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The study of convex functions is an interesting area of research due to its huge applications in pure and applied mathematics
special in optimization theory. The aim of this paper is to introduce and study a more generalized class of convex functions.
We established Schur (S), Hermite-Hadamard (HH), and Fejér (F) type inequalities for introduced class of convex functions.
The results presented in this paper extend and generalize many existing results of the literature.

1. Introduction

The study of convexity is very simple and ordinary concept
and very important due to its massive applications in industry
and business; convexity has a great influence on our daily life.
In the solution of many real-world problems, the concept of
convexity is very decisive. Problems faced in constrained con-
trol and estimation are convex. Geometrically, “the convex
function is a real-valued function if the line segment joining
any two of its points lies on or above the graph of the function
in Euclidean space” [1, 2].

The inequality theory is a best way to understand and
apply convexity and the following HH inequality for a C-
function g is most famous and most studied inequality in
recent years;

g
a1 + a2

2
� �

≤
1

a2 − a1

ða2
a1

g xð Þdx ≤ g a1ð Þ + g a2ð Þ
2 : ð1Þ

There are many interesting generalizations for HH
inequality, for example, see [3, 4]. Alp et al. [5] established
q–HH inequalities and gave quantum estimates for midpoint
type inequalities via convex and quasi–C-functions. Rahman

et al. [6] presented certain fractional proportional integral
inequalities via C-functions. Liu et al. [7] established the
several HH type inequality via C-function for ψ–Riemann–
Liouville fractional integrals. In [8], Farid et al. established
certain inequalities for Riemann–Liouville fractional integrals
in more general form via C-functions and proposed some
applications of their established results. Tunc [9] studied h–
C-functions and presented Ostrowski-type inequalities via h
–C-functions. He also proposed applications of his established
Ostrowski-type inequalities to special means. Set et al. [10]
established the HH’s inequality for some C-functions via frac-
tional integrals. They also presented some other resulted
results in the setting of fractional integrals.

Moreover, Avci, Kavurmaci, and Özdemir in [11] estab-
lished the HH type for the class of s–C-functions in 2nd sense
which is more generalized convexity. The exponentiallym–C-
functions were investigated by Rashid et al., in [12]. Different
kinds of inequalities for exponentially m–C-functions were
also established in the same paper. In [13], Baloch and Chu
investigated harmonic C-functions and established Petrovic-
type inequalities. Sun and Chu [14] studied g–C-functions
and established inequalities for the generalized weighted mean
values. Ali, Khan, and Khurshidi [15] investigated η–C-
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functions and established HH inequality for fractional inte-
grals. Chu et al. [16] generalized the HH type inequalities for
MT–C-functions and a variant of Jensen-type inequality for
harmonic C-functions was given in [17].

The strongly C-function is one of the important func-
tions of convexity, see [4, 18–21]. A function g : I ⟶ℝ is
strongly C-function if

g ta1 + 1 − tð Þa2ð Þ ≤ tg a1ð Þ + 1 − tð Þg a2ð Þ − μt 1 − tð Þ a1 − a2ð Þ2
ð2Þ

holds ∀a1, a2 ∈ L,t ∈ ½0, 1� and μ is modulus value.
Convexity is being generalized day by day using different

methods, In this work, we discuss the convexity of higher
order. For the generalization and different application of
convexity, see for instance [22–24].

Convex function g : I = ½a1, a2� ⊂ℝ⟶ℝ in the classi-
cal sense is introduced as

g ta1 + 1 − tð Þa2ð Þ ≤ tg a1ð Þ + 1 − tð Þg a2ð Þ, ð3Þ

where a1, a2 ∈ I and t ∈ ½0, 1�.
A function g on close set L is said to be a higher-order

strongly convex, if there exists a constant μ ≥ 0, such that

g ta1 + 1 − tð Þa2ð Þ ≤ tg a1ð Þ + 1 − tð Þg a2ð Þ − μϕ tð Þ a2 − a1k kq,
ð4Þ

where a1, a2 ∈ L, q ≥ 0, t ∈ ½0, 1� and

ϕ tð Þ = t 1 − tð Þ: ð5Þ

If we put q = 2, then (4) becomes strongly C-function in
classical sense with same ϕðtÞ as defined in (5).

It is noticed that the function ϕð:Þ in (5) is not modified.
Characterizations of the higher-order strongly C-function
discussed in [25] are not correct. Mohsen et al. [26] modify
ϕð:Þ for the higher-order strongly C-function. Noor and
Noor [27] generalized the concept of higher-order strongly
convex defined in [26] by higher-order strongly generalized
C-functions. For more detailed survey, we refer the readers
to [28] and references therein.

Saleem et al. [29] extended the concept of higher-order
strongly generalized C-function by introducing generalized
strongly p–C-functions of higher order. The generalized
strongly modified ðp, hÞ–C-functions of higher order are
studied in this paper.

In this paper, we introduced the generalized strongly
modified ðp ; hÞ–C-functions of higher order and establish
some well-known inequalities. Motivation of this work is
to improve and extend the existing results. As stated in the
remarks of this paper, many existing results can be derived
from our results.

This paper is organized as follows: Section 2 contains def-
initions, Section 3 contains some basic results, and Section 4
contains HH, F, and S type inequalities for the generalized
strongly modified ðp, hÞ–C-functions of higher order.

2. Definitions and Basic Results

The first part of this paper contains basic definitions of
convexity.

Definition 1 (Additive). A function η is additive when
ηðx1, y1Þ + ηðx2, y2Þ = ηðx1 + x2, y1 + y2Þ∀x1, x2, y1, y2 ∈ℝ, see
[30] for detail.

Definition 2 (Super multiplicative function) [31]. A mapping
g : I ⊂ℝ is super multiplicative function when

g a1a2ð Þ ≥ g a1ð Þg a2ð Þ,∀a1, a2 ∈ I, t ∈ 0, 1½ �: ð6Þ

Definition 3. Non-negatively homogeneous. A function η is
said to be non-negatively homogeneous if ηðλa1, λa2Þ = λ
ηða1, a2Þ∀a1, a2 ∈ℝ and λ ≥ 0:

The definition of h–C-function is given in [32], which
was generalized by Noor et al. in [33] as modified h–C-func-
tion. Later on in [34], the class of generalized strongly
modified h–C-function. The class of generalized strongly
C-functions of higher order was introduced in [27] and
generalized strongly p–C-functions of higher order were
introduced in [29]. Motivated by these innovations, the
extended version of higher order strongly convexity, which
is generalized strongly modified ðp, hÞ–C-functions of higher
order, is introduced in this paper as follows:

Definition 4. Generalized strongly modified ðp, hÞ–C-func-
tions of higher order. A function g : I⟶ℝ is said to be
generalized strongly modified ðp, hÞ– convex of higher order if

g tap1 + 1 − tð Þap2
� �1/p ≤ g a2ð Þ + h tð Þη g a1ð Þ, g a2ð Þð Þ − μϕ tð Þ ap2 − ap1

�� ��q
ð7Þ

holds for all a1, a2 ∈ I, μ ≥ 0, and t ∈ ½0, 1�.

The class of all generalized strongly modified ðp, hÞ–C-
functions of higher order is denoted by GSMPHCF.

Remark 5.

(1) By taking μ = 0, p = 1, and ηða, bÞ = a − b in (7), we
get the definition of modified h convex function

(2) By taking μ = 0,p = 1,ηða, bÞ = a − b, and hðtÞ = t in
(7), we get the definition of C-function

(3) By taking hðtÞ = t and p = 1 in (7), we get the defini-
tion of generalized strongly convex function

(4) By taking hðtÞ = t in (7), we get the definition of
generalized strongly p convex function

Hence, in the light of the above remark, our definition is
more generalized than all exiting notions.

Now, we establish some basic properties.
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Proposition 6. Consider η is non-negatively homogeneous
and additive and the functions g, h : I ⊂ℝ⟶ℝ are in
GSMPHCF, then a f +bg∀a, b ∈ℝ+ is also in GSMPHCF.

Proof. It is cleared that ða + bÞμ is always greater than μ
because a, b ∈ℝ+ and μ ≥ 0 using this fact we can show that
af+bg ∀a, b ∈ℝ+ is in GSMPHCF.

Proposition 7. Consider the functions h1, h2 on L are non-
negative and h2ðtÞ ⩽ h1ðtÞ. If g is generalized strongly modified
ðp, h2Þ–C-function of higher order, then g is also generalized
strongly modified ðp, h1Þ–C-function of higher order.

Proof. The proof is straight forward.

Proposition 8. Suppose a class of functions gj : I ⊂ℝ⟶ℝ
be in GSMPHCF where λj ∈ℝ+ for every j ∈ℕ and η is
non-negatively homogeneous and additive then their linear
combination f : ℝ⟶ℝ is also in GSMPHCF.

Proof. Let the linear combination

f xð Þ = 〠
m

j=1
λjgj xð Þ: ð8Þ

Set x = ðtap1 + ð1 − tÞap2Þ1/p, so

f tap1 + 1 − tð Þap2
� �1/p = 〠

m

j=1
λjgj ta

p
1 + 1 − tð Þap2

� �1/p

≤ 〠
m

j=1
λjgj a2ð Þ + h tð Þ〠

m

j=1
λjη gi a1ð Þ, gi a2ð Þð Þ

− 〠
m

j=1
λjμϕ tð Þ ap2 − ap1

�� ��q

≤ f a2ð Þ + h tð Þη 〠
m

j=1
λjgi a1ð Þ, 〠

m

j=1
λjgi a2ð Þ

 !

− μϕ tð Þ ap2 − ap1
�� ��q

= f a2ð Þ + h tð Þη f a1ð Þ, f a2ð Þð Þ − μϕ tð Þ ap2 − ap1
�� ��q:

ð9Þ

In this proof, we have used a straight forward result
that ∑m

j=1λjμ is always greater than μ when λj ∈ℝ+ for
every j ∈ℕ.

3. Hermite-Hadamard (HH), Fejér (F), and
Schur (S) Type Inequalities

In this section, we present Hermite-Hadamard, Fejér, and
Schur type inequalities for the new notion of convexity
introduced in this paper.

3.1. S Type Inequality. Firstly, we present Schur type
inequality.

Theorem 9. Let g : I ⟶ℝ and h be the super multiplicative
function, where η : N ×N ⟶M be a bi-function for appro-

priate A, B ⊆ℝ. Then, for a1, a2, a3 ∈ L, a1 < a2 < a3 such that
a3 − a1, a3 − a2, a2 − a1 ∈ L, the following inequality holds

g a2ð Þh ap3 − ap1
� �

≤ h ap3 − ap1
� �

g a3ð Þ
+ h ap3 − ap2
� �

η g a1ð Þ, g a3ð Þð Þ

− μϕ
ap3 − ap2
� �
ap3 − ap1
� �

 !
ap1 − ap3
�� ��qh ap3 − ap1

� �
ð10Þ

if and only if g is in GSMPHCF.

Proof. Let a1, a2, a3 ∈ L ⊂ℝ, such that ða3 − a2Þ/ða3 − a1Þ ∈
ð0, 1Þ ⊆ L, ða2 − a1Þ/ða3 − a1Þ ∈ ð0, 1Þ ⊆ L, and ðða3 − a2Þ/ða3
− a1ÞÞ + ðða2 − a1Þ/ða3 − a1ÞÞ = 1, then

h ap3 − ap1
� �

= h
ap3 − ap1
ap3 − ap2

ap3 − ap2
� � !

≥ h
ap3 − ap1
ap3 − ap2

 !
h ap3 − ap2
� �

,

ð11Þ

as h is super multiplicative.
Suppose hðap3 − ap2Þ ≥ 0, by definition of g, we have

g txp + 1 − tð Þypð Þ1/p ≤ g yð Þ + h tð Þη g xð Þ, g yð Þð Þ − μϕ tð Þ yp − xpk kq:
ð12Þ

Inserting ððap3 − ap2Þ/ðap3 − ap1ÞÞ = t, x = a1, and y = a3 in
inequality (12), we obtain,

g
ap3 − ap2
� �
ap3 − ap1
� � ap1 + 1 − ap3 − ap2

� �
ap3 − ap1
� �

 !
ap3

 !1/p

≤ g a3ð Þ + h
ap3 − ap2
� �
ap3 − ap1
� �

 !
η g a1ð Þ, g a3ð Þð Þ

− μϕ
ap3 − ap2
� �
ap3 − ap1
� �

 !
ap3 − ap1
�� ��q

≤ g a3ð Þ + h ap3 − ap2
� �

h ap3 − ap1
� � η g a1ð Þ, g a3ð Þð Þ

− μϕ
ap3 − ap2
� �
ap3 − ap1
� �

 !
ap3 − ap1
�� ��q:

ð13Þ

Multiplying (13) by hðap3 − ap1Þ and using the fact that h is
super multiplicative, we get

g a2ð Þh ap3 − ap1
� �

≤ h ap3 − ap1
� �

g a3ð Þ + h ap3 − ap2
� �

η g a1ð Þ, g a3ð Þð Þ

− μϕ
ap3 − ap2
� �
ap3 − ap1
� �
 !

ap3 − ap1
�� ��qh ap3 − ap1

� �
ð14Þ

For conversely insert a1 = x, a2 = ðtxp + ð1 − tÞypÞ1/p, a3
= y, and ðap3 − ap2Þ/ðap3 − ap1Þ = t in inequality (10) and using
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the fact that h is super multiplicative function such that
hðtðyp − xpÞÞ ≥ hðyp − xpÞhðtÞ, we get

h yp − xpð Þg txp + 1 − tð Þypð Þ1/p ≤ h yp − xpð Þg yð Þ
+ h yp − xpð Þh tð Þη g xð Þ, g yð Þð Þ
− μϕ tð Þ yp − xpk kqh yp − xpð Þ,

ð15Þ

implies

g txp + 1 − tð Þypð Þ1/p ≤ g yð Þ + h tð Þη g xð Þ, g yð Þð Þ − μϕ tð Þ yp − xpk kq:
ð16Þ

The prove is completed.

Remark 10.

(1) For hðtÞ = t, (10) reduced to S type inequality for
function defined in [29].

(2) For μ = 0, p = 1, and ηða, bÞ = a − b, (10) reduced to S
type inequality for modified h–C-function, see [33].

3.2. HH Type Inequality. Here we present Hermite–Hada-
mard type inequality.

Theorem 11. Let g : I ⟶ℝ in GSMPHCF defined on ½a1,
a2� with a1 < a2, then

g
ap1 + ap2

2

 !1/p

− h
1
2

� �
Mη + μϕ

1
2

� �
ap1 − ap2
�� ��q 1 + −1ð Þq+1

2 q + 1ð Þ

 !1/p

≤
p

ap2 − ap1

ða2
a1

xp−1g xð Þdx ≤ g a1ð Þ + g a2ð Þ
2

�

+Nη

ð1
0
h tð Þdt − μ ap2 − ap1

�� ��qð1
0
ϕ tð Þdt:

ð17Þ

Proof. Choose w = ðtap1 + ð1 − tÞap2Þ1/p and z = ðð1 − tÞap1 + tap2Þ1/p,
then

g
ap1 + ap2

2

 !1/p

= g
wp + zp

2

� �1/p

≤ g zð Þ + h
1
2

� �
η g wð Þ, g zð Þð Þ

− μϕ
1
2

� �
zp −wpk kq:

ð18Þ

Implies

g
ap1 + ap2

2

 !1/p

≤ g 1 − tð Þap1 + tap2
� �1/p
+ h

1
2

� �
η g tap1 + 1 − tð Þap2

� �1/p, g 1 − tð Þap1 + tap2
� �1/p� �

− μ 2t − 1ð Þqϕ 1
2

� �
ap2 − ap1
�� ��q:

ð19Þ

Integrating with respect to t on [0,1], we get

g
ap1 + ap2

2

 !1/p

≤
ð1
0
g 1 − tð Þap1 + tap2
� �1/p

dt

+ h
1
2

� �ð1
0
η g tap1 + 1 − tð Þap2

� �1/p, g 1 − tð Þap1 + tap2
� �1/p� �

dt

− μϕ
1
2

� �
ap2 − ap1
�� ��qð1

0
2t − 1ð Þqdt:

ð20Þ

Implies

g
ap1 + ap2

2

 !1/p

≤
ð1
0
g 1 − tð Þap1 + tap2
� �1/p

dt

+ h
1
2

� �
Mη − μϕ

1
2

� �
ap2 − ap1
�� ��q 1 + −1ð Þq+1

2 q + 1ð Þ

 !1/p

:

ð21Þ

Putting x = ð1 − tÞa1 + ta2, we get

g
ap1 + ap2

2

 !1/p

≤
p

ap2 − ap1

ða2
a1

xp−1g xð Þdx + h
1
2

� �
Mη

− μϕ
1
2

� �
ap2 − ap1
�� ��q 1 + −1ð Þq+1

2 q + 1ð Þ

 !1/p

:

ð22Þ

Implies

g
ap1 + ap2

2

 !1/p

− h
1
2

� �
Mη + μϕ

1
2

� �
ap2 − ap1
�� ��q 1 + −1ð Þq+1

2 q + 1ð Þ

 !1/p

≤
p

ap2 − ap1

ða2
a1

xp−1g xð Þð dx:

ð23Þ

Now,

ð1
0
g tap1 + 1 − tð Þap2
� �1/p

dt

≤ g a2ð Þ +
ð1
0
h tð Þη g a1ð Þ, g a2ð Þð Þdt − μ ap1 − ap2

�� ��qð1
0
ϕ tð Þdt:

ð24Þ
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Taking tap1 + ð1 − tÞap2Þ1/p = x, we get

p

ap2 − ap1

ða2
a1

xp−1g xð Þdx ≤ g a2ð Þ + η g a1ð Þ, g a2ð Þð Þ
ð1
0
h tð Þdt

− μ ap1 − ap2
�� ��qð1

0
ϕ tð Þdt = A:

ð25Þ

Similarly,

p

ap2 − ap1

ða2
a1

xp−1g xð Þdx ≤ g a1ð Þ + η g a2ð Þ, g a1ð Þð Þ
ð1
0
h tð Þdt

− μ ap1 − ap2
�� ��qð1

0
ϕ tð Þdt = B:

ð26Þ

From inequalities (25) and (26), we have

p

ap2 − ap1

ða2
a1

xp−1g xð Þdx ≤min A, Bð Þ: ð27Þ

This implies

p

ap2 − ap1

ða2
a1

xp−1g xð Þdx ≤ A + B
2 :

p

ap2 − ap1

ða2
a1

xp−1g xð Þdx ≤ g a1ð Þ + g a2ð Þ
2

+ η g a1ð Þ, g a2ð Þð Þ + η g a2ð Þ, g a1ð Þð Þ
2

×
ð1
0
h tð Þdt − μ

2 ap1 − ap2
�� ��qð1

0
ϕ tð Þdt:

ð28Þ

Implies

p

ap2 − ap1

ða2
a1

xp−1g xð Þdx ≤ g a1ð Þ + g a2ð Þ
2

+Nη

ð1
0
h tð Þdt − μ ap2 − ap1

�� ��qð1
0
ϕ tð Þdt:

ð29Þ

Inequalities (23) and (29) assure to proof.

Remark 12.

(1) For p = 1,μ = 0, and ηða, bÞ = a − b, (17) reduced to
HH type inequality for modified h–C-function,
see [33].

(2) For hðtÞ = t, (17) reduced to HH type inequality for
function defined in [29].

(3) For μ = 0, p = 1, ηða, bÞ = a − b, and hðtÞ = t,(17)
reduced to HH type inequality for C-function in
classical sense

3.3. F Type Inequality. This subsection contains Fejér type
inequality.

Lemma 13. Consider g be in GSMPHCF and ηðx, yÞ = −η
ðy, xÞ, then

g ap1 + ap2 − xp
� �1/p ≤ g a1ð Þ + g a2ð Þ − g xð Þ∀x ∈ a1, a2½ �, ð30Þ

where x = ðtap1 + ð1 − tÞap2Þ1/p and t ∈ ½0, 1�.

Proof. Let g : I ⟶ℝ be in GSMPHCF then for x =
ðtap1 + ð1 − tÞap2Þ1/p, we get

g ap1 + ap2 − xp
� �1/p = g 1 − tð Þap1 + tap2

� �1/p
≤ g a1ð Þ + h tð Þη g a2ð Þ, g a1ð Þð Þ − μϕ tð Þ ap1 − ap2

�� ��q
≤ g a1ð Þ + g a2ð Þ − g a2ð Þ − h tð Þη g a1ð Þ, g a2ð Þð

− μϕ t ap1 − ap2
�� ��q + 2μϕ tð Þ

�
ap1 − ap2
�� ��q

≤ g a1ð Þ + g a2ð Þ
− g a2ð Þ + h tð Þη g a1ð Þ, g a2ð Þ − μϕ tð Þð ap1 − ap2

�� ��qh i
≤ g a1ð Þ + g a2ð Þ − g xð Þ:

ð31Þ

Theorem 14. Let g : ½a1, a2�⟶ℝ be in GSMPHCF and
w : ½a1, a2�⟶ℝ be integrable and symmetric w.r.t a1 +
a2/2, where w ≥ 0, then we have

g
ap1 + ap2

2

 !1/pða2
a1

xp−1w xð Þdx

+ μϕ
1
2

� �ða2
a1

xp−1 ap1 + ap2 − 2xp
�� ��q ×w xð Þdx

− h
1
2

� �ða2
a1

xp−1η g ap1 + ap2 − xp
� �1/p, g xð Þ

� �
w xð Þdx

≤
ða2
a1

xp−1g xð Þw xð Þdx

≤
g a1ð Þ + g a2ð Þð Þ

2

ða2
a1

xp−1w xð Þdx

+Mη

ða2
a1

xp−1h
xp − ap2
ap1 − ap2

 !1/p

w xð Þdx

− μ
ða2
a1

xp−1ϕ
xp − ap2
ap1 − ap2

 !1/p

w xð Þdx,

ð32Þ

where Mη = ½ηðgða1Þ, gða2ÞÞ + ηðgða2Þ, gða1ÞÞ�/2:
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Proof. Let g be a generalized strongly modified ðp, hÞ–C-
function of higher order where x = ðtap1 + ð1 − tÞap2Þ1/p and

y = ðtap2 + ð1 − tÞap1Þ1/p, then

g
ap1 + ap2

2

 !1/pða2
a1

xp−1w xð Þdx

=
ða2
a1

xp−1g
ap1 + ap2 − xp + xp

2

 !1/p

w xð Þdx

=
ða2
a1

xp−1g
yp + xp

2

� �1/p
w xð Þdx

≤
ða2
a1

xp−1g xð Þw xð Þdx + h
1
2

� �ða2
a1

xp−1η g yð Þ, g xð Þð Þw xð Þdx

− μϕ
1
2

� �ða2
a1

xp−1 xp − ypk kqw xð Þdx,

ð33Þ

where yp = ap1 + ap2 − xp, so

g
ap1 + ap2

2

 !1/pða2
a1

xp−1w xð Þdx

+ μϕ
1
2

� �ða2
a1

xp−1 ap1 + ap2 − 2xp
�� ��qw xð Þdx

− h
1
2

� �ða2
a1

xp−1η g ap1 + ap2 − xp
� �1/p, g xð Þ

� �
w xð Þdx

≤
ða2
a1

xp−1g xð Þw xð Þdx:

ð34Þ

Now, if x = ðtap1 + ð1 − tÞap2Þ1/p, then

ða2
a1

xp−1g xð Þw xð Þdx = ap2 − ap1
� �

p

ð1
0
g tap1 + 1 − tð Þap2
� �1/p

w tap1 + 1 − tð Þap2
� �1/p

dt:

ð35Þ

So,

p

ap2 − ap1

ða2
a1

xp−1g xð Þw xð Þdx

≤
ð1
0
g a2ð Þw tap1 + 1 − tð Þap2

� �1/p
dt

+ η g a1ð Þ, g a2ð Þð Þ
ð1
0
h tð Þw tap1 + 1 − tð Þap2

� �1/p
dt

− μ ap2 − ap1
�� ��qð1

0
ϕ tð Þdt:

ð36Þ

Similarly, if x = ðtap2 + ð1 − tÞap1Þ1/p, then

p

ap2 − ap1

ða2
a1

xp−1g xð Þw xð Þdx

≤
ð1
0
g a1ð Þw tap2 + 1 − tð Þap1

� �1/p
dt

+ ηg a2ð Þ, g a1ð ÞÞ
ð1
0
h tð Þw tap2 + 1 − tð Þap1

� �1/p
dt

− μ ap2 − aq1
�� ��pð1

0
ϕ tð Þw tap2 + 1 − tð Þap1

� �1/p
dt:

ð37Þ

Adding inequalities (36) and (37), where w is symmetric,
then

2p
ap2 − ap1

ða2
a1

xp−1g xð Þw xð Þdx

≤ g a1ð Þ + g a2ð Þð Þ
ð1
0
w tap1 + 1 − tð Þap2
� �1/p

dt

+ η g a1ð Þ, g a2ð Þð Þ + η g a2ð Þ, g a1ð Þð Þ½ �
ð1
0
h tð Þw tap1 + 1 − tð Þap2

� �1/p
dt

− 2μ ap2 − ap1
�� ��qð1

0
ϕ tð Þw tap1 + 1 − tð Þap2

� �1/p
dt:

ð38Þ

Now, for x = ðtap1 + ð1 − tÞap2Þ1/p, we have

ða2
a1

xp−1g xð Þw xð Þdx ≤ g a1ð Þ + g a2ð Þð Þ
2

ða2
a1

xp−1w xð Þdx

+ η g a1ð Þ, g a2ð Þð Þ + η g a2ð Þ, g a1ð Þð Þ½ �
2

ða2
a1

xp−1h

� xp − ap2
ap1 − ap2

 !1/p

w xð Þdx

− μ
ða2
a1

xp−1ϕ
xp − ap2
ap1 − ap2

 !1/p

w xð Þdx:

ð39Þ

Inequalities (34) and (39) assure to proof.

Remark 15.

(1) For hðtÞ = t, this F type inequality reduced to F type
inequality for the function defined in [29].

(2) For μ = 0, p = 1, and ηða, bÞ = a − b, this F Type
inequality reduced to F type inequality for the func-
tion defined in [33].

(3) For μ = 0, p = 1, ηða, bÞ = a − b, and hðtÞ = t, this F
type inequality reduced to F type inequality for C-
function in classical sense
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4. Conclusions

In this paper, we introduced the notion of generalized strongly
modified ðp ; hÞ–C-functions of higher order and established
HH, F, and S type inequalities. Many existing results can be
derived from our results. Our results are applicable in pure
and applied mathematics especially in optimization theory.
For applications point, we refer to the readers [35–38].

5. Future Directions

It will be interesting to introduce a new and more general-
ized version of the convexity. The inequalities established
in this paper can be further extended for different versions
of fractional integral operators.

Data Availability

All data required for this paper is included within this paper.

Conflicts of Interest

We do not have any competing interests.

Authors’ Contributions

Y.M. wrote the final version of the paper and verified the
results and arranged the funding for this paper. M.S.S. pro-
posed the problem and supervised this work. I.B. proved
the main results of the paper and Y.X. wrote the first version
of the paper.

Acknowledgments

This research is funded by the School of General Education,
Dalian Neusoft University of Information, Dalian 116023,
China. This research is supported by Department of Mathe-
matics, Univeristy of Okara, Okara Pakistan.

References

[1] S. I. Butt, R. Jaksic, L. Kvesic, and J. Pecaric, “n-Exponential
convexity of weighted Hermite-Hadamard’s inequality,” Jour-
nal of Mathematical Inequalities, vol. 8, no. 2, pp. 299–311,
2007.

[2] S. Khan, M. A. Khan, S. I. Butt, and Y. M. Chu, “A new bound
for the Jensen gap pertaining twice differentiable functions
with applications,” Advances in Difference Equations,
vol. 2020, no. 1, Article ID 333, 2020.

[3] M. U. Awan, S. Talib, Y. M. Chu, M. A. Noor, and K. I. Noor,
“Some new refinements of Hermite–Hadamard-type inequal-
ities involving -Riemann–Liouville fractional integrals and
applications,” Mathematical Problems in Engineering,
vol. 2020, 10 pages, 2020.

[4] T. Lara, N. Merentes, and K. Nikodem, “Strong -convexity and
separation theorems,” International Journal of Analysis,
vol. 2016, 5 pages, 2016.

[5] N. Alp, M. Z. Sarikaya, M. Kunt, and I. Iscan, “q-Hermite
Hadamard inequalities and quantum estimates for midpoint
type inequalities via convex and quasi-convex functions,” Jour-

nal of King Saud University-Science, vol. 30, no. 2, pp. 193–203,
2018.

[6] G. Rahman, K. S. Nisar, T. Abdeljawad, and S. Ullah, “Certain
fractional proportional integral inequalities via convex func-
tions,” Mathematics, vol. 8, no. 2, p. 222, 2020.

[7] K. Liu, J. Wang, and D. O’Regan, “On the Hermite-Hadamard
type inequality for ψ–Riemann-Liouville fractional integrals
via convex functions,” Journal of Inequalities and Applications,
vol. 2019, no. 1, Article ID 27, 2019.

[8] G. Farid, W. Nazeer, M. S. Saleem, S. Mehmood, and S. M.
Kang, “Bounds of Riemann-Liouville fractional integrals in
general form via convex functions and their applications,”
Mathematics, vol. 6, no. 11, p. 248, 2018.

[9] M. Tunç, “Ostrowski-type inequalities via h-convex functions
with applications to special means,” Journal of Inequalities and
Applications, vol. 2013, no. 1, Article ID 326, 2013.

[10] E. Set, M. Z. Sarikaya, M. E. Özdemir, and H. Yildirim, “The
Hermite-Hadamard’s inequality for some convex functions
via fractional integrals and related results,” 2011, http://arxiv
.org/abs/1112.6176.

[11] M. Avci, H. Kavurmaci, and M. E. Özdemir, “New inequalities
of Hermite-Hadamard type via s -convex functions in the sec-
ond sense with applications,” Applied Mathematics and Com-
putation, vol. 217, no. 12, pp. 5171–5176, 2011.

[12] S. Rashid, M. A. Noor, and K. I. Noor, “Fractional exponen-
tially m-convex functions and inequalities,” International
Journal of Analysis and Applications, vol. 17, no. 3, pp. 464–
478, 2019.

[13] I. Abbas Baloch and Y. M. Chu, “Petrović-type inequalities for
Harmonic -convex functions,” Journal of Function Spaces,
vol. 2020, 7 pages, 2020.

[14] M. B. Sun and Y. M. Chu, “Inequalities for the generalized
weighted mean values of g-convex functions with applica-
tions,” Revista de la Real Academia de Ciencias Exactas, Fisicas
y Naturales. Serie A. Matemáticas, vol. 114, no. 4, pp. 1–12,
2020.

[15] T. Ali, M. A. Khan, and Y. Khurshidi, “Hermite-Hadamard
inequality for fractional integrals via eta-convex functions,”
Acta Mathematica Universitatis Comenianae, vol. 86, no. 1,
pp. 153–164, 2017.

[16] Y. M. Chu, M. A. Khan, T. U. Khan, and T. Ali, “Generaliza-
tions of Hermite-Hadamard type inequalities for MT-convex
functions,” Journal of Nonlinear Sciences and Applications,
vol. 9, no. 6, pp. 4305–4316, 2016.

[17] I. A. Baloch, A. A. Mughal, Y. M. Chu, A. U. Haq, and M. De
La Sen, “A variant of Jensen-type inequality and related results
for harmonic convex functions,” Aims Mathematics, vol. 5,
no. 6, pp. 6404–6418, 2020.

[18] K. G. Murty and F. T. Yu, Linear Complementarity, Linear and
Nonlinear Programming (Vol. 3), Heldermann, Berlin, 1988.

[19] K. Nikodem and Z. Pales, “Characterizations of inner product
spaces by strongly convex functions,” Banach Journal of Math-
ematical Analysis, vol. 5, no. 1, pp. 83–87, 2011.

[20] Z. Poracká-Divis, “Existence theorem and convergence of
minimizing sequences in extremum problems,” SIAM Journal
on Mathematical Analysis, vol. 2, no. 4, pp. 505–510, 1971.

[21] G. Qu and N. Li, “On the exponential stability of primal-dual
gradient dynamics,” IEEE Control Systems Letters, vol. 3,
no. 1, pp. 43–48, 2019.

[22] A. Barani, A. G. Ghazanfari, and S. S. Dragomir, “Hermite-
Hadamard inequality for functions whose derivatives absolute

7Journal of Function Spaces

http://arxiv.org/abs/1112.6176
http://arxiv.org/abs/1112.6176


values are preinvex,” Journal of Inequalities and Applications,
vol. 2012, no. 1, Article ID 247, 2012.

[23] M. Bessenyei and Z. Páles, “Characterizations of convexity via
Hadamard’s inequality,”Mathematical Inequalities & Applica-
tions, vol. 9, no. 1, pp. 53–62, 1998.

[24] C. Zalinescu, Convex Analysis in General Vector Spaces, World
scientific, 2002.

[25] A. Gilányi, N. Merentes, K. Nikodem, and Z. Páles, “Charac-
terizations and decomposition of strongly Wright-convex
functions of higher order,” Opuscula Mathematica, vol. 35,
no. 1, p. 37, 2015.

[26] B. B. Mohsen, M. A. Noor, K. I. Noor, and M. Postolache,
“Strongly convex functions of higher order involving bifunc-
tion,” Mathematics, vol. 7, no. 11, p. 1028, 2019.

[27] M. A. Noor and K. I. Noor, “Higher order strongly generalized
convex functions,” Applied Mathematics & Information Sci-
ences, vol. 14, no. 1, pp. 133–139, 2020.

[28] S. I. Butt, M. Klaricic Bakula, D. Pecaric, and J. Pecaric,
“Jensen-Grüss inequality and its applications for the Zipf-
Mandelbrot law,” Mathematical Methods in the Applied
Sciences, vol. 44, no. 2, pp. 1664–1673, 2021.

[29] M. S. Saleem, Y. M. Chu, N. Jahangir, H. Akhtar, and C. Y.
Jung, “On generalized strongly p-convex functions of higher
order,” Journal of Mathematics, vol. 2020, 8 pages, 2020.

[30] M. R. Delavar, “On ϕ-convex functions,” Journal of Mathe-
matical Inequalities, vol. 10, no. 3, pp. 173–183, 2016.

[31] C. E. Finol and M. Wojtowicz, “Multiplicative properties of
real functions with applications to classical functions,” Aequa-
tiones Mathematicae, vol. 59, no. 1, pp. 134–149, 2000.

[32] S. Varosanec, “On h -convexity,” Journal of Mathematical
Analysis and Applications, vol. 326, no. 1, pp. 303–311, 2007.

[33] M. Noor, K. Noor, and U. Awan, “Hermite-Hadamard type
inequalities for modified h-convex functions,” Journal of
Applied Mathematics and Mechanics, vol. 6, p. 2014, 2014.

[34] T. Zhao, M. S. Saleem, W. Nazeer, I. Bashir, and I. Hussain,
“On generalized strongly modified h-convex functions,” Jour-
nal of Inequalities and Applications, vol. 2020, no. 1, Article
ID 11, 2020.

[35] P. Agarwal, D. Baleanu, Y. Chen, S. Momani, and J. A. T.
Machado, Fractional Calculus: ICFDA 2018, Amman, Jordan,
July 16-18 (Vol. 303), Springer Nature, 2019.

[36] P. Agarwal, S. S. Dragomir, M. Jleli, and B. Samet, Eds.,
Advances in Mathematical Inequalities and Applications,
Springer Singapore, 2018.

[37] S. Salahshour, A. Ahmadian, N. Senu, D. Baleanu, and
P. Agarwal, “On analytical solutions of the fractional differen-
tial equation with uncertainty: application to the Basset prob-
lem,” Entropy, vol. 17, no. 2, pp. 885–902, 2015.

[38] J. Tariboon, S. K. Ntouyas, and P. Agarwal, “New concepts of
fractional quantum calculus and applications to impulsive
fractional q-difference equations,” Advances in Difference
Equations, vol. 2015, no. 1, Article ID 18, 2015.

8 Journal of Function Spaces


	Schur, Hermite-Hadamard, and Fejér Type Inequalities for the Class of Higher-Order Generalized Convex Functions
	1. Introduction
	2. Definitions and Basic Results
	3. Hermite-Hadamard (HH), Fejér (F), and Schur (S) Type Inequalities
	3.1. S Type Inequality
	3.2. HH Type Inequality
	3.3. F Type Inequality

	4. Conclusions
	5. Future Directions
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments

