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We use a new integral transform approach to solve the fractional Harry Dym equation and fractional Rosenau-Hyman equation in
this work. The Elzaki transform and the integral transformation are combined in the suggested method (ET). To handle two
nonlinear problems, we first construct the Elzaki transforms of the Caputo fractional derivative (CFD) and Atangana-Baleanu
fractional derivative (ABFD). The ultimate purpose of this study is to find an error analysis that demonstrates that our final
result converges to the exact and approximate result. The convergent series form solution demonstrates the method’s efficiency
in resolving several types of fractional differential equations. Furthermore, the solutions obtained in this study agree well with
the exact solutions; thus, this strategy is powerful and efficient as an alternate way for obtaining approximate solutions to both
linear and nonlinear fractional differential equations.

1. Introduction

Fractional calculus FC history dates back 300 years. FC origi-
nated with Leibniz’s usage of the nth derivative notation in his
papers in 1695. L’Hopital raises a query from Leibniz about
the result of his nth derivative notation if the order of “n” is 1
/2 [1]. Many phenomena in engineering and other fields can
be effectively represented by models based on fractional calcu-
lus, that is, the theory of fractional derivatives and integrals of
fractional noninteger order. Respectable interest in fractional
calculus has been utilised in several studies in recent years, such
as regular variation in thermodynamics, biophysics, blood flow
phenomena, aerodynamics, viscoelasticity, electrical circuits,
electro-analytical chemistry, biology, and control theory [2–5].

Due to their prevalence in a wide range of applications and
accurate description of nonlinear processes, researchers are
increasingly focusing on fractional order differential equa-
tions, particularly fractional partial differential equations
(FPDEs). FPDEs are the most common mathematical tools
used to simulate diverse physical phenomena in applied sci-
ences such as physics, engineering, and other social sciences.

Many applications of science and engineering, including as
material sciences, biology, chemistry, fluid dynamics, chemical
kinetics, and many other physical processes, use modelling in
the form of FPDE systems [6–10]. For the solution of
fractional-order PDE problems, different analytical and numer-
ical methodologies have been developed in the literature. The
numerical schemes are a finite difference scheme with nonuni-
form time steps [11–13], a higher order numerical scheme [14],
an implicit finite-difference scheme [15], a compact difference
scheme [16], Adomian decomposition method [17], homotopy
analysis transformmethod [18], fractional-order reduced differ-
ential transformmethod [19], variational iterationmethod [20],
natural transform decomposition method [21], Elzaki trans-
form decomposition method [22], iterative methods [23–25],
andmuchmore [26–30]. The abovementioned techniques have
the straight forward implementations to both linear and nonlin-
ear FDEs.

In the present study, we implement the Elzaki transform in
connection with the CFD and ABC operators to solve two non-
linear problems. We consider fractional Harry Dym equation
and fractional Rosenau-Hyman equation of the form
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Dρ
τψ υ, τð Þ = ψ3 υ, τð Þψυυυ υ, τð Þ, ð1Þ

having initial source

ψ υ, 0ð Þ = a −
3
ffiffiffi
b

p

2
υ

 !2/3

, ð2Þ

and

Dρ
τψ υ, τð Þ = ψ υ, τð Þψυυυ υ, τð Þ + ψ υ, τð Þψυ υ, τð Þ + 3ψυ υ, τð Þψυυ υ, τð Þ,

ð3Þ

having initial source

ψ υ, 0ð Þ = −
8
3
c cos2

υ

4

� �
: ð4Þ

TheHarry Dym is a crucial dynamical equation that is used
in a variety of physical systems. The Harry Dym equation was
initially published in Kruskal and Moser [31] and is credited to
Harry Dym in an unpublished study from 1973-1974. It
denotes a system in which dispersion and nonlinearity are
inextricably linked. Harry Dym is a totally integrable nonlinear
evolution equation that obeys an infinite number of conversion
rules but lacks the Painleve property. The Harry Dym equation
is closely related to the Korteweg-de Vries equation, and this
equation has been used to hydrodynamic problems [32]. The
Sturm-Liouville operator is linked to the Lax pair of the Harry
Dym equation. This operator is spectrally transformed into the
Schrodinger operator by the Liouville transformation [33].
Rosenau and Hyman [34] found the Rosenau-Hyman equa-
tion, which arises in the creation of patterns in liquid drops
with compaction solutions. The Rosenau-Hyman equation
compact on investigations is useful in applied sciences and
mathematical physics [35–38].

The following is how the rest of the paper is structured: we
begin with basic preliminaries and definitions of fractional cal-
culus in Section 2. The proposed method’s general methodol-
ogy is introduced in Section 3. Section 4 focuses on applying
the approach to a set of test problems, using graphs and tables
to demonstrate the technique’s efficiency. The discussion and
conclusion of this work were delivered in Section 5.

2. Preliminaries

In this section, we mention the following basic definitions of
fractional calculus.

Definition 1. The fractional derivative in Caputo manner
(CFD) is given as [39]

C
0D

ρ
τ κ τð Þð Þ =

1
Γ m − ρð Þ

ðτ
0

κm ηð Þ
τ − ηð Þρ+1−m dη, m − 1 < ρ <m,

dm

dτm
κ τð Þ, ρ =m:

8>>><>>>:
ð5Þ

Definition 2. The Atangana-Baleanu Caputo operator (ABC)
is defined as [40]

ABC
m Dρ

τ κ τð Þð Þ = N ρð Þ
1 − ρ

ðτ
m
κ′ ηð ÞEρ −

ρ τ − ηð Þρ
1 − ρ

� �
dη, ð6Þ

where κ ∈H1ðα, βÞ, β > α, ρ ∈ ½0, 1�. A normalisation
function equal to 1 when ρ = 0 and ρ = 1 is represented by
NðρÞ in Eq. (6).

Definition 3. The fractional integral operator in ABC man-
ner is given as [40]

ABC
m Iρτ κ τð Þð Þ = 1 − ρ

N ρð Þ κ τð Þ + ρ

Γ ρð ÞN ρð Þ
ðτ
m
κ ηð Þ τ − ηð Þρ−1dη:

ð7Þ

Definition 4. For exponential function in set A, the Elzaki
transform is given as [41, 42]

A = κ τð Þ: ∃G, p1, p2 > 0, κ τð Þj j <Ge τj j/pj , if τ ∈ −1ð Þj × 0,∞½ Þ
n o

:

ð8Þ

G is a finite number, but p1 and p2 may be finite or infi-
nite for a function selected in the set.

Definition 5. The Elzaki transform of κðτÞ is given as [42]

E κ τð Þf g μð Þ = ~U μð Þ = μ
ð∞
0
e−τ/μκ τð Þdτ, ð9Þ

where τ ≥ 0, p1 ≤ μ ≤ p2.

Theorem 6. (Elzaki transformation convolution theorem,
[43]) The following equality holds:

E κ ∗ vf g = 1
μ
E κð ÞE vð Þ, ð10Þ

where Ef:g represents Elzaki transform.

Definition 7. The Elzaki transform of C
0D

ρ
τðκðτÞÞ CFD oper-

ator is as [44]

E C
0D

ρ
τ κ τð Þð Þ� �

μð Þ = μ−ρ ~U μð Þ − 〠
m−1

k=0
μ2−ρ+kκk 0ð Þ, ð11Þ

where m − 1 < ρ <m.

Theorem 8. The Elzaki transform of ABC
m Dρ

τðκðτÞÞ ABC oper-
ator is as

E ABC
m Dρ

τ κ τð Þð Þ� �
μð Þ = N ρð Þμ

ρμρ + 1 − ρ

~U μð Þ
μ

− μκ 0ð Þ
 !

, ð12Þ

where EfκðτÞgμ = ~UðμÞ.
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Proof. From Definition 2, we get

E ABC
m Dρ

τ κ τð Þð Þ� �
μð Þ =E

N ρð Þ
1 − ρ

ðτ
0
κ′ ηð ÞEρ −

ρ τ − ηð Þρ
1 − ρ

� �
dη

	 

μð Þ:

ð13Þ

Then, from Elzaki transform definition and its convolu-
tion, we obtain

E ABC
m Dρ

τ κ τð Þð Þ� �
μð Þ =E

N ρð Þ
1 − ρ

ðτ
0
κ′ ηð ÞEρ −

ρ τ − ηð Þρ
1 − ρ

� �
dη

	 

=
N ρð Þ
1 − ρ

1
μ
E κ′ ηð Þ
n o

E Eρ −
ρτρ

1 − ρ

� �
dη

	 

=
N ρð Þ
1 − ρ

~U μð Þ
μ

− μκ 0ð Þ
" # ð∞

0
e−1/μEρ −

ρτρ

1 − ρ

� �
dτ

� �

=
N ρð Þμ

ρμρ + 1 − ρ

~U μð Þ
μ

− μκ 0ð Þ
" #

:

ð14Þ

3. Description of the Technique via a New
Integral Transform

In this part, we presented the general methodology used in
this article to solve fractional nonlinear PDE as

Dρ
τψ υ, τð Þ + L ψ υ, τð Þð Þ +N ψ υ, τð Þð Þ = θ υ, τð Þ,

υ, τð Þ ∈ 0, 1½ � × 0, T½ �, κ − 1 < ρ < κ,
ð15Þ

with initial source

∂zψ
∂τz

υ, 0ð Þ = κz υð Þ, z = 0, 1,⋯, κ − 1, ð16Þ

and the boundary sources

ψ 0, τð Þ = γ0 τð Þ, ψ υ, τð Þ = γ1 τð Þ, τ ≥ 0, ð17Þ

Here, known functions are κz , θ, γ0, and γ1. In Eq. (15),
Dρ
τψðυ, τÞ represents the Caputo or ABC fractional deriva-

tives whereas Lð:Þ and Nð:Þ are linear and nonlinear terms.
(1)-(2) and (3)-(4) represent the problems to be solved. By
means of Elzaki transform of CFD in Eq. (11) and ABC in
Eq. (12), we take Efψðυ, τÞgðμÞ = ~ζðυ, μÞ in Eq. (15). Thus,
by means of Caputo fractional derivative, we get

~ζ υ, μð Þ = μρ eθ υ, μð Þ −E L ψ υ, τð Þð Þ +N ψ υ, τð Þð Þ½ �
� �

+ μ2ψ υ, 0ð Þ:
ð18Þ

Also by means of ABC derivative, we get

~ζ υ, μð Þ = ρμρ + 1 − ρ

N ρð Þ
� � eθ υ, μð Þ −E L ψ υ, τð Þð Þ +N ψ υ, τð Þð Þ½ �

� �
+ μ2ψ υ, 0ð Þ:

ð19Þ

Here, E½θðυ, τÞ� = eθðυ, μÞ. Now by taking the Elzaki trans-
form of the boundary conditions, we obtain

E γ0 τð Þ½ � = ~ζ 0, μð Þ,E γ1 τð Þ½ � = ~ζ 1, μð Þ, μ ≥ 0: ð20Þ

We get the solution of Eqs. (15)-(17) by means of perturba-
tion technique

~ζ υ, μð Þ = 〠
∞

E=0
XE~ζE υ, μð Þ,E = 0, 1, 2,⋯: ð21Þ

In Eq. (15), the nonlinear terms are calculated as

N ψ υ, τð Þ½ � = 〠
∞

E=0
XEφE υ, τð Þ, ð22Þ

and the terms υEðυ, τÞ are taken in [45] as

υE ψ0, ψ1,⋯,ψEð Þ = 1
E!

∂E

∂ωE
N 〠

∞

i=0
ωiψi

 !" #
λ=0

,E = 0, 1, 2,⋯:

ð23Þ

For Caputo operator, the solution is determined as by
putting Eqs. (21) and (22) into Eq. (18),

〠
∞

E=0
XE~ζ υ, μð Þ = −Xμρ E L 〠

∞

E=0
XEψE υ, τð Þ

 !
+ 〠

∞

E=0
XEφE υ, τð Þ

" # !
+ μρ eθ υ, μð Þ

� �
+ μ2ψ υ, 0ð Þ:

ð24Þ

Also for Atangana-Baleanu operator, the solution is
determined as by putting Eqs. (21) and (22) into Eq. (19),

〠
∞

E=0
XE~ζ υ, μð Þ = −X

ρμρ + 1 − ρ

N ρð Þ
� �

E L 〠
∞

E=0
XEψE υ, τð Þ

 !
+ 〠

∞

E=0
XEφE υ, τð Þ

" # !

+
ρμρ + 1 − ρ

N ρð Þ
� � eθ υ, μð Þ

� �
+ μ2ψ υ, 0ð Þ:

ð25Þ

Then, by solving (24) and (25) in terms of X , the given
Caputo homotopies are obtained:

X0 : ~ζ0 υ, μð Þ = μρ eθ υ, μð Þ
� �

+ μ2ψ υ, 0ð Þ,

X1 : ~ζ1 υ, μð Þ = −μρE L ψ0 υ, τð Þð Þ + φ0 υ, τð Þ½ �,
X2 : ~ζ2 υ, μð Þ = −μρE L ψ1 υ, τð Þð Þ + φ1 υ, τð Þ½ �,

⋮

Xn+1 : ~ζn+1 υ, μð Þ = −μρE L ψn υ, τð Þð Þ + φn υ, τð Þ½ �:
ð26Þ
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In addition, the ABC homotopies are obtained as given:

X0 : ~ζ0 υ, μð Þ = ρμρ + 1 − ρ

N ρð Þ
� �eθ υ, μð Þ + μ2ψ υ, 0ð Þ,

X1 : ~ζ1 υ, μð Þ = −
ρμρ + 1 − ρ

N ρð Þ
� �

E L ψ0 υ, τð Þð Þ + φ0 υ, τð Þ½ �,

X2 : ~ζ2 υ, μð Þ = −
ρμρ + 1 − ρ

N ρð Þ
� �

E L ψ1 υ, τð Þð Þ + φ1 υ, τð Þ½ �,

⋮

Xn+1 : ~ζn+1 υ, μð Þ = −
ρμρ + 1 − ρ

N ρð Þ
� �

E L ψn υ, τð Þð Þ + φn υ, τð Þ½ �:

ð27Þ

When X ⟶ 1, we get Eqs. (26) and (27) approximate
solution for Eqs. (24) and (25) as

Δn υ, μð Þ = 〠
n

σ=0

~ζσ υ, μð Þ: ð28Þ

Now by taking inverse ET of Eq. (28), we get the approx-
imate solution of Eq. (15)

ψ υ, μð Þ ≅ ψn υ, τð Þ =E−1 ρn υ, μð Þf gj : ð29Þ

4. Applications

In this part, we will solve problems in Eqs. (1)-(4) by imple-
menting Elzaki transform. First, we implement Elzaki trans-
form technique in combination with Caputo derivative to
solve problem (1) having initial source (2). By taking the
Elzaki transform, we get

~ζ υ, μð Þ = μρE ψ3 υ, τð Þψυυυ υ, τð Þ
 �
+ μ2ψ υ, 0ð Þ: ð30Þ

Now applying Elzaki perturbation transform technique
in Eq. (30), we obtain

〠
∞

E=0
XE~ζE υ, μð Þ = +μ2ψ υ, 0ð Þ: ð31Þ

On taking Elzaki inverse transform of Eq. (31), we get

〠
∞

E=0
XEψE υ, μð Þ =XE−1 μρE 〠

∞

E=0
XEφE υ, τð Þ

 !" #" #
+E−1 μ2ψ υ, 0ð Þ
 �

:

ð32Þ

In Eq. (43), the υEð:Þ denotes the nonlinear terms given
in Eq. (24),

φ0 ψð Þ = ψ3
0 ψ0ð Þυυυ,

φ1 ψð Þ = ψ3
0 ψ1ð Þυυυ + 3ψ2

0ψ1 ψ0ð Þυυυ,
⋮:

ð33Þ

Thus by considering powers of X , we get Caputo opera-
tor solution as

X0 : ψ0 υ, τð Þ =E−1 μ2 a −
3
ffiffiffi
b

p

2
υ

 !2/3" #
= a −

3
ffiffiffi
b

p

2
υ

 !2/3

,

X1 : ψ1 υ, τð Þ =E−1 μρE L φ0 υ, τð Þð Þ½ �½ � = −b3/2 a −
3
ffiffiffi
b

p

2
υ

 !−1/3
τρ

Γ ρ + 1ð Þ ,

X2 : ψ2 υ, τð Þ =E−1 μρE L φ1 υ, τð Þð Þ½ �½ � = −
b3

2
a −

3
ffiffiffi
b

p

2
υ

 !−4/3
τ2ρ

Γ 2ρ + 1ð Þ ,

⋮:

ð34Þ

The series form solution of the problem is given as

which gives the solution at ðρ = 1Þ as ða − 3
ffiffiffi
b

p
/2ðυ + bτÞÞ2/3.

Now, we implement Elzaki transform technique in com-
bination with Atangana-Baleanu operator to solve same
problem. By taking the Elzaki transform, we get

~ζ υ, μð Þ = ρμρ + 1 − ρ

N ρð Þ
� �

E ψ3 υ, τð Þψυυυ υ, τð Þ
 �
+ μ2ψ υ, 0ð Þ: ð36Þ

Now applying Elzaki perturbation transform technique
to (36), we obtain

〠
∞

E=0
XE~ζE υ, μð Þ =X

ρμρ + 1 − ρ

N ρð Þ
� �

E 〠
∞

E=0
XEφE υ, τð Þ

 !" #
+ μ2ψ υ, 0ð Þ:

ð37Þ

On taking Elzaki inverse transform of Eq. (37), we get

〠
∞

E=0
XEψE υ, τð Þ =XE−1 ρμρ + 1 − ρ

N ρð Þ
� �

E 〠
∞

E=0
XEφE υ, τð Þ

 !" #" #
+E−1 μ2ψ υ, 0ð Þ
 �

:

ð38Þ

ψ υ, τð Þ = a −
3
ffiffiffi
b

p

2
υ

 !2/3

− b3/2 a −
3
ffiffiffi
b

p

2
υ

 !−1/3
τρ

Γ ρ + 1ð Þ −
b3

2
a −

3
ffiffiffi
b

p

2
υ

 !−4/3
τ2ρ

Γ 2ρ + 1ð Þ+⋯
 !

, ð35Þ
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In Eq.(38), υEð:Þ denotes the nonlinear terms given in
Eq. (23). By repeating the same process for nonlinear terms,
we obtain the following terms:

Thus, the approximate solution by means of ABC oper-
ator is given as

which gives the solution at ðρ = 1Þ as ða − 3
ffiffiffi
b

p
/2ðυ + bτÞÞ2/3.

Second, we implement Elzaki transform technique in
combination with Caputo derivative to solve problem (3) hav-
ing initial source (4). By taking the Elzaki transform, we get

Now applying Elzaki perturbation transform technique
in Eq. (41), we obtain

〠
∞

E=0
XE~ζE υ, μð Þ =XμρE 〠

∞

E=0
XEφE υ, τð Þ

 !" #
+ μ2ψ υ, 0ð Þ: ð42Þ

On taking Elzaki inverse transform of Eq. (42), we get

〠
∞

E=0
XEψE υ, μð Þ =XE−1 μρE 〠

∞

E=0
XEφE υ, τð Þ

 !" #" #
+E−1 μ2ψ υ, 0ð Þ
 �

:

ð43Þ

X0 : ψ0 υ, τð Þ =E−1 μ2 a −
3
ffiffiffi
b

p

2
υ

 !2/3" #
= a −

3
ffiffiffi
b

p

2
υ

 !2/3

,

X1 : ψ1 υ, τð Þ =E−1 ρμρ + 1 − ρ

N ρð Þ
� �

E φ0 υ, τð Þ½ �
� �

=
−b3/2 a − 3

ffiffiffi
b

p
/2

� �
υ

� �−1/3
N ρð Þ

0B@
1CA ρτρ

Γ ρ + 1ð Þ + 1 − ρ

� �
,

X2 : ψ2 υ, τð Þ =E−1 ρμρ + 1 − ρ

N ρð Þ
� �

E φ1 υ, τð Þ½ �
� �

=
−b3/2 a − 3

ffiffiffi
b

p
/2

� �
υ

� �−4/3
N2 ρð Þ

0B@
1CA ρτρð Þ2

Γ 2ρ + 1ð Þ +
2ρ 1 − ρð Þτρ
Γ ρ + 1ð Þ + 1 − ρð Þ2

 !
,

⋮:

ð39Þ

ψ υ, τð Þ = 〠
n

σ=0
ψσ υ, τð Þ = a −

3
ffiffiffi
b

p

2
υ

 !2/3

+
−b3/2 a − 3

ffiffiffi
b

p
/2

� �
υ

� �−1/3
N ρð Þ

0B@
1CA ρτρ

Γ ρ + 1ð Þ + 1 − ρ

� �

+
−b3/2 a − 3

ffiffiffi
b

p
/2

� �
υ

� �−4/3
N2 ρð Þ

0B@
1CA ρτρð Þ2

Γ 2ρ + 1ð Þ +
2ρ 1 − ρð Þτρ
Γ ρ + 1ð Þ + 1 − ρð Þ2

 !
+⋯,

ð40Þ

~ζ υ, μð Þ = μρE ψ υ, τð Þψυυυ υ, τð Þ + ψ υ, τð Þψυ υ, τð Þ + 3ψυ υ, τð Þψυυ υ, τð Þ½ � + μ2ψ υ, 0ð Þ: ð41Þ
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In Eq. (43), υEð:Þdenotes the nonlinear terms given inEq. (24),

Thus by considering powers of X , we get Caputo opera-
tor solution as

X0 : ψ0 υ, τð Þ =E−1 μ2 −
8
3
c cos2

υ

4

� �� �� �
= −

8
3
c cos2

υ

4

� �
,

X1 : ψ1 υ, τð Þ =E−1 μρE L φ0 υ, τð Þð Þ½ �½ � = −
2
3
c2 sin

υ

2

� � τρ

Γ ρ + 1ð Þ ,

X2 : ψ2 υ, τð Þ =E−1 μρE L φ1 υ, τð Þð Þ½ �½ � +E−1 μρE υ1 υ, τð Þ½ �½ � = 1
3
c3 cos

υ

2

� � τ2ρ

Γ 2ρ + 1ð Þ ,

⋮:

ð45Þ

The series form solution of the problem is given as

ψ υ, τð Þ = −
8
3
c cos2

υ

4

� �
−
2
3
c2 sin

υ

2

� � τρ

Γ ρ + 1ð Þ +
1
3
c3 cos

υ

2

� � τ2ρ

Γ 2ρ + 1ð Þ+⋯
� �

,

ð46Þ

which gives the solution at ðρ = 1Þ as, −8/3c cos2
ð1/4ðυ − cτÞÞ.

Now, we implement Elzaki transform technique in combi-
nation with Atangana-Baleanu operator to solve same problem.

Table 1: Comparison of absolute errors of proposed method solution at various fractional-orders with a, b = 1 for problem 1.

τ υ ρ = 0:4 ρ = 0:6 ρ = 0:8 ρ = 1 ETMCFDð Þ ρ = 1 ETMABCð Þ

0.01

0.2 3.0035700000E-04 2.0035600000E-04 1.0035400000E-04 3.5300000000E-07 3.5300000000E-07

0.4 3.0033900000E-04 2.0033800000E-04 1.0033600000E-04 3.3500000000E-07 3.3500000000E-07

0.6 3.0031800000E-04 2.0031700000E-04 1.0031500000E-04 3.1400000000E-07 3.1400000000E-07

0.8 3.0029400000E-04 2.0029300000E-04 1.0029100000E-04 2.9000000000E-07 2.9000000000E-07

1 3.0026800000E-04 2.0026700000E-04 1.0026500000E-04 2.6400000000E-07 2.6400000000E-07

0.02

0.2 3.0071500000E-04 2.0071200000E-04 1.0071000000E-04 7.0700000000E-07 7.0700000000E-07

0.4 3.0067800000E-04 2.0067500000E-04 1.0067300000E-04 6.7000000000E-07 6.7000000000E-07

0.6 3.0063600000E-04 2.0063300000E-04 1.0063100000E-04 6.2800000000E-07 6.2800000000E-07

0.8 3.0058900000E-04 2.0058600000E-04 1.0058400000E-04 5.8100000000E-07 5.8100000000E-07

1 3.0053500000E-04 2.0053200000E-04 1.0053000000E-04 5.2700000000E-07 5.2700000000E-07

0.03

0.2 3.0107100000E-04 2.0106700000E-04 1.0106400000E-04 1.0600000000E-06 1.0600000000E-06

0.4 3.0101600000E-04 2.0101200000E-04 1.0100900000E-04 1.0050000000E-06 1.0050000000E-06

0.6 3.0095300000E-04 2.0094900000E-04 1.0094600000E-04 9.4200000000E-07 9.4200000000E-07

0.8 3.0088200000E-04 2.0087800000E-04 1.0087500000E-04 8.7100000000E-07 8.7100000000E-07

1 3.0080100000E-04 2.0079700000E-04 1.0079400000E-04 7.9000000000E-07 7.9000000000E-07

0.04

0.2 3.0142700000E-04 2.0142200000E-04 1.0141800000E-04 1.4130000000E-06 1.4130000000E-06

0.4 3.0135400000E-04 2.0134900000E-04 1.0134500000E-04 1.3400000000E-06 1.3400000000E-06

0.6 3.0127000000E-04 2.0126500000E-04 1.0126100000E-04 1.2560000000E-06 1.2560000000E-06

0.8 3.0117600000E-04 2.0117100000E-04 1.0116700000E-04 1.1620000000E-06 1.1620000000E-06

1 3.0106700000E-04 2.0106200000E-04 1.0105800000E-04 1.0530000000E-06 1.0530000000E-06

0.05

0.2 3.0178400000E-04 2.0177900000E-04 1.0177300000E-04 1.7670000000E-06 1.7670000000E-06

0.4 3.0169200000E-04 2.0168700000E-04 1.0168100000E-04 1.6750000000E-06 1.6750000000E-06

0.6 3.0158700000E-04 2.0158200000E-04 1.0157600000E-04 1.5700000000E-06 1.5700000000E-06

0.8 3.0146900000E-04 2.0146400000E-04 1.0145800000E-04 1.4520000000E-06 1.4520000000E-06

1 3.0133300000E-04 2.0132800000E-04 1.0132200000E-04 1.3160000000E-06 1.3160000000E-06

φ0 ψð Þ = ψ0 ψ0ð Þυ + 3 ψ0ð Þυ ψ0ð Þυυ + ψ0 ψ0ð Þυυυ,
φ1 ψð Þ = ψ1 ψ0ð Þυ + ψ0 ψ1ð Þυ + 3 ψ1ð Þυ ψ0ð Þυυ + 3 ψ0ð Þυ ψ1ð Þυυ + ψ1 ψ0ð Þυυυ + ψ0 ψ1ð Þυυυ,

⋮:

ð44Þ
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By taking the Elzaki transform, we get

~ζ υ, μð Þ = ρμρ + 1 − ρ

N ρð Þ
� �

E ψ υ, τð Þψυυυ υ, τð Þ½

+ ψ υ, τð Þψυ υ, τð Þ + 3ψυ υ, τð Þψυυ υ, τð Þ� + μ2ψ υ, 0ð Þ:
ð47Þ

Now applying Elzaki perturbation transform technique to
Eq. (47), we obtain

〠
∞

E=0
XE~ζE υ, μð Þ =X

ρμρ + 1 − ρ

N ρð Þ
� �

E 〠
∞

E=0
XEφE υ, τð Þ

 !" #
+ μ2ψ υ, 0ð Þ: ð48Þ

On taking Elzaki inverse transform of Eq. (48), we get

〠
∞

E=0
XEψE υ, τð Þ =XE−1 ρμρ + 1 − ρ

N ρð Þ
� �

E 〠
∞

E=0
XEφE υ, τð Þ

 !" #" #
+E−1 μ2ψ υ, 0ð Þ
 �

:

ð49Þ

In Eq. (38), υEð:Þ denotes the nonlinear terms given in Eq.
(23). By repeating the same process for nonlinear terms, we
obtain the following terms:

Table 2: Comparison of absolute errors of proposed method solution at various fractional-orders with c = 0:5 for problem 2.

τ υ ρ = 0:4 ρ = 0:6 ρ = 0:8 ρ = 1 ETMCFDð Þ ρ = 1 ETMABCð Þ

0.01

0.2 5.0265200000E-04 3.3503800000E-04 1.6749500000E-04 2.0000000000E-08 2.0000000000E-08

0.4 1.0002620000E-03 6.6670800000E-04 3.3329700000E-04 2.1000000000E-08 2.1000000000E-08

0.6 1.4878770000E-03 9.9171600000E-04 4.9576800000E-04 1.9000000000E-08 1.9000000000E-08

0.8 1.9606260000E-03 1.3068160000E-03 6.5328500000E-04 1.9000000000E-08 1.9000000000E-08

1 2.4137850000E-03 1.6088580000E-03 8.0427600000E-04 1.8000000000E-08 1.8000000000E-08

0.02

0.2 5.0535100000E-04 3.3681900000E-04 1.6839800000E-04 8.2000000000E-08 8.2000000000E-08

0.4 1.0055720000E-03 6.7019200000E-04 3.3503200000E-04 8.2000000000E-08 8.2000000000E-08

0.6 1.4957440000E-03 9.9686700000E-04 4.9831800000E-04 8.0000000000E-08 8.0000000000E-08

0.8 1.9709720000E-03 1.3135820000E-03 6.5662400000E-04 7.7000000000E-08 7.7000000000E-08

1 2.4265060000E-03 1.6171720000E-03 8.0837000000E-04 7.4000000000E-08 7.4000000000E-08

0.03

0.2 5.0779200000E-04 3.3845200000E-04 1.6925200000E-04 1.8600000000E-07 1.8600000000E-07

0.4 1.0103250000E-03 6.7333600000E-04 3.3662600000E-04 1.8400000000E-07 1.8400000000E-07

0.6 1.5027620000E-03 1.0014910000E-03 5.0063600000E-04 1.7900000000E-07 1.7900000000E-07

0.8 1.9801840000E-03 1.3196410000E-03 6.5964500000E-04 1.7300000000E-07 1.7300000000E-07

1 2.4378200000E-03 1.6246040000E-03 8.1206200000E-04 1.6500000000E-07 1.6500000000E-07

0.04

0.2 5.1008200000E-04 3.4000300000E-04 1.7008800000E-04 3.3200000000E-07 3.3200000000E-07

0.4 1.0147360000E-03 6.7627600000E-04 3.3814400000E-04 3.2700000000E-07 3.2700000000E-07

0.6 1.5092490000E-03 1.0057910000E-03 5.0282100000E-04 3.1800000000E-07 3.1800000000E-07

0.8 1.9886830000E-03 1.3252570000E-03 6.6247400000E-04 3.0700000000E-07 3.0700000000E-07

1 2.4482470000E-03 1.6314820000E-03 8.1550800000E-04 2.9300000000E-07 2.9300000000E-07

0.05

0.2 5.1227100000E-04 3.4150300000E-04 1.7092100000E-04 5.1800000000E-07 5.1800000000E-07

0.4 1.0189040000E-03 6.7907600000E-04 3.3961600000E-04 5.1100000000E-07 5.1100000000E-07

0.6 1.5153560000E-03 1.0098610000E-03 5.0491600000E-04 4.9800000000E-07 4.9800000000E-07

0.8 1.9966670000E-03 1.3305580000E-03 6.6517100000E-04 4.8000000000E-07 4.8000000000E-07

1 2.4580280000E-03 1.6379590000E-03 8.1877900000E-04 4.5700000000E-07 4.5700000000E-07

X0 : ψ0 υ, τð Þ =E−1 μ2 −
8
3
c cos2

υ

4

� �� �� �
= −

8
3
c cos2

υ

4

� �� �
,

X1 : ψ1 υ, τð Þ =E−1 ρμρ + 1 − ρ

N ρð Þ
� �

E φ0 υ, τð Þ½ �
� �

=
−2/3c2 sin υ/2ð Þ

N ρð Þ
� �

ρτρ

Γ ρ + 1ð Þ + 1 − ρ

� �
,

X2 : ψ2 υ, τð Þ =E−1 ρμρ + 1 − ρ

N ρð Þ
� �

E φ1 υ, τð Þ½ �
� �

=
1/3c3 cos υ/2ð Þ

N2 ρð Þ

� �
ρτρð Þ2

Γ 2ρ + 1ð Þ +
2ρ 1 − ρð Þτρ
Γ ρ + 1ð Þ + 1 − ρð Þ2

 !
,

⋮:

ð50Þ
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Thus, the approximate solution by means of ABC oper-
ator is given as

which gives the solution at ðρ = 1Þ as, −8/3c cos2
ð1/4ðυ − cτÞÞ.

5. Results and Discussion

In this article, a detailed investigation of error analysis between
exact and approximate solutions, as stated by Tables 1 and 2,
has been conducted with greater accuracy. In table, calculating
the absolute error at various fractional-orders demonstrates the

simplicity and accuracy of the provided method. The error
analysis between the exact and approximate solutions is shown
in Tables 1 and 2, indicating that the series solution quickly
converges to a small value. Also, in Tables 3 and 4, we show
the numerical simulation of the proposed method solution.
As a result, we will only use the third order of the series solution
throughout the numerical evolution. The correctness of the
error analytical result will be increased by inserting more terms
of approximation solution. Figures 1 and 2 depict the

Table 3: Comparison of the exact and proposed method solution at various values of ρ with a, b = 1 for problem 1.

τ υ ρ = 0:4 ρ = 0:6 ρ = 0:8 ρ = 1 approxð Þ ρ = 1 exactð Þ

0.01

0.2 2.391919 2.392019 2.392119 2.392219 2.392219

0.4 2.260796 2.260896 2.260996 2.261096 2.261096

0.6 2.125753 2.125853 2.125953 2.126053 2.126054

0.8 1.986275 1.986375 1.986475 1.986575 1.986576

1 1.841714 1.841814 1.841914 1.842015 1.842014

0.02

0.2 2.391918 2.392018 2.392118 2.392218 2.392218

0.4 2.260795 2.260895 2.260995 2.261095 2.261096

0.6 2.125752 2.125852 2.125952 2.126052 2.126053

0.8 1.986274 1.986374 1.986474 1.986574 1.986575

1 1.841713 1.841813 1.841913 1.842013 1.842014

0.03

0.2 2.391917 2.392017 2.392117 2.392217 2.392218

0.4 2.260794 2.260894 2.260994 2.261094 2.261095

0.6 2.125751 2.125851 2.125951 2.126051 2.126052

0.8 1.986273 1.986373 1.986473 1.986573 1.986574

1 1.841712 1.841812 1.841912 1.842012 1.842013

0.04

0.2 2.391916 2.392016 2.392116 2.392216 2.392217

0.4 2.260793 2.260893 2.260993 2.261093 2.261094

0.6 2.125750 2.125850 2.125950 2.126051 2.126052

0.8 1.986272 1.986372 1.986472 1.986572 1.986573

1 1.841711 1.841811 1.841911 1.842011 1.842012

0.05

0.2 2.391915 2.392015 2.392115 2.392215 2.392216

0.4 2.260792 2.260892 2.260992 2.261093 2.261094

0.6 2.125749 2.125849 2.125949 2.126050 2.126051

0.8 1.986271 1.986371 1.986471 1.986572 1.986573

1 1.841710 1.841810 1.841910 1.842011 1.842012

ψ υ, τð Þ = 〠
n

σ=0
ψσ υ, τð Þ = −

8
3
c cos2

υ

4

� �� �
+

−2/3c2 sin υ/2ð Þ
N ρð Þ

� �
ρτρ

Γ ρ + 1ð Þ + 1 − ρ

� �
+

1/3c3 cos υ/2ð Þ
N2 ρð Þ

� �
ρτρð Þ2

Γ 2ρ + 1ð Þ +
2ρ 1 − ρð Þτρ
Γ ρ + 1ð Þ + 1 − ρð Þ2

 !
+⋯,

ð51Þ

8 Journal of Function Spaces



Table 4: Comparison of the exact and proposed method solution at various values of ρ with c = 0:5 for problem 2.

τ υ ρ = 0:4 ρ = 0:6 ρ = 0:8 ρ = 1 approxð Þ ρ = 1 exactð Þ

0.01

0.2 -1.330522 -1.330354 -1.330186 -1.330019 -1.330019

0.4 -1.321077 -1.320744 -1.320410 -1.320077 -1.320077

0.6 -1.305094 -1.304598 -1.304102 -1.303606 -1.303606

0.8 -1.282732 -1.282079 -1.281425 -1.280772 -1.280772

1 -1.254215 -1.253410 -1.252605 -1.251801 -1.251801

0.02

0.2 -1.330541 -1.330372 -1.330204 -1.330036 -1.330035

0.4 -1.321116 -1.320780 -1.320445 -1.320110 -1.320110

0.6 -1.305151 -1.304652 -1.304154 -1.303656 -1.303656

0.8 -1.282808 -1.282150 -1.281493 -1.280837 -1.280837

1 -1.254307 -1.253498 -1.252689 -1.251881 -1.251881

0.03

0.2 -1.330560 -1.330390 -1.330221 -1.330052 -1.330052

0.4 -1.321153 -1.320816 -1.320480 -1.320143 -1.320143

0.6 -1.305208 -1.304706 -1.304205 -1.303705 -1.303705

0.8 -1.282882 -1.282221 -1.281561 -1.280902 -1.280901

1 -1.254399 -1.253585 -1.252773 -1.251961 -1.251961

0.04

0.2 -1.330579 -1.330409 -1.330239 -1.330069 -1.330069

0.4 -1.321191 -1.320852 -1.320514 -1.320176 -1.320176

0.6 -1.305263 -1.304760 -1.304257 -1.303754 -1.303754

0.8 -1.282955 -1.282291 -1.281629 -1.280966 -1.280966

1 -1.254489 -1.253672 -1.252856 -1.252041 -1.252041

0.05

0.2 -1.330597 -1.330426 -1.330256 -1.330085 -1.330085

0.4 -1.321228 -1.320888 -1.320549 -1.320209 -1.320209

0.6 -1.305318 -1.304813 -1.304308 -1.303803 -1.303803

0.8 -1.283028 -1.282361 -1.281696 -1.281031 -1.281031

1 -1.254578 -1.253758 -1.252939 -1.252121 -1.252120

2.0
1.9

1.8
1.7
1.6

1.5
1.4

1.3

0 0.2 0.4 0.6 0.8 1 0.8 0.6 0.4 0.2 0

𝜐𝜏

Exact

(a)

2.0
1.9

1.8
1.7
1.6

1.5
1.4

1.3

0 0.2 0.4 0.6 0.8 1 0.8 0.6 0.4 0.2 0

𝜐𝜏

Analytical

(b)

Figure 1: The graphical layout of the exact solution, proposed method solution at ρ = 1 and at various fractional orders of ρ = 1,0:8,0:6,0:4
with a, b = 1 for problem 1.
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behaviour of the exact and proposed approach solutions and
describe the properties of the approximate solution. We also
present the proposed approach solution at different fractional-
orders for a better understanding of the problems characteris-
tics. We concluded that the recommended technique solution
was in good agreement with the exact solution based on the
tables and graphs.

6. Conclusion

The main goal of this study is to use an efficient technique to
determine the solution to the fractional Harry Dym equation
and fractional Rosenau-Hyman equation. The proposed
method is used in addition to two fractional derivatives:
Caputo fractional derivative and Atangana-Baleanu frac-
tional derivative. Tables and figures are used to specify the
results of the comparative solution. The tables and figures
show that the suggested technique solution and the exact
result have a better understanding. From the derived results,

it shows the reliability of the algorithm, and it is greatly suit-
able for nonlinear fractional partial differential equation.
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