds can be useful to find better
bounds of numerical radius already existing in literature for
some choices of f , g in generalized Aluthge transform (10)
and certain operators. It is proved that inequality (15) of
Theorem 2 generalizes inequality (7) and improves inequal-
ity (12) for any choice of f , g in (10). Inequality (27) of
Theorem 8 is sharper than inequality (12) for the choice of
f ðtÞ = gðtÞ = t1/2 in (10). Inequality (41) of Theorem 14 is
better than inequality (57) of Theorem 20. But for inequality
(57) of Theorem 20, we can find such matrix and pairs of
f , g for which the inequality of Theorem 20 can give better
bound of numerical radius available in literature. To sup-
port theoretical investigations, some examples are pre-
sented where numerical radius and its upper bounds are
computed for the pairs f , g in generalized Aluthge trans-
form. Examples 1 and 2 show that there is no comparison
between the bounds obtained from the inequalities (15),
(27), and (41) of Theorem 2, Theorem 8, and Theorem
20; however, generalized Aluthge transform has choices
of the pair f , g in (10) for which better upper bounds
can be computed for certain operators.
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Table 3: Bounds (15), (27), (41), and (57) for different choices of f
and g in (10).

f , gð Þ Bound
(15)

Bound
(27)

Bound
(41)

Bound
(57)

Sj j1/2, Sj j1/2� �
1.5047 1.5065 1.4500 1.3880

Sj j1/3, Sj j2/3� �
1.5416 1.5425 1.4901 1.4059

Sj j1/4, Sj j3/4� �
1.5754 1.5637 1.5130 1.4432

Sj j1/5, Sj j4/5� �
1.6026 1.5769 1.5276 1.4513

e Sj j1/2 , Sj je− Sj j1/2
� �

4.7336 1.5272 1.4726 1.4004

e Sj j1/3 , Sj je− Sj j1/3
� �

3.6923 1.5335 1.4794 1.4250

e Sj j1/4 , Sj je− Sj j1/4
� �

3.3318 1.5585 1.5069 1.4399

e Sj j1/5 , Sj je− Sj j1/5
� �

3.1529 1.5729 1.5231 1.4488

Table 2: Bounds (15), (27), (41), and (57) for different choices of f
and g in (10).

f , gð Þ Bound
(15)

Bound
(27)

Bound
(41)

Bound
(57)

Sj j1/2, Sj j1/2� �
2.2704 2.3596 2.4662 2.3811

Sj j1/3, Sj j2/3� �
2.3596 2.3264 2.4346 2.3332

Sj j1/4, Sj j3/4� �
2.4817 2.3244 2.4327 2.3632

Sj j1/5, Sj j4/5� �
2.5826 2.3510 2.4579 2.3462

e Sj j1/2 , Sj je− Sj j1/2
� �

8.7223 2.4234 2.5284 2.3854

e Sj j1/3 , Sj je− Sj j1/3
� �

5.3389 2.3492 2.4563 2.3459

e Sj j1/4 , Sj je− Sj j1/4
� �

4.4307 2.3277 2.4311 2.3314

e Sj j1/5 , Sj je− Sj j1/5
� �

4.0333 2.3380 2.4456 2.3394
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