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In this paper, the concept of convex rectangular b −metric spaces is introduced as a generalization of both convex metric spaces
and rectangular b −metric spaces. The purpose of this study is to indicate a way of generalizing Mann’s iteration algorithm and a
series of fixed point results in rectangular b −metric spaces. Furthermore, certain examples are given to support the results. We
also study well posedness of fixed point problems of some mappings in convex rectangular b −metric spaces, and an
application to the dynamic programming is entrusted to manifest the viability of the obtained results. Our results extend
comparable results in the existing literature.

1. Introduction and Preliminaries

It is well known that fixed point theory has become an
important field of mathematics due to its high degree of
unity and wide application. No doubt that the most signifi-
cant fundamental result of this theory is Banach contraction
principle [1] which was published in 1922. Banach contrac-
tion principle proposes for the first time to use Picard itera-
tion to approximate a fixed point, which not only proves the
existence of the fixed point but also proves the uniqueness of
the fixed point. Later in 1968, Kannan [2] studied a new type
of contractive mapping. Since then, there have been many
results related to mappings satisfy various types of contrac-
tive inequality, see for example [3–9].

In 2000, Branciari [10] developed the notion of a rectan-
gular space as a generalization of normal metric space via
substituting the triangle inequality with the quadrilateral
inequality and extended Banach contraction principle to this
space. Successively, George et al. [11] introduced the notion
of a rectangular b −metric space as a generalization of rect-
angular metric space and they also proved some fixed point
results for contractive mappings. The concept of a convex
structure and a convex metric space was introduced by

Takahashi [12]. Later, Goebel and Kirk [13] studied some
iterative processes for nonexpansive mappings in a hyper-
bolic metric space, and in 1988, Ding [14] found fixed points
of quasicontraction mappings in convex metric spaces by
Ishikawa’s iteration scheme. However, iterative methods
have received vast investigation for finding fixed points of
nonexpansive mappings, see [15–17]. Particularly, in the
process of the research on some fixed point problem, one
of the most famous fixed point method is the Mann iteration
[18, 19] as follows:

xn+1 = αnxn + 1 − αnð ÞTxn, ð1Þ

for some suitably chosen scalars αn ∈ ½0, 1�. Due to [20],
Mann iterative sequence fxng converges weakly to a fixed
point of T if the sequence fαng ∈ ½0, 1� satisfies following
conditions: ∑∞

n=1 αnð1 − αnÞ =∞.
Very recently, Chen et al. [21] introduced the notion of a

convex b −metric space and extend Mann’s algorithms
directly to b −metric spaces. After that, Asif et al. [22] inves-
tigate fixed point of single-valued Hardy-Roger’s type F −
contraction globally as well as locally in a convex b −metric
space. Along the line, Chen et al. [23] introduce the concept
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of a convex graphical rectangular b −metric space and prove
some fixed point theorems in this space. New some fixed
point results on a closed ball can be seen in [22, 24–26].

In this work, we firstly introduce the concept of the
convex rectangular b −metric spaces which is a combination
of properties of rectangular b −metric spaces and convex
metric spaces. However, we prove some fixed point theo-
rems using generalized Mann’s iteration algorithm and show
concrete examples supporting our main results. In addition,
we claim that fixed point problem is well posed and as an
application, we apply our main results to solve the dynamic
programming problem.

Some fundamental definitions related to our work are
given below:

Definition 1. (See [11]). Let X be a nonempty set and the
mapping d : X × X⟶ ½0,∞Þ satisfy

dðx, yÞ = 0 if and only if x = y for all x, y ∈ X
dðx, yÞ = dðy, xÞ for all x, y ∈ X
(3) There exists a real number such that dðx, yÞ ≤ s½dðx,

uÞ + dðu, vÞ + dðv, yÞ� for all x, y ∈ X and all distinct
points u, v ∈ X \ fx, yg

Then, d is called a rectangular b −metric on X, and ðX, dÞ
is called a rectangular b −metric space ðRbMSÞ with
coefficient s ≥ 1.

Remark 2. Note that every metric space is a rectangular
metric space ðRMSÞ (see [11]), and every RMS is a RbMS
with coefficient s = 1.

Definition 3. (See [11]). Let ðX, dÞ be a RbMS, fxng be a
sequence in X and x ∈ X. Then,

(a) The sequence fxng is said to be convergent in X to x,
if for every ε > 0, there exists n0 ∈ℕ such that dðxn,
xÞ < ε for all n > n0, and this fact is represented by
lim

n⟶∞
xn = x

(b) The sequence fxng is said to be a Cauchy sequence
in X if for every ε > 0, there exists n0 ∈ℕ such that
dðxn, xmÞ < ε for all n,m > n0, and this fact is repre-
sented by lim

n,m⟶∞
dðxn, xmÞ = 0

X is said to be a complete RbMS if every Cauchy
sequence in X converges to some x ∈ X

Definition 4. (See [12]). Let ðX, dÞ be a metric space and
I = ½0, 1�. A continuous function w : X × X × ½0, 1�⟶ X
is said to be a convex structure on X if for each x, y ∈ X
and α ∈ I,

d u,w x, y, αð Þð Þ ≤ αd u, xð Þ + 1 − αð Þd u, yð Þ, ð2Þ

for all u ∈ X. A metric space ðX, dÞ with a convex structure
w is called a convex metric space.

2. Main Results

In this section, we introduce a generalization of both convex
metric spaces and rectangular b −metric spaces, which we
call convex rectangular b −metric spaces. We also establish
some fixed point theorems arising from this metric space.

Definition 5. Let ðX, dÞ be a RbMS with constant s ≥ 1. If a
mapping w : X × X × ½0, 1�⟶ X satisfies

d u,w x, y, αð Þð Þ ≤ αd u, xð Þ + 1 − αð Þd u, yð Þ, ð3Þ

for all x, y, u ∈ X and α ∈ ½0, 1�, then ðX, d,wÞ is said to be a
convex rectangular b −metric space ðCRbMSÞ.

Definition 6. Let ðX, d, wÞ be a CRbMS and T : X ⟶ X be a
mapping. Let fxng be the sequence generated by Mann’s
iterative procedure involving the mapping T , as follows:

xn+1 =w xn, Txn ; αnð Þ, ð4Þ

where αn ∈ ½0, 1� and x0 ∈ X are the initial value.

Definition 7. If s = 1 in Definition 5, we call the resultant
space to be a convex rectangular metric space ðCRMSÞ,
which is, indeed, the RMS with a convex structure w.

Next, we see some specific examples of CRbMS.

Example 8. Let X =ℝ. For any x, y ∈ X, we define the metric
d : X × X ⟶ ½0,+∞Þ by dðx, yÞ = jx − yjr and r ≥ 1. Notice
that, for any a, b, c ∈ ½0,+∞Þ and 1 ≤ r <∞, then the convex
of the function f ðxÞ = xrðx > 0Þ implies that

a + b + c
3

� �r

≤
ar + br + cr

3 a, b, c > 0ð Þ: ð5Þ

Then, for any distinct points u, v ∈ X \ fx, yg, we have

d x, yð Þ = x − yj jr = x − u + u − v + v − yj jr
≤ x − uj j + u − vj j + v − yj j½ �r
≤ 3r−1 x − uj jr + u − vj jr + v − yj jr½ �
= 3r−1 d x, uð Þ + d u, vð Þ + d v, yð Þ½ �:

ð6Þ

Hence, ðX, dÞ is a RbMS with s = 3r−1. For any x, y ∈ X,
let w : X × X × f1/2g⟶ X be a mapping defined by

w x, y ; αð Þ = αx + 1 − αð Þy, α = 1
2 : ð7Þ

Now, we verify that w satisfies inequality (3). In fact, for
any x, y, u ∈ X, we can see that

d u,w x, y ; αð Þð Þ = u − αx + 1 − αð Þy½ �j jr
≤ 2r−1 αr u − xj jr + 1 − αð Þr u − yj jr½ �
= αd u, xð Þ + 1 − αð Þd u, yð Þ:

ð8Þ
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Therefore, ðX, d,wÞ is a CRbMS with s = 3r−1. Note that
ðX, d,wÞ is not a metric space as follows:

d 1, 3ð Þ = 22 > d 1, 2ð Þ + d 2, 3ð Þ = 2, ð9Þ

for we take r = 2. Moreover, ðX, d,wÞ is a CRMS when we let
r = 1, and it shows that CRbMS reduces to a CRMS for s = 1.

Example 9. Let X =ℝ. For any x, y ∈ X, we define the metric
d : X × X⟶ ½0,+∞Þ by dðx, yÞ = jx − yj2. From Example 8,
it follows that ðX, dÞ is a RbMS with s = 3. For any x, y ∈ X,
let w : X × X × ½0, 1�⟶ X be a mapping defined by

w x, y ; αð Þ = αx + 1 − αð Þy: ð10Þ

For any x, y, u ∈ X, we obtain that

d u,w x, y ; αð Þð Þ = u − αx + 1 − αð Þy½ �j j2
≤ α u − xj j + 1 − αð Þ u − yj j½ �2
= α2d u, xð Þ + 1 − αð Þ2d u, yð Þ

+ 2α 1 − αð Þ u − xj j u − yj j
≤ α2d u, xð Þ + 1 − αð Þ2d u, yð Þ

+ 2α 1 − αð Þ u − xj j2 + u − yj j2
2

= α2d u, xð Þ + 1 − αð Þ2d u, yð Þ
+ α 1 − αð Þ d u, xð Þ + d u, yð Þf g

= αd u, xð Þ + 1 − αð Þd u, yð Þ:

ð11Þ

Therefore, ðX, d,wÞ is a CRbMS with s = 3, but not
a CRMS.

Example 10. Let X = ½0, 2�, d : X × X ⟶ ½0,+∞Þ, such that
dðx, yÞ = dðy, xÞ and

d x, yð Þ =

0 if x = y,
2a if x, y ∈ 0, 1½ Þ,
1
2 a otherwise,

8>>><
>>>:

ð12Þ

where a > 0 is a constant. Then, ðX, dÞ is a RbMS with coef-
ficient s = 4/3. The mapping w : X × X × ½0, 1�⟶ X is
defined by wðx, y ; αÞ = 2 − αxy, α = 1/4, and then

d u,w x, y ; αð Þð Þ ≤ 1
4 d u, xð Þ + 3

4 d u, yð Þ: ð13Þ

So, ðX, d,wÞ is a CRbMS with coefficient s = 4/3, but not
a CRMS.

Definition 11. Let ðX, d,wÞ be a CRbMS with constant s ≥ 1,
x0 is some element in X, and ε > 0, and then the set �Bε½x0�
= fx ∈ X : dðx0, xÞ ≤ εg is called a closed ball in X.

In the paper [3], George et al. proved Banach contraction
principle in complete RbMS by means of Picard iteration.

Now, we will show Banach contraction principle for com-
plete CRbMS using generalized Mann’s iteration algorithm.

Theorem 12. Let ðX, d,wÞ be a complete CRbMS with con-
stant s ≥ 1 and T : X⟶ X be a mapping satisfying

d Tx, Tyð Þ ≤ βd x, yð Þ, ð14Þ

for all x, y ∈ X, where β ∈ ½0, 1Þ. Let the sequence fxng gener-
ated by the Mann iterative process and x0 ∈ X such that d
ðx0, Tx0Þ =M <∞. If β ∈ ½0, ð1/2s2Þ� and αn ∈ ½0, ðsr/2s3 + s
− 2Þ� (r is an arbitrary positive real number and r < 1),
then T has a unique fixed point in X. Moreover, the
sequence fxng ⊆ �Bε½x0� and xn ⟶ x∗ ∈ �Bε½x0� as n⟶∞,
if the following inequality holds:

d x0, Tx0ð Þ ≤ β 1 − sβð Þε: ð15Þ

Proof. Without loss of generality, we suppose that xn ≠
xn+1 for all n ∈ℕ. Indeed, If xn = xn+1, then xn =wðxn, T
xn ; αnÞ. We conclude that

d xn, Txnð Þ = d w xn, Txn ; αnð Þ, Txnð Þ ≤ αnd xn, Txnð Þ, ð16Þ

and it shows dðxn, TxnÞ = 0; then, xn is a fixed point of T ,
and the proof is finished. It follows from Definition 5 and
Definition 6,

d xn, xn+1ð Þ = d xn,w xn, Txn ; αnð Þð Þ ≤ 1 − αnð Þd xn, Txnð Þ:
ð17Þ

Now, we consider the following two cases:

Case 13. If xn ≠ Txn−1 for all n ∈ℕ, we have

d xn, Txnð Þ = d w xn−1, Txn−1 ; αn−1ð Þ, Txnð Þ
≤ αn−1d xn−1, Txnð Þ + 1 − αn−1ð Þd Txn−1, Txnð Þ
≤ αn−1d xn−1, Txnð Þ + 1 − αn−1ð Þβd xn−1, xnð Þ
≤ sαn−1 d xn−1, xnð Þ + d xn, Txn−1ð Þ + d Txn−1, Txnð Þ½ �

+ 1 − αn−1ð Þ2βd xn−1, Txn−1ð Þ
≤ sαn−1 1 − αn−1ð Þd xn−1, Txn−1ð Þ½

+ αn−1d xn−1, Txn−1ð Þ + 1 − αn−1ð Þβd xn−1, Txn−1ð Þ�
+ 1 − αn−1ð Þ2βd xn−1, Txn−1ð Þ

≤ sαn−1 1 + 1 − αn−1ð Þβð Þ½
+ 1 − αn−1ð Þ2β�d xn−1, Txn−1

�
:

�
ð18Þ

Let λn−1 = sαn−1½1 + ð1 − αn−1Þβ� + ð1 − αn−1Þ2β, with the
assumption 0 ≤ β ≤ 1/2s2 and 0 ≤ αn ≤ sr/2s3 + s − 2, and we
obtain that
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λn−1 ≤ sαn−1 1 + 1 − αn−1ð Þ 1
2s2

� �
+ 1 − αn−1ð Þ2 1

2s2

= sαn−1 +
αn−1
2s −

α2n−1
2s + 1

2s2 −
αn−1
s2

+ α2n−1
2s2

= 1
2s2 −

1
2s

� �
α2n−1 + s + 1

2s −
1
s2

� �
αn−1 +

1
2s2

≤ s + 1
2s −

1
s2

� �
αn−1 +

1
2s2 = 2s3 + s − 2

2s2
� �

× sr
2s3 + s − 2 + 1

2s ≤
r + 1
2s ≤

r + 1
2 :

ð19Þ

Hence,

d xn, Txnð Þ ≤ λn−1d xn−1, Txn−1ð Þ ≤ r + 1
2 d xn−1, Txn−1ð Þ:

ð20Þ

Case 14. If xn = Txn−1 for some n ∈ℕ, we have

d xn, Txnð Þ = d Txn−1, Txnð Þ ≤ βd xn−1, xnð Þ
≤ β 1 − αnð Þd xn−1, Txn−1ð Þ
≤

1
2s2 d xn−1, Txn−1ð Þ:

ð21Þ

Denote that λ = r + 1/2 < 1, and it follows from (20) and
(21) that

d xn, Txnð Þ ≤ λd xn−1, Txn−1ð Þ, for all n ∈ℕ, ð22Þ

which implies that fdðxn, TxnÞg is a decreasing sequence of
nonnegative reals. Hence, there exists γ ≥ 0 such that

lim
n⟶∞

d xn, Txnð Þ = γ: ð23Þ

We will show that γ = 0. Suppose that γ > 0, letting n
⟶∞ in inequality (22), we obtain

γ ≤ λγ, ð24Þ

a contradiction. Hence, we get that γ = 0. Furthermore,
we have

d xn, xn+1ð Þ ≤ 1 − αnð Þd xn, Txnð Þ, ð25Þ

which shows that lim
n⟶∞

dðxn, xn+1Þ = 0. Also, we can

assume xn ≠ xn+p for any p > 1. Indeed, if xn = xn+p, then
using the inequality (21), we have

d xn, Txnð Þ = d xn+p, Txn+p
� �

≤ λp−1d xn, Txnð Þ, ð26Þ

in which shows that dðxn, TxnÞ = 0 and xn = Txn, and
then xn is a fixed point, and the proof is finished. Next,
we shall prove lim

n⟶∞
dðxn, xn+2Þ = 0 for all n ∈ℕ. In order

to do it, we will consider the following two cases:

Case 15. If xn+2 ≠ Txn for all n ∈ℕ, then we have

d xn, xn+2ð Þ ≤ s d xn, Txnð Þ + d Txn, Txn+2ð Þ + d Txn+2, xn+2ð Þ½ �
≤ s d xn, Txnð Þ + βd xn, xn+2ð Þ + d Txn+2, xn+2ð Þ½ �,

ð27Þ

which establishes that

d xn, xn+2ð Þ ≤ s
1 − sβ

d xn, Txnð Þ + d xn+2, Txn+2ð Þ½ � as 0 ≤ β < 1
2s2

� �
:

ð28Þ

Case 16. If there exist some n ∈ℕ such that xn+2 = Txn, then

d xn, xn+2ð Þ ≤ d xn, Txnð Þ: ð29Þ

It follows from (28) and (29) that

lim
n⟶∞

d xn, xn+2ð Þ = 0: ð30Þ

Next, we claim that fxng is a Cauchy sequence by contra-
diction. Assume that there exists ε0 > 0 and the subsequences
fxθðkÞg and fxηðkÞg of xn such for θðkÞ > ηðkÞ > k with d
ðxθðkÞ, xηðkÞÞ ≥ ε0, dðxθðkÞ−1, xηðkÞÞ < ε0. On the one hand,

ε0 ≤ d xθ kð Þ, xη kð Þ
� �

≤ s d xθ kð Þ, xη kð Þ+1
� �h

+ d xη kð Þ+1, xη kð Þ+2
� �

+ d xη kð Þ+2, xη kð Þ
� �i

,
ð31Þ

taking the limit superior in above inequality as k⟶∞,
and we conclude

ε0
s
≤ limsup

k⟶∞
d xθ kð Þ, xη kð Þ+1
� �

: ð32Þ

On the other hand, let xηðkÞ ≠ xηðkÞ+2 ≠ xθðkÞ−1 ≠ xηðkÞ+1
and TxηðkÞ ≠ xηðkÞ ≠ TxθðkÞ−1 ≠ xηðkÞ+1, and we have

d xθ kð Þ, xη kð Þ+1
� �

= d w xθ kð Þ−1, Txθ kð Þ−1 ; αθ kð Þ−1
� �

, xη kð Þ+1
� �

≤ αθ kð Þ−1d xθ kð Þ−1, xη kð Þ+1
� �

+ 1 − αθ kð Þ−1
� �

d Txθ kð Þ−1, xη kð Þ+1
� �

≤ αθ kð Þ−1s d xθ kð Þ−1, xη kð Þ
� �h

+ d xη kð Þ, xη kð Þ+2
� �

+ d xη kð Þ+2, xη kð Þ+1
� �i

+ 1 − αθ kð Þ−1
� �

s d Txθ kð Þ−1, Txη kð Þ
� �h

+ d Txη kð Þ, xη kð Þ
� �

+ d xη kð Þ, xη kð Þ+1
� �i

≤ αθ kð Þ−1s + 1 − αθ kð Þ−1
� �

sβ
� �

d xθ kð Þ−1, xη kð Þ
� �

+ αθ kð Þ−1s d xη kð Þ, xη kð Þ+2
� �h

+d xη kð Þ+2, xη kð Þ+1
� �i

+ 1 − αθ kð Þ−1
� �

s d Txη kð Þ, xη kð Þ
� �

+ d xη kð Þ, xη kð Þ+1
� �h i

,

ð33Þ
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by taking the limit superior on both sides of above the
inequality as k⟶∞, and we get

ε0
s
≤ limsup

k⟶∞
d xθ kð Þ, xη kð Þ+1
� �

≤ αθ kð Þ−1s + 1 − αθ kð Þ−1
� �

sβ
� �

ε0

≤ αθ kð Þ−1s +
1
2s 1 − αθ kð Þ−1
� �� �

ε0

≤ αθ kð Þ−1s +
1
2s −

αθ kð Þ−1
2s

� �
ε0

≤
1

2s2 − 1 × s −
1
2s

� �
+ 1
2s

� �
ε0

= r + 1
2

� �
ε0
s
< 1

s
ε0,

ð34Þ

a contradiction. Thus, fxng is a Cauchy sequence in X. Since
the space ðX, d,wÞ is complete, there exists x∗ ∈ X such that
lim

n⟶∞
xn = x∗. We shall show that x∗ is a fixed point of T.

Applying the rectangular inequality, we obtain that

d x∗, Tx∗ð Þ ≤ s d x∗, xnð Þ + d xn, xn+1ð Þ + d xn+1, Tx∗ð Þ½ �
≤ sd x∗, xnð Þ + sd xn, xn+1ð Þ

+ s αnd xn, Tx∗ð Þ + 1 − αnð Þd Txn, Tx∗ð Þ½ �
≤ sd x∗, xnð Þ + sd xn, xn+1ð Þ

+ s2αn d xn, xn+1ð Þ + d xn+1, x∗ð Þ + d x∗, Tx∗ð Þ½ �
+ s 1 − αnð Þβd xn, x∗ð Þ,

ð35Þ

since s2αn < 1, and then

d x∗, Tx∗ð Þ ≤ 1
1 − s2αn

sd x∗, xnð Þ + sd xn, xn+1ð Þf
+s2αn d xn, xn+1ð Þ + d xn+1, x∗ð Þ½ �
+ s 1 − αnð Þβd xn, x∗ð Þg,

ð36Þ

letting n⟶∞, and we deduce dðx∗, Tx∗Þ = 0 which implies
Tx∗ = x∗. Thus, x∗ is a fixed point of T. Suppose that x∗, y∗
∈ X are two distinct fixed points of T, that is, Tx∗ = x∗ and
Ty∗ = y∗. Then,

d x∗, y∗ð Þ = d Tx∗, Ty∗ð Þ ≤ βd x∗, y∗ð Þ, ð37Þ

which is a contradiction. Therefore, we must have dðx∗, y∗Þ
= 0, i.e., x∗ = y∗. Thus, T has a unique fixed point. Next, we
proceed to show that the sequence fxng ⊆ �Bε½x0�. In order to
complete it, we will use mathematical induction. Thanks to
Definition 5 and Definition 6, we obtain

d x0, x1ð Þ = d x0,w x0, Tx0 ; α0ð Þð Þ
≤ 1 − α0ð Þd x0, Tx0ð Þ
≤ 1 − α0ð Þβ 1 − sβð Þε < ε,

ð38Þ

which implies dðx0, x1Þ < ε; therefore, x1 ∈ �Bε½x0�. Suppose
x2, x3,⋯, xm ∈ �Bε½x0�, observe from above proof, we get d
ðxn, TxnÞ ≤ λndðx0, Tx0Þ for all n ∈ℕ. It is easy to see that
βð1 − sβÞ ≤ 1/4s. Now, we can assume that xm+1 ≠ xm. If
Tx0 ≠ Txm ≠ x0 ≠ xm+1, then

d x0, xm+1ð Þ ≤ s d x0, Tx0ð Þ + d Tx0, Txmð Þ + d Txm, xm+1ð Þ½ �
≤ s β 1 − sβð Þε + βd x0, xmð Þ + αmd Txm, xmð Þ½ �
≤ s β 1 − sβð Þε + βε + αmλ

mβ 1 − sβð Þε½ �
< ε

4 + ε

2 + ε

4 = ε:

ð39Þ

We also need to distinguish the following four cases:

Case 17. If x0 = Tx0, then we have

d x0, xm+1ð Þ = d x0,w xm, Txm ; αmð Þð Þ
≤ αmd x0, xmð Þ + 1 − αmð Þd Tx0, Txmð Þ
≤ αmε + 1 − αmð Þβε < ε:

ð40Þ

Case 18. if x0 = Txm, then we have

d x0, xm+1ð Þ = d Txm,w xm, Txm ; αmð Þð Þ
≤ αmd Txm, xmð Þ
≤ αmλ

md Tx0, x0ð Þ
≤ αmλ

mβ 1 − sβð Þε < ε:

ð41Þ

Case 19. if xm+1 = Tx0, then we have

d x0, xm+1ð Þ = d x0, Tx0ð Þ ≤ β 1 − βð Þε < ε: ð42Þ

Case 20. if xm+1 = Txm, then we have

d x0, xm+1ð Þ = d x0,w xm, Txm ; αmð Þð Þ
≤ αmd x0, xmð Þ + 1 − αmð Þd x0, Txmð Þ
= αmd x0, xmð Þ + 1 − αmð Þd x0, xm+1ð Þ,

ð43Þ

which implies

d x0, xm+1ð Þ ≤ d x0, xmð Þ ≤ ε: ð44Þ

Finally, by above cases, we prove that dðx0, xm+1Þ ≤ ε
which show that xm+1 ∈ �Bε½x0�. Hence, by induction xn ∈
�Bε½x0�, therefore, we conclude that xn ∈ �Bε½x0� for all n ∈ℕ.

As every closed ball in a complete metric space is complete,
so xn ⟶ x∗ ∈ Bε½x0�, as n⟶∞.

The following example illustrates the above theorem.

Example 21. Let X = R+ ∪ f0g and Tx = x/5 for all x ∈ X. For
any x, y ∈ X, we define d : X × X⟶ ½0,+∞Þ by dðx, yÞ =
ðx − yÞ2. The mapping w : X × X × ½0, 1�⟶ X is defined by

w x, y ; αð Þ = αx + 1 − αð Þy, x, y ∈ X: ð45Þ
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Set xn+1 =wðxn, Txn ; αnÞ and αn = 1/2s2 + 2. If β = 1/2s2
+ 1, then xn ∈ �Bε½x0� and T have a unique fixed point in
�Bε½x0�.

Proof. It is easy to see that ðX, dÞ is a CRbMS with s = 3. In
addition, for any x, y, u ∈ X, we have

d u,w x, y ; αnð Þð Þ = αn u − xð Þ + 1 − αnð Þ u − yð Þ½ �2
≤ α2n u − xð Þ2 + 1 − αnð Þ2 u − yð Þ2

+ 2αn 1 − αnð Þ u − xð Þ u − yð Þ
≤ α2n u − xð Þ2 + 1 − αnð Þ2 u − yð Þ2

+ αn 1 − αnð Þ u − xð Þ2 + u − yð Þ2� �
≤ αn u − xð Þ2 + 1 − αnð Þ u − yð Þ2:

ð46Þ

So, ðX, d,wÞ is a CRbMS with s = 3. It is not difficult to
see that T satisfies

d Tx, Tyð Þ = 1
25 d x, yð Þ ≤ βd x, yð Þ, ð47Þ

for β = 1/18. According to xn+1 =wðxn, Txn ; αnÞ, we have
xn+1 = 1/20xn + 19/20Txn, since Tx = x/5, and we obtain

xn+1 =
1
20 xn +

19
20 × 1

5 xn, ð48Þ

that is, xn+1 = 6/25xn, then

xn =
6
25 xn−1, xn−1 =

6
25 xn−2,⋯, x1 =

6
25 x0, ð49Þ

And we obtain

xn =
6
25

� �n

x0, Txn =
1
5 × 6

25

� �n

x0, ð50Þ

while n⟶∞, getting xn ⟶ 0 ∈ X and Txn ⟶ 0 ∈ X.
Hence, 0 is a fixed point of T in X. Suppose x∗, y∗ ∈ X are
two distinct fixed points of T , then we have dðx∗, y∗Þ = d
ðTx∗, Ty∗Þ = 1/25dðx∗, y∗Þ which shows that dðx∗, y∗Þ = 0,
that is, x∗ = y∗. Thus, T has a unique fixed point in X. Let
ε = x20/βð1 − sβÞ > 0, then βð1 − sβÞε = x20 ≥ dðx0, Tx0Þ = 16/
25x20. For all n ∈ℕ, we obtain dðx0, xnÞ = ðx0 − ð6/25Þnx0Þ2
< x20 < ε, and this means that the sequence fxng ⊆ �Bε½x0�.
Furthermore, dðx0, 0Þ = x20 < ε, that is, 0 ∈ �Bε½x0�.

Now, we prove the Kannan type fixed point theorem for
a complete CRbMS, which extends the results in the paper
[3], replacing Picard’s iteration algorithm by Mann’s itera-
tion algorithm.

Theorem 22. Let ðX, d,wÞ be a CRbMS with constant s ≥ 1
and the mapping T : X⟶ X be defined by

d Tx, Tyð Þ ≤ k d x, Txð Þ + d y, Tyð Þ½ �, ð51Þ

for all x, y ∈ X, and k ∈ ½0, 1/2Þ. Let the sequence fxng gener-
ated by the Mann iterative process and x0 ∈ X such that dðx0,
Tx0Þ =M <∞. If k ∈ ½0, ð1/3sÞ� and αn ∈ ½0, ð1/us2Þ� (u is an
arbitrary real number and u > 5), then T has a unique fixed
point in X. Moreover, the sequence fxng ⊆ �Bε½x0� and xn ⟶
x∗ ∈ �Bε½x0� as n⟶∞, if the following inequality holds:

d x0, Tx0ð Þ ≤ k 1 − skð Þε: ð52Þ

Proof.Without loss of generality, we suppose that xn ≠ xn+1 for
all n ≥ℕ. Indeed, If xn = xn+1, that is, xn =wðxn, Txn ; αnÞ.
Then, we have

d xn, Txnð Þ = d w xn, Txn ; αnð Þ, Txnð Þ ≤ αnd xn, Txnð Þ, ð53Þ

and it shows that dðxn, TxnÞ = 0 and xn = Txn, which means
that xn is a fixed point of T , and the proof is finished. Thanks
to Definition 5 and Definition 6, we have

d xn, xn+1ð Þ = d xn,w xn, Txn ; αnð Þð Þ ≤ 1 − αnð Þd xn, Txnð Þ:
ð54Þ

Now, we have the following two cases:

Case 23. If xn ≠ Txn−1 for all n ∈ℕ, we have

d xn, Txnð Þ = d w xn−1, Txn−1 ; αn−1ð Þ, Txnð Þ
≤ αn−1d xn−1, Txnð Þ + 1 − αn−1ð Þd Txn−1, Txnð Þ
≤ sαn−1 d xn−1, xnð Þ + d xn, Txn−1ð Þ + d Txn−1, Txnð Þ½ �

+ 1 − αn−1ð Þd Txn−1, Txnð Þ
≤ sαn−1 1 − αn−1ð Þd xn−1, Txn−1ð Þ + αn−1d xn−1, Txn−1ð Þ½

+ kd xn−1, Txn−1ð Þ + kd xn, Txnð Þ�
+ 1 − αn−1ð Þk d xn−1, Txn−1ð Þ + d xn, Txnð Þ½ �

≤ sαn−1 + sαn−1k + 1 − αn−1ð Þk½ �d xn−1, Txn−1ð Þ
+ sαn−1k + 1 − αn−1ð Þk½ �d xn, Txnð Þ,

ð55Þ

which establishes that

1 − 1 − αn−1ð Þk − sαn−1kÞ½ �d xn, Txnð Þ
≤ sαn−1 + sαn−1k + 1 − αn−1ð Þk½ �d xn−1, Txn−1ð Þ: ð56Þ

Notice that ð1 − αn−1Þk + sαn−1kÞ < 1, then we have

d xn, Txnð Þ ≤ sαn−1 + sαn−1k + 1 − αn−1ð Þk
1 − 1 − αn−1ð Þk − sαn−1k

d xn−1, Txn−1ð Þ:

ð57Þ
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Since u > 5, we conclude that

sαn−1 + sαn−1k + 1 − αn−1ð Þk
1 − sαn−1k − 1 − αn−1ð Þk ≤

1/usð Þ + 1/3us2
� �

+ 1/3sð Þ
1 − 1/3us2 − 1/3s ≤

u + 4
2u − 1 < 1 ;

ð58Þ

Case 24. If xn = Txn−1 for some n ∈ℕ, then

d xn, Txnð Þ = d Txn−1, Txnð Þ ≤ k d xn−1, Txn−1ð Þ + d xn, Txnð Þ½ �,
ð59Þ

and this implies that

1 − kð Þd xn, Txnð Þ ≤ kd xn−1, Txn−1ð Þ: ð60Þ

Since 0 ≤ k ≤ 1/3s, then we get

d xn, Txnð Þ ≤ k
1 − k

d xn−1, Txn−1ð Þ: ð61Þ

Noticing that

k
1 − k

≤
1
2 ≤

u + 4
2u − 1 : ð62Þ

Let λu = u + 4/2u − 1, it is clear that λu < 1, and for any
n ∈ℕ, we obtain the following inequality:

d xn, Txnð Þ ≤ λud xn−1, Txn−1ð Þ, foralln ∈ℕ, ð63Þ

and it implies that fdðxn, TxnÞg is a decreasing sequence of
nonnegative reals. Hence, there exists γ ≥ 0 such that

lim
n⟶∞

d xn, Txnð Þ = γ: ð64Þ

We will show that γ = 0. Suppose that γ > 0. Letting n
⟶∞ in inequality (63), we obtain

γ ≤ λuγ, ð65Þ

a contradiction. Hence, we get that γ = 0. Moreover, we have

d xn, xn+1ð Þ ≤ 1 − αnð Þd xn, Txnð Þ, ð66Þ

which shows that lim
n⟶∞

dðxn, xn+1Þ = 0. Next, we shall prove
that lim

n⟶∞
dðxn, xn+2Þ = 0. In order to do it, we will consider

the following two cases:

Case 25. if xn+1 ≠ Txn for all n ∈ℕ, then we obtain

d xn, xn+2ð Þ ≤ d xn,w xn+1, Txn+1 ; αn+1ð Þð Þ
≤ αn+1d xn, xn+1ð Þ + 1 − αn+1ð Þd xn, Txn+1ð Þ
≤ αn+1d xn, xn+1ð Þ + 1 − αn+1ð Þs d xn, Txnð Þ½

+ d Txn, xn+1ð Þ + d xn+1, Txn+1ð Þ�
≤ αn+1d xn, xn+1ð Þ + 1 − αn+1ð Þs d xn, Txnð Þ½

+ αnd Txn, xnð Þ + d xn+1, Txn+1ð Þ�:
ð67Þ

Hence,

d xn, xn+2ð Þ ≤ αn+1d xn, xn+1ð Þ
+ 1 − αn+1ð Þs 1 + αnð Þd Txn, xnð Þ + d xn+1, Txn+1ð Þ½ �:

ð68Þ

Case 26. If there exist some n ∈ℕ such that xn+1 = Txn, then
we get

d xn, xn+2ð Þ ≤ s d xn, xn+1ð Þ + d xn+1, xn+3ð Þ + d xn+3, xn+2ð Þ½ �
= s d xn, xn+1ð Þ + d xn+1,w xn+2, Txn+2 ; αn+2ð Þð Þ½

+ d xn+3, xn+2ð Þ�
≤ s d xn, xn+1ð Þ + αn+2d xn+1, xn+2ð Þ½

+ 1 − αn+2ð Þd xn+1, Txn+2ð Þ+ 1 − αn+2ð Þd Txn+2, xn+2ð Þ�
≤ s d xn, xn+1ð Þ + αn+2d xn+1, xn+2ð Þ½

+ 1 − αn+2ð Þkd xn, Txnð Þ+ 1 − αn+2ð Þkd xn+2, Txn+2ð Þ
+ 1 − αn+2ð Þd Txn+2, xn+2ð Þ�:

ð69Þ

Hence,

d xn, xn+2ð Þ ≤ s d xn, xn+1ð Þ + αn+2d xn+1, xn+2ð Þ½
+ 1 − αn+2ð Þkd xn, Txnð Þ+ 1 − αn+2ð Þkd xn+2, Txn+2ð Þ
+ 1 − αn+2ð Þd Txn+2, xn+2ð Þ�:

ð70Þ

It follows from (68) and (70) that

lim
n⟶∞

d xn, xn+2ð Þ = 0: ð71Þ

Next, we will claim that fxng is a Cauchy sequence by
contradiction. Assume there exists ε0 > 0 and the subse-
quences fxθðkÞg and fxηðkÞg of fxng such for θðkÞ > ηðkÞ > k
with dðxθðkÞ, xηðkÞÞ ≥ ε0, dðxθðkÞ−1, xηðkÞÞ < ε0. On the one hand,

ε0 ≤ d xθ kð Þ, xη kð Þ
� �

≤ s d xθ kð Þ, xη kð Þ+1
� �h

+ d xη kð Þ+1, xη kð Þ+2
� �

+ d xη kð Þ+2, xη kð Þ
� �i

,
ð72Þ

taking the limit superior in above inequality as k⟶∞, and
we get
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ε0
s
≤ limsup

k⟶∞
d xθ kð Þ, xη kð Þ+1
� �

: ð73Þ

On the other hand, let xηðkÞ ≠ xηðkÞ+2 ≠ xθðkÞ−1 ≠ xηðkÞ+1 and
TxηðkÞ ≠ xηðkÞ ≠ TxθðkÞ−1 ≠ xηðkÞ+1, and we have

d xθ kð Þ, xη kð Þ+1
� �

= d w xθ kð Þ−1, Txθ kð Þ−1 ; αθ kð Þ−1
� �

, xη kð Þ+1
� �

≤ αθ kð Þ−1d xθ kð Þ−1, xη kð Þ+1
� �

+ 1 − αθ kð Þ−1
� �

d Txθ kð Þ−1, xη kð Þ+1
� �

≤ αθ kð Þ−1s d xθ kð Þ−1, xη kð Þ
� �h

+ d xη kð Þ, xη kð Þ+2
� �

+ d xη kð Þ+2, xη kð Þ+1
� �i

+ 1 − αθ kð Þ−1
� �

s d Txθ kð Þ−1, Txη kð Þ
� �h

+ d Txη kð Þ, xη kð Þ
� �

+ d xη kð Þ, xη kð Þ+1
� �i

≤ αθ kð Þ−1s d xθ kð Þ−1, xη kð Þ
� �h

+ d xη kð Þ, xη kð Þ+2
� �

+ d xη kð Þ+2, xη kð Þ+1
� �i

+ 1 − αθ kð Þ−1
� �

s kd xθ kð Þ−1, Txθ kð Þ−1
� �h

+ kd xη kð Þ, Txη kð Þ
� �

+d Txη kð Þ, xη kð Þ
� �

+ d xη kð Þ, xη kð Þ+1
� �i

:

ð74Þ

We obtain

ε0
s
≤ limsup

k⟶∞
d xθ kð Þ, xη kð Þ+1
� �

≤
1
us

ε0 <
1
s
ε0, ð75Þ

a contradiction. Thus, fxng is a Cauchy sequence in X. Since
the space ðX, d,wÞ is complete, there exists x∗ ∈ X such that
lim

n⟶∞
xn = x∗. We shall show that x∗ is a fixed point of T.

Applying the rectangular inequality, we obtain that

d x∗, Tx∗ð Þ ≤ s d x∗, xnð Þ + d xn, xn+1ð Þ + d xn+1, Tx∗ð Þ½ �
≤ sd x∗, xnð Þ + sd xn, xn+1ð Þ

+ s αnd xn, Tx∗ð Þ + 1 − αnð Þd Txn, Tx∗ð Þ½ �
≤ sd x∗, xnð Þ + sd xn, xn+1ð Þ

+ s2αn d xn, xn+1ð Þ + d xn+1, x∗ð Þ + d x∗, Tx∗ð Þ½ �
+ s 1 − αnð Þ kd xn, Txnð Þ + kd x∗, Tx∗ð Þf g,

ð76Þ

since s2αn + sð1 − αnÞk < 1, and then

d x∗, Tx∗ð Þ ≤ 1
1 − s2αn − s 1 − αnð Þk sd x∗, xnð Þ + sd xn, xn+1ð Þf

+s2αn d xn, xn+1ð Þ + d xn+1, x∗ð Þ½ �
+ s 1 − αnð Þkd xn, Txnð Þg,

ð77Þ

letting n⟶∞, and we deduce dðx∗, Tx∗Þ = 0 which implies
Tx∗ = x∗. Thus, x∗ is a fixed point of T. Suppose that x∗, y∗ ∈
X are two distinct fixed points of T, that is, Tx∗ = x∗, Ty∗ =
y∗. Then,

0 < d x∗, y∗ð Þ = d Tx∗, Ty∗ð Þ ≤ k d x∗, Tx∗ð Þ + d y∗, Ty∗ð Þ½ � = 0,
ð78Þ

which is a contradiction. Therefore, we must have dðx∗, y∗Þ
= 0, that is, x∗ = y∗. Thus, T has a unique fixed point. Finally,
we will prove the iteration sequence fxng ⊆ Bε½x0�. In order to
complete it, we will use mathematical induction. Choose x0
∈ X, and we have

d x0, x1ð Þ = d x0,w x0, Tx0 ; α0ð Þð Þ
≤ 1 − α0ð Þd x0, Tx0ð Þ
≤ 1 − α0ð Þβ 1 − sβð Þε < ε,

ð79Þ

which implies dðx0, x1Þ < ε; therefore, x1 ∈ Bε½x0�. Suppose
x2, x3,⋯, xm ∈ Bε½x0�. It is easy to see that s½kð1 − skÞ < 2/9
s. Without loss of generality, we can assume that xm+1 ≠
xm. If Tx0 ≠ Txm ≠ x0 ≠ xm+1, then

d x0, xm+1ð Þ ≤ s d x0, Tx0ð Þ + d Tx0, Txmð Þ + d Txm, xm+1ð Þ½ �
≤ s k 1 − skð Þε + k2 1 − skð Þε + kλmu d x0, Tx0ð Þ	

+ αnλ
m
u d Tx0, x0ð Þ�

≤ s k 1 − skð Þε + k2 1 − skð Þε + λmu k
2 1 − skð Þ	

+ αmλ
mk 1 − skð Þε�

≤
2ε
9 + 2ε

27 + 2ε
27 + 2ε

9 < ε:

ð80Þ

We also need to distinguish the following four cases:

Case 27. If x0 = Tx0, then we have

d x0, xm+1ð Þ = d x0,w xm, Txm ; αmð Þð Þ
≤ αmd x0, xmð Þ + 1 − αmð Þd Tx0, Txmð Þ
≤ αmε + 1 − αmð Þk d x0, Tx0ð Þ + d xm, Txmð Þ½ �
≤ αmε + 2k 1 − sk1 − αmð Þkε < ε:

ð81Þ
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Case 28. If x0 = Txm, then we have

d x0, xm+1ð Þ = d Txm,w xm, Txm ; αmð Þð Þ ≤ αmd Txm, xmð Þ
≤ αmλ

m
u d Tx0, x0ð Þ ≤ αmλ

m
u k 1 − skð Þε < ε:

ð82Þ

Case 29. If xm+1 = Tx0, then we have

d x0, xm+1ð Þ = d x0, Tx0ð Þ ≤ k 1 − skð Þε < ε: ð83Þ

Case 30. If xm+1 = Txm, then we have

d x0, xm+1ð Þ = d x0,w xm, Txm ; αmð Þð Þ
≤ αmd x0, xmð Þ + 1 − αmð Þd x0, Txmð Þ
= αmd x0, xmð Þ + 1 − αmð Þd x0, xm+1ð Þ,

ð84Þ

which implies

d x0, xm+1ð Þ ≤ d x0, xmð Þ ≤ ε: ð85Þ

Finally, by above cases, we prove that dðx0, xm+1Þ ≤ ε,
which show that xm+1 ∈ �Bε½x0�. Hence, by induction xn ∈
�Bε½x0�. Therefore, we conclude that xn ∈ �Bε½x0� for all n ∈ℕ.

As every closed ball in a complete metric space is complete,
so x∗ ∈ �Bε½x0�, as n⟶∞.

Next, we give the following example to illustrate above
theorem.

Example 31. Let X =ℝ+ ∪ f0g and the mapping T : X ⟶ X
such that

Tx =
0, if x ∈ 0,

ffiffiffi
2

ph �
,

1
2x , if x ∈

ffiffiffi
2

p
,+∞

h �
,

8><
>: ð86Þ

for any x, y ∈ X. Let us define the metric d : X × X ⟶ X by
the formula dðx, yÞ = ðx − yÞ2 as well as the mapping w : X
× X × ½0, 1�⟶ X by the formula wðx, y ; αÞ = αx + ð1 − αÞy.
Choose x0 ≥ 0 to be the initial value and xn+1 =wðxn, Txn ;
αnÞ, where αn = 1/49. If k = 1/9, then xn ∈ �Bε½x0�, and T has a
unique fixed point in �Bε½x0�.

Proof. It is easy to see that ðX, d,wÞ is a CRbMS with s = 3.
We claim that T satisfies inequality

d Tx, Tyð Þ ≤ k d x, Txð Þ + d y, Tyð Þ½ �, ð87Þ

for any x, y ∈ X. Next, we will consider the four cases:

(a) If x, y ∈ ½0, ffiffiffi
2

p Þ, then it is easy to see that inequality
(87) holds

(b) If x ∈ ½0, ffiffiffi
2

p Þ and y ∈ ½ ffiffiffi
2

p
,+∞Þ, then

d Tx, Tyð Þ − 1
9 d x, Txð Þ + d y, Tyð Þ½ �

= 1
2y

� �2
−
1
9 x2 + y −

1
2y

� �2
" #

≤
1
2y

� �2
−
1
9 y −

1
2y

� �2
≤ 0,

ð88Þ

which implies that

d Tx, Tyð Þ ≤ 1
9 d x, Txð Þ + d y, Tyð Þ½ �, ð89Þ

holds for any x ∈ ½0, ffiffiffi
2

p Þ and y ∈ ½ ffiffiffi
2

p
,+∞Þ.

(c) If x ∈ ½ ffiffiffi
2

p
,+∞Þ and y ∈ ½0, ffiffiffi

2
p Þ, then, similarly to

case (b), we can also get that inequality (87) holds

(d) If x, y ∈ ½ ffiffiffi
2

p
,+∞Þ, then

d Tx, Tyð Þ − 1
9 d x, Txð Þ + d y, Tyð Þ½ �

= 1
4

1
x
−
1
y

� �2
−
1
9 x −

1
2x

� �2
+ y −

1
2y

� �2
" #

= 1
4

1
x2

+ 1
y2

−
2
xy

� �
−
1
9 x2 + y2 + 1

4x2 + 1
4y2 − 2

� �

= 8
36

1
x2

+ 1
y2

� �
−
1
9 x2 + y2 + 1

2xy − 2
� �

≤
8
36

1
2 + 1

2

� �
−
1
9 2 + 2 + 1

4 − 2
� �

= 8
36 −

9
36 < 0,

ð90Þ

which shows that

d Tx, Tyð Þ < 1
9 d x, Txð Þ + d y, Tyð Þ½ � ð91Þ

holds for all x, y ∈ ½ ffiffiffi
2

p
,+∞Þ.

Summarizing, inequality, (87) holds for all x, y ∈ X. Next,
we will show that T has a unique fixed point in X. In order to
do it, we will consider the following two cases:

(i) If x0 <
ffiffiffi
2

p
, then
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Tx0 = 0,

x1 =
1
49 x0 +

48
49Tx0 =

1
49 x0, Tx1 = 0,

x2 =
1
49 x1 +

48
49Tx1 =

1
49

� �2
x0, Tx2 = 0,

⋯

xn =
1
49 xn−1 +

48
49Txn−1 =

1
49

� �n

x0:

ð92Þ

Obviously, xn ⟶ 0 as n⟶∞,

(ii) If x0 ≥
ffiffiffi
2

p
, then

Tx0 =
1
2x0

,

x1 =
1
49 x0 +

48
49Tx0,

x1
x0

= 1
49 + 48

49 × 1
2x20

≤
13
49 :

ð93Þ

If 0 ≤ x1 <
ffiffiffi
2

p
, then Tx1 = 0. From the case (i), it follows

that xn ⟶ 0 as n⟶∞. If x1 ≥
ffiffiffi
2

p
, then x2/x1 = 1/49 + 48/

49 × ð1/2x21Þ ≤ 13/49. From the above procedure, without loss
of generality, we can assume that xn−1 ≥

ffiffiffi
2

p
. Then, we obtain

xn
xn−1

= 1
49 + 48

49 × 1
2x21

≤
13
49 ,

xn
x0

= x1
x0

× x2
x1

×⋯ × xn
xn−1

≤
13
49

� �n

,
ð94Þ

which implies that xn ≤ ð13/49Þnx0.
Hence, lim

n⟶∞
xn = 0, where 0 is a fixed point of T . Actu-

ally, 0 is a unique fixed point of T in . Indeed, suppose that
y∗ ∈ ½ ffiffiffi

2
p

,+∞Þ is a fixed point of T , then Ty∗ = y∗, that is,
y∗ = Ty∗ = 1/2y∗, which implies y∗ =

ffiffiffi
2

p
/2 <

ffiffiffi
2

p
, a contra-

diction. Thus, T has a unique fixed point in . Let ε = x20/kð1
− skÞ > 0, then kð1 − skÞε = x20 ≥ dðx0, Tx0Þ. For all n ∈ℕ,

from above proof, we can obtain xn ≤ ð13/49Þnx0, then dð
x0, xnÞ = ðx0 − ð13/49Þnx0Þ2 < x20 < ε, and this means that
the sequence fxng ⊆ �Bε½x0�. Furthermore, dðx0, 0Þ = x20 < ε,
that is, 0 ∈ �Bε½x0�, and the proof is finished.

The concept of well posedness is very important in many
fields of mathematics and has evoked much interest to
several researchers [27–29].

Definition 32. (see [26]). Let ðX, dÞ be a metric space and T
be a self-map. The fixed point problem of T is said to be well
posed if

T has a unique fixed point x∗ ∈ X

(2) For any sequence fyng in X with lim
n⟶∞

dðyn, TynÞ = 0,
we have lim

n⟶∞
dðyn, x∗Þ = 0

We next study the well posedness of the fixed point
problem of T in complete CRbMS.

Theorem 33. Let ðX, d,wÞ be a CRbMS with constant s ≥ 1
and all the hypotheses of Theorem 12 hold. If the constant 0
< α < 1, then fixed point problem of T is well posed.

Proof. Let x∗ is a unique fixed point of T and assume fyng be
a sequence in X such that lim

n⟶∞
dðyn, TynÞ = 0. Because of

uniqueness of the fixed point of T , for all n ∈ℕ, we can
assume that yn ≠ Tyn. If yn =wðyn, Tyn ; αÞ for some α ∈ ð0,
1Þ, n ∈ℕ, then

d yn, x∗ð Þ = d w yn, Tyn ; αð Þ, x∗ð Þ
≤ αd yn, x∗ð Þ + 1 − αð Þd Tyn, x∗ð Þ
≤ α + 1 − αð Þβð Þd yn, x∗ð Þ,

ð95Þ

since α + ð1 − αÞβ < 1, and we get dðyn, x∗Þ = 0. Due to α
> 0, it is not difficult to see that Tyn ≠wðyn, Tyn ; αÞ,
indeed, if not,

d yn, Tynð Þ = d yn,w xn, Tyn ; αð Þð Þ ≤ 1 − αð Þd yn, Tynð Þ, ð96Þ

a contradiction. Therefore, let us assume that yn ≠ Tyn ≠
wðyn, Tyn ; αÞ, and then

d yn, x∗ð Þ ≤ s d yn,w yn, Tyn ; αð Þð Þ + d w yn, Tyn ; αð Þ, Tynð Þ + d Tyn, x∗ð Þ½ �
≤ s 1 − αð Þd yn, Tynð Þ + sαd yn, Tynð Þ + sβd yn, x∗ð Þ,

ð97Þ

combining with 1 − sβ > 0, and we obtain

d yn, x∗ð Þ ≤ s
1 − sβ

d yn, Tynð Þ, ð98Þ

which implies lim
n⟶∞

dðyn, x∗Þ = 0, which completes the proof.

Theorem 34. Let ðX, d,wÞ be a CRbMS with constant s ≥ 1
and all the hypotheses of Theorem 22 hold. If the constant 0
< α < 1, then fixed point problem of T is well posed.

Proof. Let x∗ be a unique fixed point of T and a sequence yn
in sequence in X such that lim

n⟶∞
dðyn, TynÞ = 0. Without loss

of generality, let yn ≠ x∗, for all n ∈ℕ. By the help of unique-
ness of the fixed point of T , then we have yn ≠ Tyn. If yn =
wðyn, Tyn ; αÞ for some α ∈ ð0, 1Þ, n ∈ℕ, then
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d yn, x∗ð Þ = d w yn, Tyn ; αð Þ, x∗ð Þ
≤ αd yn, x∗ð Þ + 1 − αð Þd Tyn, x∗ð Þ
≤ αd yn, x∗ð Þ + 1 − αð Þk d yn, Tynð Þ + d x∗, Tx∗ð Þf g
≤ αd yn, x∗ð Þ + 1 − αð Þkd yn, Tynð Þ:

ð99Þ

Hence,

d yn, x∗ð Þ ≤ kd yn, Tynð Þ, ð100Þ

and we conclude that lim
n⟶∞

dðyn, x∗Þ = 0. Due to α > 0, it is
not difficult to see that Tyn ≠wðyn, Tyn ; αÞ, indeed, if not,

d yn, Tynð Þ = d yn,w yn, Tyn ; αð Þð Þ ≤ 1 − αð Þd yn, Tynð Þ,
ð101Þ

a contradiction. Therefore, let us assume that yn ≠ Tyn ≠w
ðyn, Tyn ; αÞ, and then

d yn, x∗ð Þ ≤ s d yn,w yn, Tyn ; αð Þð Þ + d w yn, Tyn ; αð Þ, Tynð Þ + d Tyn, x∗ð Þ½ �
≤ s 1 − αð Þd yn, Tynð Þ + sαd yn, Tynð Þ + sk d yn, Tynð Þ + d x∗, Tx∗ð Þf g,

ð102Þ

combining with 1 − sβ > 0, and we obtain

d yn, x∗ð Þ ≤ s + skð Þd yn, Tynð Þ, ð103Þ

which implies lim
n⟶∞

dðyn, x∗Þ = 0, which completes the proof.

3. Applications

In this section, we will apply our result to solving the follow-
ing functional equation arising in dynamic programming:

p uð Þ = sup
v∈B

f u, vð Þ +G u, v, p φ u, vð Þð Þð Þf g, ð104Þ

for all u ∈ A, where f : A × B⟶ R, φ : A × B⟶ A, and
G : A × B × R⟶ R. We assume that C and D are Banach
spaces, A ⊆ C is a state space, and B ⊆D is a decision
space. Precisely, see also [30, 31]. Let X = RðAÞ denote
the set of all bounded real-valued functions on A and
the norm k·k defined as kxk = sup

u∈A
jxðuÞj for all x ∈ X.

Clearly, ðX, k·kÞ is a Banach space. Moreover, we can
define a rectangular b −metric d by

d x, yð Þ = sup
u∈A

x uð Þ − y uð Þj j2, ð105Þ

for all x, y ∈ X. Since ðX, k·kÞ is complete, we deduce
that ðX, dÞ is a complete rectangular b −metric space
with s = 3. In order to show the existence of a solution
of equation (104), we consider the operator T : X ⟶
X of the form

T xð Þ uð Þ = sup
v∈B

f u, vð Þ +G u, v, x φ u, vð Þð Þð Þf g, ð106Þ

for all u ∈ A and x ∈ X. We will prove the following theorem.

Theorem 35. Let T : X⟶ X be given by (106). Suppose that
the following hypotheses hold:

(A1) f : A × B⟶ R and G : A × B × R⟶ R are
bounded functions;

(A2) There exists a > 0, for all u ∈ A, v ∈ B and x, y ∈ X,
such that

G1 u, v, x uð Þð Þ − G2 u, v, y uð Þð Þj j ≤ a x uð Þ − y uð Þj j: ð107Þ

Then, the functional equation (104) has a bounded
solution.

Proof. Obviously, T is well defined, since f and G are
bounded. That is, Tx ∈ X and operator T are well defined.
Then, from (A2), we have

Tx uð Þ − Ty uð Þj j2 = sup
v∈B

f u, vð Þ +G u, v, x φ u, vð Þð Þð Þf g
����
− sup

v∈B
f u, vð Þ +G u, v, y φ u, vð Þð Þð Þf g

����
2

≤ sup
v∈B

G u, v, x φ u, vð Þð Þð Þ −G u, v, y φ u, vð Þð Þð Þj j2

≤ a2 sup
v∈B

x uð Þ − y uð Þj j2:

ð108Þ

Let 0 ≤ a ≤ 1/3
ffiffiffi
2

p
; thus, all the conditions of Theorem 12

are fulfilled, and there exists a fixed point x∗ ∈ X of T such
that Tx∗ = x∗. In other words,

x∗ uð Þ = sup
v∈B

f u, vð Þ +G u, v, x∗ φ u, vð Þð Þð Þf g, ð109Þ

for all u ∈ A. This completes the proof.

Example 36. Consider the functional equation

x uð Þ = sup
v∈ 0,1½ �

sin u + vð Þ + ln 1 + uv + 1
6 x uvð Þ

� �� 

ð110Þ

for u ∈ ½0, 2�. We let A = ½0, 2�, B = ½0, 1�. f : A × B⟶ R is
defined by f ðu, vÞ = sin ðu + vÞ, φ : A × B⟶ A is defined
by φðu, vÞ = uv, and

G : A × B × R⟶ R ð111Þ

is defined by Gðu, v, xÞ = ln ð1 + uv + 1/6xÞ for x ∈ X. It is
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not difficult to see that f and G are bounded functions.
Moreover,

G u, v, x φ u, vð Þð Þð Þ −G u, v, y φ u, vð Þð Þð Þj j2
= ln 1 + uv + xð Þ − ln 1 + uv + xð Þj j2

= ln 1 + uv + 1/6x + 1/6y − 1/6y
1 + uv + 1/6y

����
����
2

= ln 1 + 1/6x − 1/6y
1 + uv + 1/6y

� �����
����
2

≤ ln 1 + 1
6 x −

1
6 y

� �����
����
2

≤
1
36 x − yj j2:

ð112Þ

Thus, all the conditions of Theorem 35 are fulfilled.
Hence, functional equation (110) has a solution x∗ðuÞ ∈
RðAÞ.
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