Research Article

Applications of (α, β)-Symmetrical Functions on a Certain Class of Spirallike Functions

Aljazi Alkhammash $\mathbb{C}^{1,2}$ and Fuad Alsarari $\mathbb{D}^{1,2}$
${ }^{1}$ Department of Mathematics, College of Sciences, Yanbu, Taibah University, Saudi Arabia
${ }^{2}$ Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

Correspondence should be addressed to Aljazi Alkhammash; aalkhamash@hotmail.com
Received 21 April 2022; Revised 18 May 2022; Accepted 23 May 2022; Published 30 June 2022
Academic Editor: Teodor Bulboaca
Copyright © 2022 Aljazi Alkhammash and Fuad Alsarari. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this note, we use the notions of (α, β)-symmetrical, generalized Janowski-type and spirallike functions to define a new class $\delta_{\alpha, \beta}^{\lambda}(N, M, \mu)$ defined in the open unit disk. In particular, we obtain a structural formula, a representation theorem, MarxStrohacker inequality. Our results continue to hold the covering and distortion properties.

1. Introduction

Let $\mathscr{H}(\Delta)$ denote the class of analytic functions in the open unit disk $\Delta=\{\omega \in \mathbb{C}:|\omega|<1\}$. Also, \mathscr{H} indicates the subclass of $\mathscr{H}(\Delta)$ which has the form

$$
\begin{equation*}
h(\omega)=\omega+\sum_{v=2}^{\infty} a_{v} \omega^{v} \tag{1}
\end{equation*}
$$

The family of functions $h \in \mathscr{H}$ that are univalent in Δ is represented by $\tilde{\mathscr{H}}$.

The family of Schwarz functions is denoted by Ω where

$$
\begin{equation*}
\Omega:=\{s \in \mathscr{H}, s(0)=0,|s(\omega)|<1, \omega \in \Delta\} . \tag{2}
\end{equation*}
$$

Let h, \tilde{h} be analytic, the function h is said to be subordinate to \tilde{h} in Δ if there exists $s \in \Omega$ and $h(\omega)=\tilde{h}(s(\omega))$, and we denote this by $h(\omega)<\tilde{h}(\omega)$. Whereover \tilde{h} is univalent in Δ, then the subordination is equivalent to $h(0)=\tilde{h}(0)$ and $h(\Delta) \subset \tilde{h}(\Delta)$.

By using the concept of the subordination, let define the well-known Carathěodory class $\mathscr{P}=\{p \in \mathscr{H}(\Delta)$ satisfying $p(0)=1, \operatorname{Rep}(\omega)>0 ; \omega \in \Delta$, and for any function $p(0)=1$ is said to belong to the class \mathscr{P} has the representation $p(\omega)$ $=(1+s(\omega)) /(1-s(\omega))$, for some $s \in \Omega$.

In [1], Janowski introduced the class $\mathscr{P}[N, M]$ with -1 $\leq M<N \leq 1$, a function p analytic in Δ with $p(0)=1$ is said to belong to the class $\mathscr{P}[N, M]$ which has the representation $p(\omega)=(1+N \omega) /(1-M \omega)$.

The class $\mathscr{P}[N, M, \mu]$ of generalized Janowski functions was introduced in [2]. For arbitrary numbers N, M and μ with $-1 \leq M<N \leq 1,0 \leq \mu<1$, a function p analytic in Δ with $p(0)=1$ is said to belong to the class $\mathscr{P}[N, M, \mu]$ if and only if

$$
\begin{align*}
p(\omega) & <\frac{1+[(1-\mu) N+\mu M] \omega}{1+M \omega} \Leftrightarrow p(\omega) \\
& =\frac{1+[(1-\mu) N+\mu M] s(\omega)}{1+M s(\omega)}, \quad s \in \Omega \tag{3}
\end{align*}
$$

In order to define new classes of symmetrical functions defined in Δ, we first recall the notion of β-fold symmetric functions defined in β-fold symmetric domain, where β is any positive integer. A domain \mathscr{G} is said to be β-fold symmetric if a rotation of \mathscr{G} about the origin through an angle $2 \pi / \beta$ carries \mathscr{G} onto itself. A function h is said to be β-fold symmetric in \mathscr{G} if for every ω in \mathscr{G} we have

$$
\begin{equation*}
h(\varepsilon \omega)=\varepsilon h(\omega),\left(\varepsilon=e^{2 \pi i / \beta}\right), \quad \omega \in \mathscr{G} \tag{4}
\end{equation*}
$$

The family of all β-fold symmetric functions is denoted by $\tilde{\mathcal{S}}^{\beta}$; we get the class of odd univalent functions for $\beta=2$. In 1995, Liczberski and Polubinski [3] constructed the theory of (α, β)-symmetrical functions for $(\alpha=0,1,2, \cdots, \beta-1)$ and $(\beta=2,3, \cdots)$. If \mathscr{G} is β-fold symmetric domain and α any integer, then a function $h: \mathscr{G} \longrightarrow \mathbb{C}$ is called (α, β) -symmetrical if for each $\omega \in \mathscr{G}, h(\varepsilon \omega)=\varepsilon^{\alpha} h(\omega)$. We note that the (α, β)-symmetrical functions are a generalization of the notions of even, odd, and β-symmetrical functions.

In [3], we observe that the theory of (α, β)-symmetrical functions has many interesting applications; we now investigate some results in the classes of analytic functions.

Denote the family of all (α, β)-symmetrical functions by $\tilde{\mathcal{S}}^{(\alpha, \beta)}$. We observe that, $\tilde{\mathcal{S}}^{(0,2)}, \tilde{\mathcal{S}}^{(1,2)}$, and $\tilde{\mathcal{S}}^{(1, \beta)}$ are the classes of even, odd, and β-symmetric functions, respectively.

Theorem 1 (see [3], page 16). For every mapping $h: \Delta \mapsto \mathbb{C}$ and a β-fold symmetric set Δ, there exists exactly one sequence of (α, β)-symmetrical functions $h_{\alpha, \beta}$ such that

$$
\begin{equation*}
h(\omega)=\sum_{\alpha=0}^{\beta-1} h_{\alpha, \beta}(\omega), h_{\alpha, \beta}(\omega)=\frac{1}{\beta} \sum_{m=0}^{\beta-1} \varepsilon^{-m \alpha} h\left(\varepsilon^{m} \omega\right), \quad \omega \in \Delta \tag{5}
\end{equation*}
$$

Furthermore, we say that h is λ-spirallike if and only if $\operatorname{Re}\left(e^{i \lambda} \omega h^{\prime}(\omega) / h(\omega)\right)>0, \lambda$ is real and $|\lambda|<\pi / 2$.

Recently, see [4-6] obtained many interesting results for various subclasses of Janowski-type functions by using the concept of (α, β)-symmetrical functions.

By taking motivation from the above-cited work and using the generalized Janowski functions, (α, β)-symmetrical functions, and λ-spirallike, we introduce a new subclass of analytic functions.

Definition 2. A function h in \mathscr{H} is said to belong to the class $\mathcal{S}_{\alpha, \beta}^{\lambda}(N, M, \mu),(-1 \leq M<N \leq 1), 0 \leq \mu<1$ if

$$
\begin{equation*}
\frac{1}{\cos (\lambda)}\left[\frac{e^{i \lambda} \omega h^{\prime}(\omega)}{h_{\alpha, \beta}(\omega)}-i \sin (\lambda)\right] \in \mathscr{P}[N, M, \mu],|\lambda|<\frac{\pi}{2}, \quad \omega \in \Delta \tag{6}
\end{equation*}
$$

where $h_{\alpha, \beta}$ is defined in (5).
Our defined class generalizes many classes by choosing particular values of the parameters for various choices of α $, \beta, \lambda, N, M$, and μ; Definition 2 yields several known and new subclasses of \mathscr{H}, as $\mathcal{S}_{\alpha, \beta}^{0}(N, M, \mu):=\mathcal{S}_{\alpha, \beta}(N, M, \mu)$ introduced by the authors in [5]; $\mathcal{\delta}_{1,1}^{\lambda}(N, M, 0):=\mathcal{S}(N, M$, $\mu)$ and $\mathcal{S}_{1,1}^{\lambda}(N, M, 0):=\mathcal{S}(N, M, \mu)$ motivated by Polatoğlu et al. [2, 7]; $\mathcal{S}_{1, \beta}^{0}(N, M, \mu):=\mathcal{S}_{\beta}(N, M, \mu)$ introduced by Latha and Darus [8]; $\mathcal{S}_{1, \beta}^{0}(1,-1,0):=\mathcal{S}_{\beta}$ defined by Sakaguchi [9]; $\mathcal{S}_{1,1}^{0}(N, M, 0):=\mathcal{S}[N, M]$ these class reduce to wellknown class defined by Janowski [1].

Lemma 3 (see [5]). If h belongs to the class $\mathcal{S}^{(\alpha, \beta)}(N, M, \mu)$, then

$$
h_{\alpha, \beta}(\omega)= \begin{cases}\omega(1+M s(\omega))^{(1-\mu)(N-M) / M}, & \text { if } M \neq 0 \tag{7}\\ \omega \exp [(1-\mu) N s(\omega)], & \text { if } M=0\end{cases}
$$

and $h_{\alpha, \beta} \in \mathcal{S}^{(\alpha, \beta)}(N, M, \mu)$ for some $s \in \Omega$, where $h_{\alpha, \beta}$ are defined by ((5)).

Lemma 4 (see [2]). For τ is an arbitrary fixed point of Δ and $H(p)=p(\tau), p \in \mathscr{P}[N, M, \mu]$, then the set of the values of H is in the closed disc with center at $C(r)$ and having the radius $\rho(r)$, where

$$
\begin{cases}C(r)=\left(\frac{1-M[(1-\mu) N+\mu M] r^{2}}{1-M^{2} r^{2}}, 0\right), \rho(r)=\frac{(1-\mu)(N-M) r}{1-M^{2} r^{2}}, & \text { if } M \neq 0 \tag{8}\\ C(r)=(1,0), \rho(r)=(1-\mu)|N| r, & \text { if } M=0\end{cases}
$$

Lemma 5 (see [10]). Let $p \in \mathscr{P}[N, M, \mu]$, then
$\frac{1-[(1-\mu) N+\mu M] r}{1-M r} \leq|p(\omega)| \leq \frac{1+[(1-\mu) N+\mu M] r}{1+M r}, \quad|\omega| \leq r<1$.

2. Main Results

Theorem 6. A function h belongs to the class $\mathcal{S}_{\alpha, \beta}^{\lambda}(N, M, \mu)$ if and only if

$$
\begin{equation*}
h(\omega)=\int_{0}^{\omega} \mathscr{B}(t) q(t) d t, \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
q(t)=\exp \left\{\int_{0}^{t} \frac{1}{\beta u}\left(\sum_{m=0}^{\beta-1} \mathscr{B}\left(\varepsilon^{m} u\right)-\beta\right) d u\right\} \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\mathscr{B}(\omega)=[\cos (\lambda) p(\omega)+i \sin (\lambda)] e^{-i \lambda}, p \in \mathscr{P}[N, M, \mu] . \tag{12}
\end{equation*}
$$

Proof. Suppose that $h \in \mathcal{S}_{\alpha, \beta}^{\lambda}(N, M, \mu)$, we have

$$
\begin{equation*}
\frac{\omega h^{\prime}(\omega)}{h_{\alpha, \beta}(\omega)}=[\cos (\lambda) p(\omega)+i \sin (\lambda)] e^{-i \lambda}, p \in \mathscr{P}[N, M, \mu] \tag{13}
\end{equation*}
$$

Replacing ω by $\varepsilon^{m} \omega$ in (13), we obtain

$$
\begin{equation*}
\frac{\varepsilon^{m(1-\alpha)} \omega h^{\prime}\left(\varepsilon^{m} \omega\right)}{h_{\alpha, \beta}(\omega)}=\mathscr{B}\left(\varepsilon^{m} \omega\right) \tag{14}
\end{equation*}
$$

From (13) and (14), we get

$$
\begin{equation*}
h^{\prime}\left(\varepsilon^{m} \omega\right)=\mathscr{B}\left(\varepsilon^{m} \omega\right) \frac{\varepsilon^{m(\alpha-1)} h^{\prime}(\omega)}{\mathscr{B}(\omega)} . \tag{15}
\end{equation*}
$$

By differentiation (13), we have

$$
\begin{equation*}
h_{\alpha, \beta}^{\prime}(\omega)=\frac{\omega h^{\prime \prime}(\omega)+h^{\prime}(\omega)}{\mathscr{B}(\omega)}-\omega h^{\prime}(\omega) \frac{\mathscr{B}^{\prime}(\omega)}{\mathscr{B}^{2}(\omega)} . \tag{16}
\end{equation*}
$$

From (5) and (15), we get

$$
\begin{equation*}
h_{\alpha, \beta}^{\prime}(\omega)=\frac{1}{\beta} \frac{h^{\prime}(\omega)}{\mathscr{B}(\omega)} \sum_{m=0}^{\beta-1} \mathscr{B}\left(\varepsilon^{m} \omega\right) . \tag{17}
\end{equation*}
$$

From (5) and (17), we get

$$
\begin{equation*}
\frac{h^{\prime \prime}(\omega)}{h^{\prime}(\omega)}=\frac{\mathscr{B}^{\prime}(\omega)}{\mathscr{B}(\omega)}+\frac{1}{\beta \omega}\left(\sum_{m=0}^{\beta-1} \mathscr{B}\left(\varepsilon^{m} \omega\right)-\beta\right) \tag{18}
\end{equation*}
$$

Integrating repeatedly, we get the required structural formula

$$
\begin{equation*}
h(\omega)=\int_{0}^{\omega} \mathscr{B}(t) q(t) d t, \tag{19}
\end{equation*}
$$

which proves the necessity. To prove the sufficiency of (10), suppose that (10) holds with $p \in \mathscr{P}[N, M, \mu]$. The function h defined by (10) is obviously in \mathscr{H} with $h(0)=0$ and $h^{\prime}(0)=1$. The following identity can be verified by differentiation

$$
\begin{equation*}
\omega q(\omega)=\int_{0}^{\varepsilon^{m} \omega} \omega\left[\frac{1}{\beta} \sum_{m=0}^{\beta-1} \varepsilon^{-\alpha m} \mathscr{B}(t) \cdot q(t)\right] d t \tag{20}
\end{equation*}
$$

where q and \mathscr{B} are given by (10) and (11), respectively. Also, using (10), we have

$$
\begin{equation*}
h^{\prime}(\omega)=\mathscr{B}(\omega) \cdot q(\omega) \tag{21}
\end{equation*}
$$

which shows that $h^{\prime} \neq 0$ in Δ.

From (10), since ε is the root of unity, we conclude that

$$
\begin{equation*}
h_{\alpha, \beta}(\omega)=\int_{0}^{\varepsilon^{m} \omega}\left[\frac{1}{\beta} \sum_{m=0}^{\beta-1} \varepsilon^{-\alpha m} \mathscr{B}(t) \cdot q(t)\right] d t . \tag{22}
\end{equation*}
$$

Using (20), (21), and (22), we arrive at the result

$$
\begin{equation*}
h_{\alpha, \beta}(\omega)=\frac{\omega h^{\prime}(\omega)}{\mathscr{B}(\omega)} \tag{23}
\end{equation*}
$$

thus proving the sufficiency of (10).
Lemma 7. If $h \in \mathcal{S}_{\alpha, \beta}^{\lambda}(N, M, \mu)$, then
$h_{\alpha, \beta}(\omega)= \begin{cases}\omega(1+M s(\omega))^{e^{-i \lambda}(1-\mu)(N-M) \cos (\lambda) / M}, & M \neq 0, \\ \omega e^{(1-\mu) N \cos (\lambda) e^{-i \lambda} s(\omega)}, & M=0,\end{cases}$
for some $s \in \Omega$, where $h_{\alpha, \beta}$ are defined by (5).
Proof. By using Lemma 3 and similar technique proof in Theorem 6 in [5].

Corollary 8. Marx-Strohacker inequality for the class $\mathcal{S}_{\alpha, \beta}^{\lambda}$ (N, M, μ) is

$$
\begin{cases}\left|\log \left(\frac{h_{\alpha, \beta}(\omega)}{\omega}\right)^{e^{i \lambda} /(1-\mu) N \cos (\lambda)}\right|<1, & \text { if } M=0 \tag{25}\\ \left|\left(\frac{h_{\alpha, \beta}(\omega)}{\omega}\right)^{M e^{i \lambda} /(1-\mu)(N-M) \cos (\lambda)}-1\right|<1, & \text { if } M \neq 0\end{cases}
$$

Proof. The proof of this corollary is a simple consequence of Lemma 7. Indeed,

$$
\begin{align*}
\frac{h_{\alpha, \beta}(\omega)}{\omega} & =(1+M s(\omega))^{e^{-i \lambda}(1-\mu)(N-M) \cos (\lambda) / M} \\
& \Rightarrow\left|\left(\frac{h_{\alpha, \beta}(\omega)}{\omega}\right)^{M e^{i \lambda} /(1-\mu)(N-M) \cos (\lambda)}-1\right|<1 \tag{26}\\
\frac{h_{\alpha, \beta}(\omega)}{\omega} & =e^{(1-\mu) N \cos (\lambda) e^{-i \lambda} s(\omega)} \\
& \Rightarrow\left|\log \left(\frac{h_{\alpha, \beta}(\omega)}{\omega}\right)^{e^{i \lambda} /(1-\mu) N \cos (\lambda)}\right|<1
\end{align*}
$$

The next covering, starlikeness and distortion theorems for the class $\mathcal{S}_{\alpha, \beta}^{\lambda}(N, M, \mu)$ hold.

Theorem 9. Let $h \in \mathcal{S}_{\alpha, \beta}^{\lambda}(N, M, \mu)$, with $-1 \leq M<N \leq 1$ and $0 \leq \mu<1$. Then,

for some $s, \tilde{s} \in \Omega$ and

$$
\begin{equation*}
\gamma=[[(1-\mu) N+\mu M] \cos (\lambda)+i M \sin (\lambda)] e^{-i \lambda} \tag{28}
\end{equation*}
$$

Proof. Supposing that $h \in \mathcal{S}_{\alpha, \beta}^{\lambda}(N, M, \mu)$, it follows that there exists a function $\tilde{s} \in \Omega$ such that

$$
\begin{align*}
& \frac{e^{i \lambda}\left(\omega h^{\prime}(\omega) / h_{\alpha, \beta}(\omega)\right)-i \sin (\lambda)}{\cos (\lambda)} \tag{29}\\
& \quad=\frac{1+[(1-\mu) N+\mu M] \tilde{s}(\omega)}{1+M \tilde{s}(\omega)}, \quad \omega \in \Delta .
\end{align*}
$$

Combining the above relation with Lemma 7, we have

$$
h^{\prime}(\omega)= \begin{cases}\frac{1+[(1-\mu) N+\mu M] \tilde{s}(\omega)}{1+\tilde{s}(\omega)}(1+M s(\omega))^{e^{-i \lambda}(1-\mu)(N-M) \cos (\lambda) / M}, & \text { if } M \neq 0 \tag{30}\\ {\left[1+e^{-i \lambda}(1-\mu) N \cos (\lambda) \tilde{s}(\omega)\right] e^{e^{-i \lambda}(1-\mu) N \cos (\lambda) s(\omega)},} & \text { if } M=0\end{cases}
$$

Integrating the above equation along the line connecting the origin with $\omega \in \Delta$, we obtain our result.

Theorem 10. The radius of starlikeness of the class $h \in \mathcal{S}_{\alpha, \beta}^{\lambda}$ (N, M, μ) is

$$
r= \begin{cases}\frac{2}{(1-\mu)(N-M) \cos (\lambda)+\sqrt{(1-\mu)^{2}(N-M)^{2} \cos ^{2}(\lambda)+4\left\{[(1-\mu) N+\mu M] M \cos ^{2}(\lambda)+M^{2} \sin ^{2}(\lambda)\right\}}}, & \text { if } M \neq 0 \tag{31}\\ \frac{1}{(1-\mu) N \cos (\lambda)}, & \text { if } M=0\end{cases}
$$

This radius is sharp because the extremal function is

$$
h_{\alpha, \beta}(\omega)=\left(\begin{array}{l}
\omega(1+M \omega)^{e^{-\lambda \lambda}(1-\mu)(N-M) \cos (\lambda) / M}, M \neq 0 \tag{32}\\
\omega e^{(1-\mu) N \cos (\lambda) e^{-i \lambda} \omega}, M=0
\end{array}\right.
$$

using Lemma 4, that is

$$
\begin{equation*}
\left|p(\omega)-\frac{1-M[(1-\mu) N+\mu M] r^{2}}{1-M^{2} r^{2}}\right| \leq \frac{(1-\mu)(N-M) r}{1-M^{2} r^{2}} . \tag{34}
\end{equation*}
$$

Proof. Since

$$
\begin{equation*}
\frac{\left(e^{i \lambda} \omega h^{\prime}(\omega) / h_{\alpha, \beta}(\omega)\right)-i \sin (\lambda)}{\cos (\lambda)}=p(\omega), p \in \mathscr{P}[N, M, \mu] \tag{33}
\end{equation*}
$$

Using (33) in (34) and after straightforward calculations, we get

$$
\begin{align*}
& 1-(1-\mu)(N-M) \cos (\lambda) r-\left\{[(1-\mu) N+\mu M] M \cos ^{2}(\lambda)+M^{2} \sin ^{2}(\lambda)\right\} r^{2}, \\
& 1-M^{2} r^{2} \tag{35}\\
& \left.1-(1-\mu) N \cos (\lambda) r, \quad \begin{array}{ll}
\text { if } M=0,
\end{array}\right\} \\
& \quad \leq \mathfrak{R}\left\{\omega \frac{h^{\prime}(\omega)}{h_{\alpha, \beta}(\omega)}\right\} \leq \begin{cases}\frac{1+(1-\mu)(N-M) \cos (\lambda) r-\left\{[(1-\mu) N+\mu M] M \cos ^{2}(\lambda)+M^{2} \sin ^{2}(\lambda)\right\} r^{2}}{1-M^{2} r^{2}}, & \text { if } M \neq 0, \\
1+(1-\mu) N \cos (\lambda) r, & \text { if } M=0,\end{cases}
\end{align*}
$$

where $|\omega| \leq r<1$. The above inequalities shows that this theorem is true.

Remark 11.
(i) For $N=-M=1, \lambda=\mu=0$, we obtain $r=1$
(ii) For $N=-M=1, \mu=0$, we obtain $r=1 /(\cos (\lambda)+\mid$ $\sin (\lambda) \mid)$

We also note that if we give another special values to N, M, α, β, and μ, we obtain radius of starlikeness of the subclass of λ-spirallike functions.

Corollary 12. If $h \in \mathcal{S}_{\alpha, \beta}^{\lambda}(N, M, \mu)$, then

$$
\begin{align*}
& \left.\begin{array}{ll}
\frac{(1-[(1-\mu) N+\mu M] r) \cos (\lambda)-(1-M r)|\sin (\lambda)|}{1-M r}, & \text { if } M \neq 0, \\
(1-(1-\mu) N r) \cos (\lambda)-|\sin (\lambda)|, & \text { if } M=0,
\end{array}\right\} \leq\left|\frac{\omega h^{\prime}(\omega)}{h_{\alpha, \beta}(\omega)}\right| \\
& \leq \begin{cases}\frac{(1+[(1-\mu) N+\mu M] r) \cos (\lambda)+(1+M r)|\sin (\lambda)|}{1+M r}, & \text { if } M \neq 0, \\
(1+(1-\mu) N r) \cos (\lambda)+|\sin (\lambda)|, & \text { if } M=0,\end{cases} \tag{36}
\end{align*}
$$

where $|\omega| \leq r<1$.
Proof. For an arbitrary function $h \in \delta_{\alpha, \beta}^{\lambda}(N, M, \mu)$, we have

$$
\begin{equation*}
\frac{1}{\cos (\lambda)}\left[\frac{e^{i \lambda} \omega h^{\prime}(\omega)}{h_{\alpha, \beta}(\omega)}-i \sin (\lambda)\right]=p(\omega), p \in \mathscr{P}[N, M, \mu] . \tag{37}
\end{equation*}
$$

Using Lemma 5 and after the straightforward calculations, we get the result.

Theorem 13. For $M \geq 0$, if $h \in \mathcal{S}_{\alpha, \beta}^{\lambda}(N, M, \mu)$, then

$$
\begin{align*}
& {\left[\cos (\lambda) \frac{1-[(1-\mu) N+\mu M] r}{1-M r}-|\sin (\lambda)|\right](1-M s(\omega))^{\cos (\lambda) e^{-i \lambda}(1-\mu)(N-M) / M},} \tag{38}\\
& {[\cos (\lambda)\{1-(1-\mu) N r\}-|\sin (\lambda)|] \exp [-\cos (\lambda)(1-\mu) N r],} \\
& \quad \leq \begin{cases}{\left[\cos (\lambda) \frac{1+[(1-\mu) N+\mu M] r}{1+M r}+|\sin (\lambda)|\right](1+M s(\omega))^{\cos (\lambda) e^{-i \lambda}(1-\mu)(N-M) / M},} & \text { if } M \neq 0, \\
{[\cos (\lambda)\{1+(1-\mu) N r\}+|\sin (\lambda)|] \exp [\cos (\lambda)(1-\mu) N r],} & \text { if } M=0,\end{cases}
\end{align*}
$$

where $|\omega| \leq r<1$.
Proof. For function $h \in \mathcal{S}_{\alpha, \beta}^{\lambda}(N, M, \mu)$, according to Lemma 7 , we have to distinguish the next two cases.
(i) For $M \neq 0$, then there exists a function $s \in \Omega$ such that $h_{\alpha, \beta}(\omega)=\omega(1+M s(\omega))^{\cos (\lambda) e^{-i \lambda}(1-\mu)(N-M) / M}$, and by Lemma 5, for, $|\omega| \leq r<1$, we get

$$
\begin{align*}
& {\left[\cos (\lambda) \frac{1-[(1-\mu) N+\mu M] r}{1-M r}-|\sin (\lambda)|\right]|1+M s(\omega)|^{\cos (\lambda) e^{-i \lambda}(1-\mu)(N-M) / M}} \tag{39}\\
& \quad \leq\left|h^{\prime}(\omega)\right| \leq\left[\cos (\lambda) \frac{1+[(1-\mu) N+\mu M] r}{1+M r}+|\sin (\lambda)|\right]|1+M s(\omega)|^{\cos (\lambda) e^{-i \lambda}(1-\mu)(N-M) / M} .
\end{align*}
$$

Since $s \in \Omega$, we have

$$
\begin{equation*}
1-|M| r \leq|1+M s(\omega)| \leq 1+|M| r, \quad|\omega| \leq r<1 \tag{40}
\end{equation*}
$$

For $M>0$, we can easily use the fact that $-1 \leq M<N$ $\leq 1,0 \leq \mu<1$ and $|\omega| \leq r<1$; we have

$$
\begin{align*}
(1 & -|M| r)^{\cos (\lambda) e^{-i \lambda}(1-\mu)(N-M) / M} \\
& \leq|1+M s(\omega)|^{\cos (\lambda) e^{-i \lambda}(1-\mu)(N-M) / M} \tag{41}\\
& \leq(1+|M| r)^{\cos (\lambda) e^{-i \lambda}(1-\mu)(N-M) / M}
\end{align*}
$$

and from (39), we obtain

$$
\begin{align*}
& {\left[\cos (\lambda) \frac{1-[(1-\mu) N+\mu M] r}{1-M r}-|\sin (\lambda)|\right](1-|M| s(\omega))^{\cos (\lambda) e^{-i \lambda}(1-\mu)(N-M) / M}} \tag{42}\\
& \quad \leq\left|h^{\prime}(\omega)\right| \leq\left[\cos (\lambda) \frac{1+[(1-\mu) N+\mu M] r}{1+M r}+|\sin (\lambda)|\right](1+|M| s(\omega))^{\cos (\lambda) e^{-i \lambda}(1-\mu)(N-M) / M}
\end{align*}
$$

(ii) If $M=0$, there exists a function $s \in \Omega$ such that $h_{\alpha, \beta}$ $(\omega)=\omega \exp \left[\cos (\lambda) e^{-i \lambda}(1-\mu) N s(\omega)\right], \quad,|\omega| \leq r<1$ and therefore

$$
\begin{align*}
& {\left[\cos (\lambda)\{1-(1-\mu) N s(\omega)\}-|\sin (\lambda)|| | \exp \left[\cos (\lambda) e^{-i \lambda}(1-v) N s(\omega)\right] \mid\right.} \\
& \quad \leq\left|h^{\prime}(\omega)\right| \leq[\cos (\lambda)\{1+(1-\mu) N s(\omega)\}+|\sin (\lambda)|] \mid \exp \\
& \quad \cdot\left[\cos (\lambda) e^{-i \lambda}(1-\mu) N s(\omega)\right] \mid . \tag{43}
\end{align*}
$$

Since

$$
\begin{align*}
& \left|\exp \left[\cos (\lambda) e^{-i \lambda}(1-\mu) N s(\omega)\right]\right| \tag{44}\\
& \quad=\exp \left[\cos (\lambda)(1-\mu) N \operatorname{Re}\left\{e^{-i \lambda} s(\omega)\right\}\right], \quad \omega \in \Delta
\end{align*}
$$

using a similar computation as in the previous case, we deduce

$$
\begin{align*}
& \exp [-\cos (\lambda)(1-\mu) N r] \\
& \quad \leq\left|\exp \left[\cos (\lambda) e^{-i \lambda}(1-\mu) N s(\omega)\right]\right| \tag{45}\\
& \quad \leq \exp [\cos (\lambda)(1-\mu) N r], \quad|\omega| \leq r<1 .
\end{align*}
$$

Thus, (43) yields to

$$
\begin{align*}
& {[\cos (\lambda)\{1-(1-\mu) N r\}-|\sin (\lambda)|] \exp [-\cos (\lambda)(1-\mu) N r]} \\
& \quad \leq\left|h^{\prime}(\omega)\right| \leq[\cos (\lambda)\{1+(1-\mu) N r\} \\
& \quad+|\sin (\lambda)|] \exp [\cos (\lambda)(1-\mu) N r], \tag{46}
\end{align*}
$$

for $|\omega| \leq r<1$, which completes the proof of our theorem.

Data Availability

We are applying defined by 1-Liczberski P, Po lubinski J. On ($j ; k$)-symmetrical functions. Mathematica Bohemca 1995; 120(1): 13-28. doi: 10.21136/MB.1995.125897 and extend the class in 1-Al-Sarari F, Latha S, Bulboaca T. On Janowski functions associated with $(n ; m)$-symmetrical functions. Journal of Taibah University for Science 2019; 13(1): 972978. doi:10.1080/16583655.2019.1665487 2-Polatoglu Y, Bolcal M, Sen A, Yavuz E. A study on the generalization of Janowski functions in the unit disc, Acta Mathematica. Academiae Paedagogicae Nyregyhziensis. 2006; 22; 27-31. 3-AlSarari F, Frasin B, AL-Hawary T, Latha S. A few results on generalized Janowski-type functions associated with ($j ; k$)-symmetrical functions. Acta Universitatis Sapientiae, Mathematica 2016; 8(2): 195-205. doi: 10.1515/ausm-20160012 4-Polatoglu Y. Growth and distortion theorem for the Janowski alpha-spirallike functions in the unit disc, Stud. Univ. Babes-Bolyai Math 2012; 57; 255-259.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] W. Janowski, "Some extremal problems for certain families of analytic functions I," Ann. Polon. Math., vol. 28, no. 3, pp. 297-326, 1973.
[2] Y. Polatoglu, M. Bolcal, A. Sen, and E. Yavuz, "A study on the generalization of Janowski functions in the unit disc," Acta Mathematica. Academiae Paedagogicae Nyregyhziensis., vol. 22, pp. 27-31, 2006.
[3] P. Liczberski and J. Połubiński, "On $\$(j, k) \$$-symmetrical functions," Mathematica Bohemica, vol. 120, no. 1, pp. 13-28, 1995.
[4] F. Al-Sarari, B. Frasin, and AL-Hawary T, Latha S, "A few results on generalized Janowski type functions associated with (j, k)-symmetrical functions," Acta Univ. Sapientiae Math., vol. 8, no. 2, pp. 195-205, 2016.
[5] F. Al-Sarari, S. Latha, and T. Bulboacă, "On Janowski functions associated with (n, m)-symmetrical functions," Journal of Taibah University for Science, vol. 13, no. 1, pp. 972-978, 2019.
[6] D. Renuka, F. Alsarari, and S. Latha, "Some results in generalization of Janowski functions associated with (j, k)-symmetric points," Annals of Pure and Applied Mathematics, vol. 16, no. 1, pp. 193-201, 2018.
[7] Y. Polatoglu, "Growth and distortion theorem for the Janowski alpha-spirallike functions in the unit disc," Universitatis Babeș-Bolyai, vol. 57, pp. 255-259, 2012.
[8] F. Al-Sarari, S. Latha, and M. Darus, "A few results on Janowski functions associated with k-symmetric points," The Korean Journal of Mathematics, vol. 25, no. 3, pp. 389-403, 2017.
[9] K. Sakaguchi, "On a certain univalent mapping," Journal of the Mathematical Society of Japan, vol. 11, no. 1, pp. 72-75, 1959.
[10] S. Hussain, M. Arif, and S. Nawaz Malik, "Higher order close-to-convex functions associated with Attiya-Srivastava operator," Iranian Mathematical Society, vol. 40, no. 4, pp. 911920, 2014.

