
Research Article
Atomic Decompositions and John-Nirenberg Theorem of Grand
Martingale Hardy Spaces with Variable Exponents

Libo Li and Zhiwei Hao

College of Mathematics and Computing Science, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China

Correspondence should be addressed to Zhiwei Hao; haozhiwei@hnust.edu.cn

Received 19 October 2021; Accepted 27 November 2021; Published 19 January 2022

Academic Editor: Tianqing An

Copyright © 2022 Libo Li and Zhiwei Hao. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Let θ ≥ 0 and pð·Þ be a variable exponent, and we introduce a new class of function spaces Lpð·Þ,θ in a probabilistic setting which
unifies and generalizes the variable Lebesgue spaces with θ = 0 and grand Lebesgue spaces with pð·Þ ≡ p and θ = 1. Based on the
new spaces, we introduce a kind of Hardy-type spaces, grand martingale Hardy spaces with variable exponents, via the
martingale operators. The atomic decompositions and John-Nirenberg theorem shall be discussed in these new Hardy spaces.

1. Introduction

The martingale theory is widely studied in the field of math-
ematical physics, stochastic analysis, and probability. Weisz
[1] presented the atomic decomposition theorem for martin-
gale Hardy spaces. Herz [2] established the John-Nirenberg
theorem for martingales. Since then, the study of martingale
Hardy spaces associated with various functional spaces has
attracted a steadily increasing interest. For instance, martin-
gale Orlicz-type Hardy spaces were investigated in [3–6],
martingale Lorentz Hardy spaces were studied in [7–9], and
variable martingale Hardy spaces were developed in [10–14].

Let 1 < p <∞, and the grand Lebesgue space LpÞðEÞ
introduced by Iwaniec and Sbordone [15] is defined as the
Banach function space of the measurable functions f on
finite E such that

fk kLpÞ = sup
0<η<p−1

η
1

∣E ∣

ð
E
f xð Þj jp−ηdx

� �1/ p−ηð Þ
<∞: ð1Þ

Such spaces can be used to integrate the Jacobian under
minimal hypotheses [15]. The grand Lebesgue spaces as a
kind of Banach function space were investigated in the
papers of Capone et al. [16, 17], Fiorenza et al. [18–21],

Kokilashvili et al. [22, 23], and so forth. In particular,
grand Lebesgue spaces with variable exponents were studied
in [24, 25].

We find that the framework of grand Lebesgue spaces
with variable exponents has not yet been studied in martin-
gale theory. This paper is aimed at discussing the variable
grand Hardy spaces defined on the probabilistic setting
and showing the atomic decompositions and John-
Nirenberg theorem in these new Hardy spaces. More pre-
cisely, we first present the atomic characterization of grand
Hardy martingale spaces with variable exponents. To do
so, we introduce the following new notations of atom.

Definition 1. Let pð·Þ be a variable exponent and θ ≥ 0. A
measurable function a is called a ð1, pð·Þ, θÞ -atom (resp. ð2,
pð·Þ, θÞ -atom, ð3, pð·Þ, θÞ -atom) if there exists a stopping
time τ such that

ða1ÞEna = 0, ∀ n ≤ τ

ða2Þ∥sðaÞ∥L∞ðresp:∥SðaÞ∥L∞ , kMakL∞Þ ≤ kχfτ<∞gk−1Lpð·Þ,θ :

See Section 2 for the notation Lpð·Þ,θ. Denote by Asðpð·Þ,
∞Þ (resp. ASðpð·Þ,∞Þ, AMðpð·Þ,∞Þ) the collection of all
sequences of triplet ðak, τk, μkÞ, where ak are ð1, pð·Þ, θÞ
-atoms (resp. ð2, pð·Þ, θÞ-atoms, ð3, pð·Þ, θÞ-atoms), τk are
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stopping times satisfying ða1Þ and ða2Þ in Definition 1, and
μk are nonnegative numbers and also

〠
k∈ℤ

μk
χ τk<∞f g

∥χ τk<∞f g∥Lp ·ð Þ,θ

�����
�����
Lp ·ð Þ,θ

<∞: ð2Þ

Under these definitions, we show the atomic decomposi-
tions of the grand Hardy martingale spaces with variable
exponents (see Section 3). To be precise, we prove that for
any f = ð f nÞn≥0, f ∈Hs

pð·Þ,θ (resp. Qpð·Þ,θ, Dpð·Þ,θ) iff there exists

a sequence of triplet ðak, τk, μkÞ ∈Asðpð·Þ,∞Þ (resp. ASðpð·Þ,
∞Þ, AMðpð·Þ,∞Þ) so that for each n ≥ 0,

f n = 〠
k∈ℤ

μkEna
k a:e:,

〠
k∈ℤ

μk
χ τk<∞f g

∥χ τk<∞f g∥Lp ·ð Þ,θ

�����
�����
Lp ·ð Þ,θ

≈ fk kHs
p ·ð Þ,θ

resp: fk kQp ·ð Þ,θ
, fk kDp ·ð Þ,θ

� �
:

ð3Þ

Moreover, we extend the classical John-Nirenberg theo-
rem to the grand variable Hardy martingale spaces. To be pre-
cise, under suitable conditions, we present the following one:

fk kBMOp ·ð Þ,θ
≈ fk kBMO1

: ð4Þ

See Theorem 11 for the details. This conclusion improves
the recent results [12, 26], respectively.

Throughout this paper, ℤ, ℕ, and ℂ denote the integer
set, nonnegative integer set, and complex numbers set,
respectively. We denote by C the absolute positive constant,
which can vary from line to line. The symbol A ≲ B stands
for the inequality A ≤ CB. If we write A ≈ B, then it stands
for A ≲ B ≲ A.

2. Preliminaries

2.1. Grand Lebesgue Spaces with Variable Exponents. Let
ðΩ,F ,ℙÞ be a probability space. An F-measurable func-
tion pð·Þ: Ω⟶ ð0,∞Þ which is called a variable exponent.
For convenience, we denote

p− ≔ essinf p ωð Þ: ω ∈Ωf g, p+ ≔ esssup p ωð Þ: ω ∈Ωf g,
p− Bð Þ = essinf p ωð Þ: ω ∈ Bf g and
p+ Bð Þ = esssup p ωð Þ: ω ∈ Bf g:

ð5Þ

Denote by P =P ðΩÞ the collection of all variable
exponents pð·Þ satisfying with 1 < p− ≤ p+ <∞. The vari-
able Lebesgue space Lpð·Þ = Lpð·ÞðΩÞ consists of all F-mea-
surable functions f such that for some λ > 0,

ρ
f
λ

� �
=
ð
Ω

∣f wð Þ ∣
λ

� �p wð Þ
dℙ <∞: ð6Þ

This leads to a Banach function space under the
Luxemburg-Nakano norm

fk kLp ·ð Þ
≡ inf λ > 0 : ρ

f
λ

� �
≤ 1

� �
: ð7Þ

Based on this, we begin with the definition of the
grand Lebesgue space with variable exponent.

Definition 2. Suppose that pð·Þ ∈P and θ ≥ 0. We define the
grand Lebesgue space with variable exponent Lpð·Þ,θ = Lpð·Þ,θ
ðΩÞ as the set of all F -measurable functions f satisfying

fk kLp ·ð Þ,θ
≔ sup

0<η<p−−1
ηθ/ p−−ηð Þ fk kLp ·ð Þ−η

<∞: ð8Þ

The Grand Lebesgue space with variable exponent can
unify and generalize the various function spaces. To be pre-
cise, if θ = 0, Lpð·Þ,θ degenerates to the variable Lebesgue
space Lpð·Þ. If θ = 1 and pð·Þ ≡ p, Lpð·Þ,θ becomes the grand
Lebesgue space LpÞ.

2.2. Martingale Grand Hardy Spaces via Variable Exponents.
Let fFngn≥0 be a nondecreasing sequence of sub-σ-algebras
of F sets with F = σðSn≥0FnÞ. The expectation operator
and the conditional expectation operator relative to Fn are
denoted by E and En, respectively. A sequence f = ð f nÞn≥0
of random variables is said to be a martingale, if f n is
Fn-measurable, Eð∣f n ∣ Þ <∞, and Enð f n+1Þ = f n for every
n ≥ 0: Denote M to be the set of all martingales f = ð f nÞn≥0
with respect to fFngn≥0 such that f0 = 0. For f ∈M, write
its martingale difference by dnf = f n − f n−1ðn ≥ 0, f −1 = 0Þ.
Define the maximal function, the square function, and the
conditional square function of f , respectively, as follows:

Mmf = sup
n≤m

f nj j,Mf = sup
n≥0

f nj j,

Sm fð Þ = 〠
m

n=0
df nj j2

 !1/2

, S fð Þ = 〠
∞

n=0
df nj j2

 !1/2

,

sm fð Þ = 〠
m

n=0
En−1 df nj j2

 !1/2

, s fð Þ = 〠
∞

n=0
En−1 df nj j2

 !1/2

:

ð9Þ

Let Γ be the set of all sequences ðλnÞn≥0 of nondecreasing,
nonnegative, and adapted functions, and λ∞ ≔ lim

n⟶∞
λn. For

f ∈M, pð·Þ ∈P , and θ ≥ 0, denote

Γ Qp ·ð Þ,θ
h i

fð Þ = λnð Þn≥0 ∈ Γ : Sn fð Þ ≤ λn−1 n ≥ 1ð Þ, λ∞ ∈ Lp ·ð Þ,θ
n o

,

Γ Dp ·ð Þ,θ
h i

fð Þ = λnð Þn≥0 ∈ Γ : ∣f n∣≤λn−1 n ≥ 1ð Þ, λ∞ ∈ Lp ·ð Þ,θ
n o

:

ð10Þ

Now we introduce the grand martingale Hardy spaces
associated with variable exponents as follows:
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H∗
p ·ð Þ,θ = f ∈M : Mf ∈ Lp ·ð Þ,θ

n o
,∥f ∥H∗

p ·ð Þ,θ
= ∥Mf ∥Lp ·ð Þ,θ

,

HS
p ·ð Þ,θ = f ∈M : S fð Þ ∈ Lp ·ð Þ,θÞ

n o
,∥f ∥HS

p ·ð Þ,θ
= ∥S fð Þ∥Lp ·ð Þ,θ

,

Hs
p ·ð Þ,θ = f ∈M : s fð Þ ∈ Lp ·ð Þ,θ

n o
,∥f ∥Hs

p ·ð Þ,θ
= ∥s fð Þ∥Lp ·ð Þ,θ

,

Qp ·ð Þ,θ = f ∈M : ∥f ∥Qp ·ð Þ,θ
<∞

n o
,∥f ∥Qp ·ð Þ,θ

= inf
λnð Þn≥0∈Γ Qp ·ð Þ,θ½ � fð Þ

∥λ∞∥Lp ·ð Þ,θ
,

Dp ·ð Þ,θ = f ∈M : ∥f ∥Dp ·ð Þ,θ
<∞

n o
,∥f ∥Dp ·ð Þ,θ

= inf
λnð Þn≥0∈Γ Dp ·ð Þ,θ½ � fð Þ

∥λ∞∥Lp ·ð Þ,θ
:

ð11Þ

The bounded Lpð·Þ,θ-martingale spaces

Lp ·ð Þ,θ = f = f nð Þn≥0 : sup
n≥0

∥f n∥Lp ·ð Þ,θ
<∞

� �
, ð12Þ

where

∥f ∥Lp ·ð Þ,θ
= sup

n≥0
∥f n∥Lp ·ð Þ,θ

: ð13Þ

Remark 3. If θ = 0, then we obtain the definitions of H∗
pð·Þ,

HS
pð·Þ, H

s
pð·Þ, Qpð·Þ, and Dpð·Þ, respectively (see [10, 12, 27]). If

we consider the special case θ = 1 and pð·Þ ≡ p with the nota-
tions above, we obtain the definitions of H∗

pÞ, H
S
pÞ, H

s
pÞ, QpÞ,

and DpÞ, respectively (see [26]). In addition, if pð·Þ ≡ p
and θ = 0, we obtain the martingale Hardy spaces H∗

q ,

HS
q, H

s
q, Qq, and Dq, respectively (see [28]).

Refer to [29, 30] for more information on martingale
theory.

3. Atomic Characterization

The method of atomic characterization plays an useful tool
in martingale theory (see for instance [1, 4, 6, 31–33]). We
shall construct the atomic characterizations for grand Hardy
martingale spaces with variable exponents in this section.

Theorem 4. Let pð·Þ ∈P and θ ≥ 0. If the martingale f ∈
Hs

pð·Þ,θ, then there exists a sequence of triplet ðak, τk, μkÞ ∈As

ðpð·Þ,∞Þ so that for each n ≥ 0,

〠
k∈ℤ

μkEna
k = f n, a:e:, ð14Þ

〠
k∈ℤ

μk
χ τk<∞f g

∥χ τk<∞f g∥Lp ·ð Þ,θ

�����
�����
Lp ·ð Þ,θ

≲ fk kHs
p ·ð Þ,θ

: ð15Þ

Conversely, if the martingale f has a decomposition of
(14), then

∥f ∥Hs
p ·ð Þ,θ

≲ inf 〠
k∈ℤ

μk
χ τk<∞f g

∥χ τk<∞f g∥Lp ·ð Þ,θ

�����
�����
Lp ·ð Þ,θ

, ð16Þ

where the infimum is taken over all the admissible representa-
tions of (14).

Proof. Let f ∈Hs
pð·Þ,θ. Now consider the stopping time for

each k ∈ℤ:

τk = inf n ∈ℕ : sn+1 fð Þ > 2k
n o

: ð17Þ

It is easy to see that the sequence of these stopping times
is nondecreasing. For each stopping time τ, denote f τn = f n∧τ.
It is easy to write that

f n = 〠
k∈ℤ

f τk+1n − f τknð Þ: ð18Þ

For each k ∈ℤ, let μk = 3 · 2kkχfτk<∞gkLpð·Þ,θ . If μk ≠ 0, we
set

akn =
f τk+1n − f τkn

μk
, n ∈ℕ: ð19Þ

If μk = 0, we set akn = 0 for each n ∈ℕ. For each fixed k
∈ℤ, ðaknÞn≥0 is a martingale. Since sð f τkÞ = sτkð f Þ ≤ 2k, we
get

s akn
� �

≤
s f τk+1ð Þ + s f τkð Þ

μk
≤ χ τk<∞f g
��� ���−1

Lp ·ð Þ,θ
: ð20Þ

We can easily check that ðaknÞn≥0 is a bounded L2-mar-
tingale. Hence, there exists an element ak ∈ L2 such that En

ak = akn. If n ≤ τk, then akn = 0, and sðakÞ ≤ kχfτk<∞gk−1Lpð·Þ,θ .
Consequently, it implies that ak is really a ð1, pð·Þ, θÞ-atom.

Denote Λk ≔ fτk<∞g. Knowing that fτk<∞g = fsð f Þ
> 2kg and τk is nondecreasing for each k ∈ℤ, we obtain
Λk+1 ⊆Λk. Now, we point out that

〠
k∈ℤ

3 · 2kχΛk
xð Þ = 2〠

k∈ℤ
3 · 2kχΛk\Λk+1

xð Þ: ð21Þ

Indeed, for a fixed x0 ∈Ω, there is k0 ∈ℤ so that x0 ∈Λk0
and x0∈Λk0+1, then we have

〠
k∈ℤ

3 · 2kχΛk
x0ð Þ = 〠

k0

k=−∞
3 · 2kχΛk

x0ð Þ = 〠
k0

k=−∞
3 · 2k = 3 · 2k0+1,

〠
k∈ℤ

3 · 2kχΛk\Λk+1
x0ð Þ = 〠

k0

k=−∞
3 · 2kχΛk\Λk+1

x0ð Þ = 3 · 2k0 :

ð22Þ
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This means

〠
k∈ℤ

μkχ τk<∞f g
∥χ τk<∞f g∥Lp ·ð Þ,θ

�����
�����
Lp ·ð Þ,θ

= 〠
k∈ℤ

3 · 2kχ τk<∞f g

�����
�����
Lp ·ð Þ,θ

= 6 〠
k∈ℤ

2kχΛk\Λk+1

�����
�����
Lp ·ð Þ,θ

= 6 sup
0<η<p−−1

ηθ/ p−−ηð Þ inf λ > 0 :

ð
Ω

〠
k∈ℤ

2kχΛk\Λk+1
xð Þ

λ

 !p xð Þ−η
dℙ ≤ 1

8<
:

9=
;

2
4

3
5

= 6 sup
0<η<p−−1

ηθ/ p−−ηð Þ inf λ > 0 : 〠
k∈ℤ

ð
Λk\Λk+1

2k
λ

� �p xð Þ−η
dℙ ≤ 1

( )" #

= 6 sup
0<η<p−−1

ηθ/ p−−ηð Þ inf λ > 0 : 〠
k∈ℤ

ð
Λk\Λk+1

s fð Þ
λ

� �p xð Þ−η
dℙ ≤ 1

( )" #

≤ 6 sup
0<η<p−−1

ηθ/ p−−ηð Þ inf λ > 0 :

ð
Ω

s fð Þ
λ

� �p xð Þ−η
dℙ ≤ 1

( )" #

= 6 sup
0<η<p−−1

ηθ/ p−−ηð Þ∥s fð Þ∥Lp ·ð Þ−η
= 6∥f ∥Hs

p ·ð Þ,θ
:

ð23Þ

For the converse part, according to the definition of
ð1, pð·Þ, θÞ-atom, we easily conclude

s ak
� �

= s ak
� �

χ τk<∞f g ≤ s ak
� ���� ���

L∞
χ τk<∞f g ≤ χ τk<∞f g

��� ���−1
Lp ·ð Þ,θ

χ τk<∞f g,

ð24Þ

where ak is the ð1, pð·Þ, θÞ-atom and τk is the stopping
time associated with ak which, when combined with the
subadditivity of the operator s, yields

s fð Þ ≤ 〠
k∈ℤ

μks ak
� �

≤ 〠
k∈ℤ

μk
χ τk<∞f g

∥χ τk<∞f g∥Lp ·ð Þ,θ

: ð25Þ

This implies

∥f ∥Hs
p ·ð Þ,θ

= ∥s fð Þ∥Lp ·ð Þ,θ
≤ 〠

k∈ℤ
μk

χ τk<∞f g
∥χ τk<∞f g∥Lp ·ð Þ,θ

�����
�����
Lp ·ð Þ,θ

: ð26Þ

Taking over all the admissible representations of (14)
for f , we obtain the desired result.

Next, we will characterize Qpð·Þ,θ and Dpð·Þ,θ by atoms,
respectively. The proof is similar to the proof of Theorem
4. For the completeness of this paper, we provide some
details.

Theorem 5. Suppose pð·Þ ∈P and θ ≥ 0. If the martingale
f = ð f nÞn≥0 ∈Qpð·Þ,θ (resp. Dpð·Þ,θ), then there exists a sequence

of triplet ðak, τk, μkÞ ∈ASðpð·Þ,∞Þ (resp.AMðpð·Þ,∞Þ) so that
for each n ∈ℕ,

f n = 〠
k∈ℤ

μkEna
k, ð27Þ

〠
k∈ℤ

μk
χ τk<∞f g

∥χ τk<∞f g∥Lp ·ð Þ,θ

�����
�����
Lp ·ð Þ,θ

≲ ∥f ∥Qp ·ð Þ,θ
resp:∥f ∥Dp ·ð Þ,θ

� �
:

ð28Þ

Conversely, if the martingale f = ð f nÞn≥0 has admissible
representation (27), then f ∈Qpð·Þ,θ (resp. Dpð·Þ,θ) and

∥f ∥Qp ·ð Þ,θ
resp: fk kDp ·ð Þ,θ

� �
≲ inf 〠

k∈ℤ
μk

χ τk<∞f g
∥χ τk<∞f g∥Lp ·ð Þ,θ

�����
�����
Lp ·ð Þ,θ

,

ð29Þ

where the infimum is taken over all the admissible representa-
tions of (27).

Proof. The proof follows the ideas in Theorem 4, so we omit
some details. Suppose f = ð f nÞn≥0 ∈Qpð·Þ,θ (resp. Dpð·Þ,θ). We
define stopping times as follows:

τk = inf n ∈ℕ : λn > 2k
n o

, inf ∅ =∞, ð30Þ

where ðλnÞn≥0 is an adapted, nondecreasing sequence such
that almost everywhere ∣Snð f Þ ∣ ≤λn−1 (resp.∣f n ∣ ≤λn−1) and
λ∞ ∈ Lpð·Þ,θ:

Let ðakÞk∈ℤ and ðμkÞk∈ℤ be defined as in the proof of
Theorem 4. And replace Λk = fτk<∞g = fsð f Þ > 2kg by the
Λk = fτk<∞g = fλ∞ > 2kg. Then, we obtain that f n =∑k∈ℤ
μkEna

k and (28) still hold.
For the converse part, write

λn = 〠
k∈ℤ

μk∥S ak
� �

∥L∞χ τk≤nf g resp:λn = 〠
k∈ℤ

μk∥M ak
� �

∥L∞χ τk≤nf g

 !
:

ð31Þ

Clearly, ðλnÞn≥0 is a nonnegative, nondecreasing, and
adapted sequence with Sn+1ð f Þ ≤ λn (resp.∣f n ∣ ≤λn). Thus,
we get

∥f ∥Qp ·ð Þ,θ
resp: fk kDp ·ð Þ,θ

� �
= λ∞k kLp ·ð Þ,θ

≤ 〠
k∈ℤ

μk
χ τ<∞f g

∥χ τ<∞f g∥p ·ð Þ,θ

�����
�����
p ·ð Þ,θ

:

ð32Þ

Taking over all the admissible representations of (27) for
f , we obtain the desired result.

Remark 6. Suppose pð·Þ ∈P and θ ≥ 0. We conclude that the
sum ∑N

k=Mμka
k in Theorem 4 converges to f in Hs

pð·Þ,θ as M
⟶ −∞, N ⟶∞. Indeed, it follows by the subadditive
of the operator s, we get, for any M,N ∈ℤ with M <N ,
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s f − 〠
N

k=M
μka

k

 !
≤ s f − f τN+1ð Þ + s f τMð Þ: ð33Þ

Moreover, sð f − f τN+1Þ is decreasing and convergent to 0
(a.e.) as N ⟶∞, and sð f τM Þ is decreasing and convergent
to 0 (a.e.) as M⟶ −∞. From this and the dominated con-
vergence theorem in Lpð·Þ−ε for 0 < ε < p− − 1 (see [34], The-
orem 2.62), it follows that

∥f − 〠
N

k=M
μka

k∥Hs
p ·ð Þ,θ

≤ ∥s f − f τN+1ð Þ + s f τMð Þ∥Lp ·ð Þ,θ

≤ sup
0<η<p−−1

ηθ/ p−−ηð Þ∥s f − f τN+1ð Þ∥Lp ·ð Þ−η
+ sup

0<η<p−−1

� ηθ/ p−−ηð Þ∥s f τMð Þ∥Lp ·ð Þ−η
⟶ 0 asM⟶ −∞,N ⟶∞:

ð34Þ

Furthermore, we can also show the norm convergence of
the summation ∑N

k=Mμka
k in Theorems 5 as M⟶ −∞,

N ⟶∞.

4. The Generalized John-Nirenberg Theorem

In the sequel of this section, we will often suppose that every
Fn is generated by countably many atoms. Recall that B ∈
Fn is called an atom, and if for any A ⊆ B with A ∈Fn satis-
fying ℙðAÞ <ℙðBÞ, we have ℙðAÞ = 0. We denote by AðFnÞ
the set of all atoms in Fn. We shall present the generalized
John-Nirenberg theorem on grand Lebesgue spaces with
variable exponents. For each 1 ≤ p <∞, the Banach space
BMOp (bounded mean oscillation [35]) is defined as

BMOp = f ∈ Lp : fk kBMOp
= sup

n≥1
En f − En−1 fj jp	 
�� ��1/p

L∞
<∞

� �
:

ð35Þ

It can be easily shown that the norm of BMOp is equiv-
alent to

fk kBMOp
= sup

τ∈T

∥f − f τ−1∥Lp
∥χ τ<∞f g∥Lp

, ð36Þ

where T consists of all stopping times relative to fFngn≥0.
It follows immediately from the John-Nirenberg theorem
[2, 30] that

BMOp = BMO1, 1 < p <∞: ð37Þ

What is more, in [2], there has

C · p fk kBMO1
≥ fk kBMOp

≥ fk kBMO1
: ð38Þ

Definition 7. For pð·Þ ∈P and θ ≥ 0, the generalized BMO
martingale space is defined by

BMOp ·ð Þ,θ = f ∈ Lp ·ð Þ,θ : ∥f ∥BMOp ·ð Þ,θ
<∞

n o
, ð39Þ

where

∥f ∥BMOp ·ð Þ,θ
= sup

τ∈T

∥f − f τ−1∥Lp ·ð Þ,θ

∥χ τ<∞f g∥Lp ·ð Þ,θ

: ð40Þ

Remark 8. If θ = 0, BMOpð·Þ,θ degenerates to the variable
exponent BMO martingale space BMOpð·Þ introduced and
studied in [12]. If θ = 1 and pð·Þ ≡ p, BMOpð·Þ,θ becomes
the grand BMO martingale space BMOpÞ studied in [26].

In order to establish the generalized John-Nirenberg the-
orem in the framework of BMOpð·Þ,θ, we need the following
lemmas and notations.

Lemma 9 (Hölder’s inequality, see [34]). Let pð·Þ, qð·Þ, rð·Þ
∈P satisfy

1
p ωð Þ +

1
q ωð Þ = 1

r ωð Þ , a:e:ω ∈Ω: ð41Þ

Then, there exists a constant C such that for all f ∈ Lpð·Þ
and g ∈ Lqð·Þ, we have f g ∈ Lrð·Þ and

∥f g∥Lr ·ð Þ
≤ C fk kLp ·ð Þ

∥g∥Lq ·ð Þ
: ð42Þ

We mention that if the variable exponent pðxÞ meets the
log-Hölder continuity condition in Euclidean spaces, the
inverse Hölder’s inequality holds for characteristic functions
in Lpð·ÞðℝnÞ (see [36]). Compared with Euclidean space ℝn,
the probability space ðΩ,ℙÞ has no natural metric structure.
Fortunately, Jiao et al. [11, 27] put forward the following
condition: there exists an absolute constant κ ≥ 1 depending
only on pð·Þ such that

ℙ Bð Þp− Bð Þ−p+ Bð Þ ≤ κ,∀B ∈
[
n≥0

A Fnð Þ: ð43Þ

Lemma 10 (see [27]). Suppose pð·Þ ∈P satisfying (43).

(1) For each B ∈
S

n≥0AðFnÞ, we get

ℙ Bð Þ ≈ ∥χB∥Lp ·ð Þ
∥χB∥Lp′ ·ð Þ : ð44Þ

(2) Let qð·Þ ∈P satisfy (43). If rð·Þ satisfies

1
r ωð Þ =

1
p ωð Þ + 1

q ωð Þ , a:e:ω ∈Ω, ð45Þ

then rð·Þ also satisfies condition (43). Moreover, for each B
∈
S

n≥0AðFnÞ, we deduce
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∥χB∥Lr ·ð Þ
≈ ∥χB∥Lp ·ð Þ

∥χB∥Lq ·ð Þ
: ð46Þ

Theorem 11. Suppose that pð·Þ ∈P satisfies (43) and θ ≥ 0.
Then, for every f ∈ BMO1, there has

fk kBMO1
≲ fk kBMOp ·ð Þ,θ

≲ fk kBMO1
: ð47Þ

Proof. If pð·Þ ∈P satisfies (43), then we clearly get that pð·Þ
− η also satisfies (43) for 0 < η < p− − 1. It follows from
Lemmas 9 and 10 that

∥f − f τ−1∥L1
χ τ<∞f g
��� ���

L1

≤
∥f − f τ−1∥Lp ·ð Þ−η

∥χ τ<∞f g∥L p ·ð Þ−ηð Þ ′

χ τ<∞f g
��� ���

L1

≈
∥f − f τ−1∥Lp ·ð Þ−η

χ τ<∞f g
��� ���

Lp ·ð Þ−η

,

ð48Þ

for any 0 < η < p− − 1. Here, the variable exponent ðpð·Þ − ηÞ′
is defined by

1
p ωð Þ − ηð Þ′

+ 1
p ωð Þ − η

= 1, a:e:ω ∈Ω: ð49Þ

This is equivalent to the following inequality:

∥f − f τ−1∥L1
χ τ<∞f g
��� ���

L1

· χ τ<∞f g
��� ���

Lp ·ð Þ−η
≲ ∥f − f τ−1∥Lp ·ð Þ−η

: ð50Þ

Hence, we have

∥f − f τ−1∥L1
χ τ<∞f g
��� ���

L1

=
sup

0<η<p−−1
ηθ/ p−−ηð Þ ∥f − f τ−1∥L1 / χ τ<∞f g

��� ���
L1

� �
· χ τ<∞f g
��� ���

Lp−η

sup
0<η<p−−1

ηθ/ p−−ηð Þ∥χ τ<∞f g∥Lp ·ð Þ−η

≲
sup

0<η<p−−1
ηθ/ p−−ηð Þ∥f − f τ−1∥Lp ·ð Þ−η

sup
0<η<p−−1

ηθ/ p−−ηð Þ∥χ τ<∞f g∥Lp ·ð Þ−η

=
∥f − f τ−1∥Lp ·ð Þ,θ

χ τ<∞f g
��� ���

Lp ·ð Þ,θ

:

ð51Þ

Taking the supremum over all stopping times, we deduce

∥f ∥BMO1
≤ ∥f ∥BMOp ·ð Þ,θ

: ð52Þ

Conversely, from the definition of Lpð·Þ,θ, we get

∥f − f τ−1∥Lp ·ð Þ,θ

χ τ<∞f g
��� ���

Lp ·ð Þ,θ

=
sup

0<η<p−−1
ηθ/ p−−ηð Þ∥f − f τ−1∥Lp ·ð Þ−η

sup
0<η<p−−1

ηθ/ p−−ηð Þ∥χ τ<∞f g∥Lp ·ð Þ−η

≤ sup
0<η<p−−1

ηθ/ p−−ηð Þ∥f − f τ−1∥Lp ·ð Þ−η

ηθ/ p−−ηð Þ∥χ τ<∞f g∥Lp ·ð Þ−η

( )

= sup
0<η<p−−1

∥f − f τ−1∥Lp ·ð Þ−η

∥χ τ<∞f g∥Lp ·ð Þ−η

( )
:

ð53Þ

It follows from Lemma 9 that

∥f − f τ−1∥Lp ·ð Þ−η

∥χ τ<∞f g∥Lp ·ð Þ−η

≤
∥f − f τ−1∥L2p+ ∥χ τ<∞f g∥Lq ·ð Þ

∥χ τ<∞f g∥Lp ·ð Þ−η

≈
∥f − f τ−1∥L2p+
∥χ τ<∞f g∥L2p+

,

ð54Þ

where qð·Þ satisfies
1

p ωð Þ − η
= 1
2p+

+ 1
q ωð Þ , a:e:ω ∈Ω: ð55Þ

Hence, by (38), we deduce that

∥f ∥BMOp ·ð Þ,θ
= sup

τ∈T

∥f − f τ−1∥Lp ·ð Þ,θ

χ τ<∞f g
��� ���

Lp ·ð Þ,θ

≲ sup
τ∈T

sup
0<η<p−−1

∥f − f τ−1∥L2p+
∥χ τ<∞f g∥L2p+

= sup
τ∈T

∥f − f τ−1∥L2p+
∥χ τ<∞f g∥L2p+

= ∥f ∥BMO2p+
≤ C · 2p+∥f ∥BMO1

:

ð56Þ

From what has been discussed above, we draw the con-
clusion that

∥f ∥BMO1
≲ ∥f ∥BMOp ·ð Þ,θ

≲ ∥f ∥BMO1
: ð57Þ

Theorem 11 improves the recent results [12, 26], respec-
tively. More precisely, if we consider the case θ = 0, then the
following result holds:

Corollary 12. If pð·Þ satisfies (43) with 1 < p− ≤ p+ <∞, then
for f ∈ BMO1,

fk kBMOp ·ð Þ
≈ fk kBMO1

: ð58Þ

And especially for θ = 1 and pð·Þ ≡ p, we get the conclu-
sion as follows.

Corollary 13 (see [26]). Suppose 1 < p <∞, then for f ∈
BMO1,

fk kBMOpÞ
≈ fk kBMO1

: ð59Þ
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