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In this paper, we consider the multiple-set split common fixed point problem in Hilbert spaces. We first study a couple of critical
properties of strictly pseudocontractive mappings and particularly the property under mix activity. By utilizing these properties,
we propose new iterative strategies for settling this problem as well as several connected issues. Under delicate conditions, we state
weak convergence of the proposed strategies that expands the current works from the case of two subsets to the instance of
multiple subsets. As an application, we give an exhibit of the theoretical results to the multiple-set split equality problem and
the elastic net regularization.

1. Introduction

Let t and s be the two positive integers, and H1 and H2 stand
for two Hilbert spaces. The well-known split feasibility prob-
lem (SFP) [1] is formulated as follows: find a point x ∈H1
satisfying the property

x ∈ C,
Ax ∈Q,

ð1Þ

where C and Q are nonempty closed convex subset of H1 and
H2, respectively, and A is a bounded linear mapping from H1
into H2. There are many generalizations of the SFP, one of
which is from two groups to multiple groups, that is,
multiple-set split feasibility problem (MSFP) [2]. Actually, it
can be formulated as the problem of finding x ∈H1 such that

x ∈
\t
i=1

Ci,

Ax ∈
\s
j=1

Qj,
ð2Þ

where A : H1 ⟶H2 is as above and fCigti=1 ⊂H1 and
fQjgsj=1 ⊂H2 are two classes of nonempty convex closed

subsets.
The split common fixed point problem (SCFP) [3] is

another generalization of the SFP, which requires to find
an element in a fixed point set such that its image under a
linear transformation belongs to another fixed point set.
Formally, it consists in finding x ∈H1 such that

x ∈ F Uð Þ,
Ax ∈ F Tð Þ,

ð3Þ

where A : H1 ⟶H2 is as above and FðUÞ and FðTÞ are,
respectively, the fixed point sets of nonlinear mappings U
: H1 ⟶H1 and T : H2 ⟶H2. Specially, if U and T are
both metric projections, then problem (3) is reduced to the
SFP. As a further extension of the SFP, we recall the
multiple-set split common fixed point problem (MSCFP).
Indeed, the MSCFP extends the SCFP from two groups to
the case of multiple groups. Formally, it consists in finding x
∈H1 such that
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x ∈
\t
i=1

F Uið Þ,

Ax ∈
\s
j=1

F T j

� �
,

ð4Þ

where A : H1 ⟶H2 is as above and FðUiÞ and FðT jÞ are,
respectively, the fixed point sets of nonlinear mappings Ui
: H1 ⟶H1, i = 1, 2,⋯, t and T j : H2 ⟶H2, j = 1, 2,⋯, s.
Recently, we [4] considered problem (4) whenever the
involved mappings are demicontractive. These issues have
been concentrated on broadly in different regions like image
reconstruction and signal processing [5–9].

There are many algorithms in the literature that can
solve the SCFP problem (see, e.g., [10–16]). However, in
most of these algorithms, the choice of the stepsize is related
to kAk: Thus, to implement these algorithms, one has to
compute (or at least estimate) the norm kAk, which is gen-
erally not easy in practice. A way avoiding this is to adopt
variable stepsize which ultimately has no relation with kAk
[11, 12, 17]. In this connection, Wang [18] recently pro-
posed the following method:

xn+1 = xn − τn I −Uð Þxn + A∗ I − Tð ÞAxn½ �, ð5Þ

where A∗ is the conjugate of A, I stands for the identity map-
ping, and fτng ⊂ ð0,∞Þ is chosen such that

〠
∞

n=0
τn =∞,

〠
∞

n=0
τ2n <∞:

ð6Þ

It is shown that if mappings U and T are firmly nonex-
pansive, then the sequence fxng generated by (5) converges
weakly to a solution of problem (3). It is clear that such a
choice of the stepsize does not rely on the norm kAk. Krai-
kaew and Saejung [16] weakened condition (6) as follows:

〠
∞

n=0
τn =∞,

lim
n⟶∞

τn = 0:
ð7Þ

Furthermore, we [19] extended the above results from
the class of firmly nonexpansive mappings to the class of
strictly pseudocontractive mappings.

Inspired by the above work, we will continue to present
and investigate strategies for addressing the MSCFP in Hil-
bert spaces. We initially explore a few properties of strictly
pseudocontractive mappings and track down its soundness
under arched combinatorial operation. Exploiting these
properties, we propose another iterative algorithm to
address the MSCFP, as well as the MSFP. Under gentle con-
ditions, we acquire weak convergence of the proposed algo-

rithm. Our outcomes broaden related work from the
instance of two groups to the case of multiple groups.

2. Preliminary

Throughout the paper, assume that H, H1, H2, and H3 are
real Hilbert spaces, and FðTÞ denotes its fixed point set of
a mapping T . For any α, β ∈ℝ and x, y ∈H, it is well known
that [20]

βx + αyk k2 = β β + αð Þ xk k2 + α β + αð Þ yk k2 − βα x − yk k2:
ð8Þ

Recall that the mapping T : H ⟶H is called nonex-
pansive if

x − yk k ≤ x − yk k,∀x, y ∈H: ð9Þ

It is called firmly nonexpansive if

Tx − Tyk k2 ≤ x − yk k2 − I − Tð Þx − I − Tð Þyk k2,∀x, y ∈H:

ð10Þ

It is called k-strictly pseudocontractive ðk < 1Þ if

Tx − Tyk k2 ≤ x − yk k2 + k I − Tð Þx − I − Tð Þyk k2,∀x, y ∈H:

ð11Þ

It is clear that the class of strictly pseudocontractive
mappings includes the class of nonexpansive mappings,
while the latter includes the class of firmly nonexpansive
mappings. Indeed, a firmly nonexpansive mapping is −1
-strictly pseudocontractive, while a nonexpansive mapping
is 0-strictly pseudocontractive. In general, these inclusion
are proper (cf. [20, 21]). The following properties of strictly
pseudocontractive mappings play an import role in the sub-
sequent analysis. It was shown [21] that if T : H ⟶H is k
-strictly pseudocontractive, then it follows that

Tx − z, I − Tð Þxh i ≥ 0,∀z ∈ F Tð Þ, x ∈H,
x − z, I − Tð Þxh i ≥ I − Tð Þxk k2,∀z ∈ F Tð Þ, x ∈H:

ð12Þ

Moreover, the fixed point set of T is convex and closed.
We now collect further properties of strictly pseudocontrac-
tive mappings.

Lemma 1. A mapping T : H ⟶H is k -strictly pseudocon-
tractive with k < 1 if and only if there is a nonexpansive map-
ping R such that

T = 1
1 − k

R −
k

1 − k
I: ð13Þ

Proof. “⇒” Assume T is k-strictly pseudocontractive. Let R
= kI + ð1 − kÞT . It is easy to verify that R fulfils (13). It
remains to show that R is nonexpansive. To this end, fix
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any x, z ∈H. It then follows from (8) and the property of
strictly pseudocontractive mappings that

Rx − Rzk k2 = kx + 1 − kð ÞTxð Þ − kz + 1 − kð ÞTzð Þk k2
= k x − zð Þ + 1 − kð Þ Tx − Tzð Þk k2
= k x − zk k2 + 1 − kð Þ Tx − Tzk k2

− k 1 − kð Þ I − Tð Þx − I − Tð Þzk k2
≤ k x − zk k2 + 1 − kð Þ x − zk k2�

+ k I − Tð Þx − I − Tð Þzk k2�
− k 1 − kð Þ I − Tð Þx − I − Tð Þzk k2

= x − zk k2:

ð14Þ

Hence, we have kRx − Rzk ≤ kx − zk; that is, R is
nonexpansive.

“⇐” Assume that there is a nonexpansive mapping R
such that (13) follows. Choose any x, z ∈H. It then follows
from (8) and the property of nonexpansive mappings that

Tx − Tzk k2 = Rx
1 − k

−
kx
1 − k

� �
−

Rz
1 − k

−
kz

1 − k

� �����
����
2

= 1
1 − k

Rx − Rzð Þ − k
1 − k

x − zð Þ
����

����
2

= 1
1 − k

Rx − Rzk k2 − k
1 − k

x − zk k2

+ k

1 − kð Þ2 I − Rð Þx − I − Rð Þzk k2

≤
1

1 − k
x − zk k2 − k

1 − k
x − zk k2

+ k

1 − kð Þ2 I − Rð Þx − I − Rð Þzk k2

� x − zk k2 + k I − Tð Þx − I − Tð Þzk k2:

ð15Þ

Hence, T is strictly pseudocontractive, and thus, the
proof is complete.

Remark 2. Note that a firmly nonexpansive mapping is −1
-strictly pseudocontractive. It is well known that a mapping
T is firmly nonexpansive if and only if there is a nonexpan-
sive mapping R such that T = ðI + RÞ/2: The following
lemma can be regarded as an extension of this assertion.

Lemma 3. Assume that Ti : H ⟶H is strictly pseudocon-
tractive for each i = 1, 2⋯ t. Let T =∑t

i=1wiTi, where 0 <wi

< 1,∑t
i=1wi = 1. If

Tt
i=1FðTiÞ is nonempty, then

F Tð Þ =
\t
i=1

F Tið Þ: ð16Þ

Proof. It suffices to show that FðTÞ ⊆Tt
i=1FðTiÞ: Fix z ∈Tt

i=1FðTiÞ and choose any x ∈ FðTÞ. By our hypothesis,
there exists ki < 1 such that

1 − ki
2 x − Tixk k2 ≤ x − Tix, x − zh i, ð17Þ

for every i = 1, 2⋯ t. Adding up these inqualities, we have

〠
t

i=1
wi 1 − kið Þ x − Tixk k2

≤ 2〠
t

i=1
wi x − Tix, x − zh i

= 2 x − 〠
t

i=1
wiTix, x − z

* +

= 2 x − Tx, x − zh i = 0:

ð18Þ

Thus, ∑t
i=1wið1 − kiÞkx − Tixk2 = 0: Since wið1 − kiÞ > 0,

we have kx − Tixk = 0 for all i = 1, 2⋯ t. Moreover, since x
is chosen arbitrarily, we get FðTÞ ⊆Tt

i=1FðTiÞ: Hence, the
proof is complete.

Lemma 4. For each i = 1, 2⋯ t, let 0 <wi < 1 and ∑t
i=1wi = 1,

and Ti : H ⟶H is strictly pseudocontractive with ki < 1:
Then, T =∑t

i=1wiTi is strictly pseudocontractive with

k = 1 −
1

∑t
i=1wi 1 − kið Þ−1 : ð19Þ

Proof. By our hypothesis, for each i = 1, 2⋯ , t, there exists a
nonexpansive mapping Ri such that Ti = ð1 − kiÞ−1Ri − ki
ð1 − kiÞ−1I. Now, let us define a mapping R as

R = 〠
t

i=1

1 − kð Þwi

1 − ki
Ri, ð20Þ

where k is defined as in (19). It is readily seen that

〠
t

i=1
wiTi = 〠

t

i=1

wi

1 − ki
Ri − 〠

t

i=1

wiki
1 − ki

I

= 1
1 − k

〠
t

i=1

1 − kð Þwi

1 − ki
Ri −

k
1 − k

I

= 1
1 − k

R −
k

1 − k
I:

ð21Þ

From Lemma 1, it remains to show that R is nonexpan-

sive. To this end, choose any x, z ∈H. By 1 − k =
ð∑t

i=1wið1 − kiÞ−1Þ
−1
, we have
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Rx − Rzk k = 1 − kð Þ 〠
t

i=1

wi

1 − ki
Rix − 〠

t

i=1

wi

1 − ki
Riz

�����
�����

= 〠
t

i=1

wi 1 − kið Þ−1
∑t

i=1wi 1 − kið Þ−1
Rix − Rizð Þ

�����
�����

≤ 〠
t

i=1

wi 1 − kið Þ−1
∑t

i=1wi 1 − kið Þ−1

≤ 〠
t

i=1

wi 1 − kið Þ−1
∑t

i=1wi 1 − kið Þ−1
x − zk k = x − zk k:

ð22Þ

Hence, R is nonexpansive, and thus, the proof is com-
plete.

3. The Case for Strictly
Pseudocontractive Mappings

First, let us recall a weak convergence theorem of iterative
method (5) for approximating a solution of the two-set split
common fixed point problem.

Theorem 5 ([19], Theorem 3.1). Let k, l ∈ ð−∞,1Þ. Assume
that U and T are, respectively, k - and l -strictly pseudocon-
tractive mappings, and ∑∞

n=1τnð�k − τnÞ =∞, 0 < τn < �k, where

�k = 1 − kð Þ 1 − lð Þ
1 − l + Ak k2 1 − kð Þ : ð23Þ

Then, the sequence fxng, generated by (5), converges
weakly to a solution of problem (3).

We next consider the MSCFP under the following basic
assumption.

(i) MSCFP is consistent; that is, it admits at least one
solution

(ii) Ui : H1 ⟶H1, i = 1, 2,⋯, t is ki-strictly pseudocon-
tractive with ki < 1

(iii) T j : H2 ⟶H2, j = 1, 2,⋯, s is l j-strictly pseudocon-
tractive with l j < 1

Algorithm 1. Let x0 be arbitrary. Given xn, update the next
iteration via

xn+1 = xn − τn 〠
t

i=1
αi I −Uið Þxn + 〠

s

j=1
βjA

∗ I − T j

� �
Axn

" #
,

ð24Þ

where fαigti=1 ⊂ ð0, 1Þ with ∑t
i=1αi = 1, fβjgsj=1 ⊂ ð0, 1Þ with

∑s
j=1βj = 1, and fτng ⊂ ð0,∞Þ are properly chosen stepsizes.

Theorem 6. Assume that conditions (A1)-(A3) hold and fτng
is chosen so that

〠
∞

n=1
τn

�k − τn
� �

=∞,0 < τn < �k, ð25Þ

where

�k = 1

∑t
i=1αi 1 − kið Þ−1 + Ak k2∑s

j=1βj 1 − l j
� �−1 : ð26Þ

Then, the sequence fxng, generated by Algorithm 1, con-
verges weakly to a solution of MSCFP.

Proof. Let U =∑t
i=1αiUi and T =∑s

j=1βjT j: By Lemma 4, we

conclude that U is k-strictly pseudocontractive with k = 1
− ð∑t

i=1αið1 − kiÞ−1Þ
−1
, and T is l-strictly pseudocontractive

with l = 1 − ð∑s
j=1βjð1 − l jÞ−1Þ

−1
: Hence, by formula (23),

we have

1 − kð Þ 1 − lð Þ
1 − l + Ak k2 1 − kð Þ

=
∑t

i=1αi 1 − kið Þ−1� �−1 ∑s
i=1βj 1 − l j

� �−1� �−1
∑s

j=1βj 1 − l j
� �−1� �−1

+ Ak k2∑t
i=1αi 1 − kið Þ−1

� �−1

= 1
∑t

i=1αi 1 − kið Þ−1 + Ak k2∑s
j=1βj 1 − l j

� �−1 :
ð27Þ

Moreover, by Lemma 3, FðUÞ =Tt
i=1FðUiÞ and FðTÞ =Ts

j=1FðT jÞ. Therefore, by applying Theorem 5, we at once

get the assertion as desired.
It seems that the choice of the stepsize above requires the

prior information of ki, l j and the norm kAk. However, as
shown below, there is a special case in which the selection
of stepsizes ultimately has no relation with ki, l j and the
norm kAk.

Corollary 7. Assume that conditions (A1)-(A3) hold, and the
stepsize is chosen so that

lim
n⟶∞

τn = 0,

〠
∞

n=1
τn =∞:

ð28Þ

Then, the sequence fxng generated by Algorithm 1 con-
verges weakly to a solution of MSFP.

Significantly, if the nonlinear mappings in (4) are all met-
ric projections, then the MSCFP is reduced to the MSFP. Con-
sequently, we can apply our outcome to solve the MSFP. As an
application of Algorithm 1, we get the following algorithm for
solving problem (2).
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Algorithm 2. Let x0 be arbitrary. Given xn, update the next
iteration via

xn+1 = xn − τn 〠
t

i=1
αi I − PCi

� �
xn + 〠

s

j=1
βjA

∗ I − PQj

� �
Axn

" #
,

ð29Þ

where fαigti=1 ⊂ ð0, 1Þ with ∑t
i=1αi = 1, fβjgsj=1 ⊂ ð0, 1Þ with

∑s
j=1βj = 1, and fτng ⊂ ð0,∞Þ are properly chosen stepsize.

Corollary 8. Assume that MSFP is consistent. If the stepsize is
chosen so that

〠
∞

n=1
τn

2

1 + Ak k2 − τn

� �
=∞, τn <

2

1 + Ak k2 , ð30Þ

then the sequence fxng, generated by Algorithm 2, converges
weakly to a solution of MSFP.

Proof. Let U =∑t
i=1αiPCi

and T =∑s
j=1βjPQj

: By Lemma 4,

we conclude that U and T are both −1-strictly pseudocon-
tractive, that is, firmly nonexpansive. In this situation, we
have �k = 2/ð1 + kAk2Þ: By applying Theorem 6, we at once
get the assertion as desired.

Corollary 9. Assume MSFP is consistent. If the stepsize is cho-
sen so that

〠
∞

n=1
τn =∞,

lim
n⟶∞

τn = 0,
ð31Þ

then the sequence fxng, generated by Algorithm 2, converges
weakly to a solution of MSFP.

4. Applications

In this part, we first give an application of our theoretical
results to the multiple-set split equality problem (MSEP),
which is more general than the original split equality prob-
lem [22].

Example 1. The multiple-set split equality problem (MSEP)
expects to find ðx1, x2Þ ∈H1 ×H2 such that

x1, x2ð Þ ∈
\t
i=1

F Uið Þ ×
\s
j=1

F T j

� �
, A1x1 = A2x2, ð32Þ

where t and s are two positive integers, A1 : H1 ⟶H3
and A2 : H2 ⟶H3 are two bounded linear mappings,
and Ui : H1 ⟶H1, i = 1, 2,⋯, t and T j : H2 ⟶H2, j = 1,
2,⋯, s are two classes of nonlinear mappings.

We next consider the MSFP under the following basic
assumption.

(i) MSEP is consistent; that is, it admits at least one
solution

(ii) Ui : H1 ⟶H1, i = 1, 2,⋯, t is ki-strictly pseudo-
contractive with ki < 1

(iii) T j : H2 ⟶H2, j = 1, 2,⋯, s is l j-strictly pseudo-
contractive with l j < 1

Under this situation, we propose a new method for solv-
ing problem (32).

Algorithm 3. For an arbitrary initial guess ðx0, y0Þ, define
ðxn, ynÞ recursively by

xn+1 = xn − τn I − 〠
t

i=1
αiUi

 !
xn + A∗

1 A1xn − A2ynð Þ
" #

,

yn+1 = yn − τn I − 〠
s

j=1
βjT j

 !
yn − A∗

2 A1xn − A2ynð Þ
" #

,

8>>>>><
>>>>>:

ð33Þ

where fτng ⊂ ð0,∞Þ is a sequence of positive numbers.
To proceed the convergence analysis, we consider the

product space H ≔H1 ×H2, in which the inner product
and the norm are, respectively, defined by

x, yh i = x1, y1h i + x2, y2h i,
xk k2 = x1k k2 + x2k k2� �1/2, ð34Þ

where x = ðx1, x2Þ, y = ðy1, y2Þ with x1, y1 ∈H1, x2, y2 ∈
H2: Define a linear mapping A : H⟶H3 by

Ax = A1x1 − A2x2,∀x = x1, x2ð Þ: ð35Þ

Let T be the the metric projection onto the set f0g ⊆H,
and define a nonlinear mapping U : H⟶H as

U xð Þ = 〠
t

i=1
αiUix1, 〠

s

j=1
βjT jx2

 !
,∀x = x1, x2ð Þ, ð36Þ

where αi and βj are as above.

Lemma 10 ([23], Lemma 12). Let the mapping A be defined
as in (35). Then A is linear bounded. Moreover, for x = ðx1,
x2Þ, it follows

A∗Ax = A∗
1 A1x1 − A2x2ð Þ,−A∗

2 A1x1 − A2x2ð Þð Þ: ð37Þ

Lemma 11. Let the mapping U be defined as in (36). Then,
FðUÞ =TiFðUiÞ ×

T
jFðT jÞ. Moreover, if conditions (B1)-

(B3) are met, then U is k-strictly pseudocontractive with

κ = 1 −
1

max ∑t
i=1αi 1 − kið Þ−1,∑s

j=1βj 1 − l j
� �−1� � : ð38Þ
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Proof. By Lemma 3, it is easy to verify the first assertion. To
show the second assertion, fix any x, y ∈H: By our hypothe-
sis, ∑t

i=1αiUi is k-strictly pseudocontractive with

k = 1 − 1
∑t

i=1αi 1 − kið Þ−1 , ð39Þ

∑s
j=1βjT j is l-strictly pseudocontractive with

l = 1 − 1
∑s

j=1βj 1 − l j
� �−1 : ð40Þ

It then follows that

Ux −Uyk k2

= 〠
t

i=1
αiUix1 − 〠

t

i=1
αiUiy1

�����
�����
2

+ 〠
s

j=1
βjT jx2 − 〠

s

j=1
βjT jy2

�����
�����
2

≤ x1 − y1k k2 + k I − 〠
t

i=1
αiUi

 !
x1 − I − 〠

t

i=1
αiUi

 !
y1

�����
�����
2

+ x2 − y2k k2 + l I − 〠
s

j=1
βjT j

 !
x1 − I − 〠

s

j=1
βjT j

 !
y1

�����
�����
2

≤ x − yk k2 + max k, lð Þ I −Uð Þx − I −Uð Þyk k2:
ð41Þ

From (38), we obtain the result as desired.

Theorem 12. Assume that conditions (B1)-(B3) hold. If fτng
is chosen so that ∑∞

n=1τnð�κ − τnÞ =∞, 0 < τn < �κ, where

�κ = 2 1 − κð Þ
2 + 1 − κð Þ A1k k2 + A2k k2� � , ð42Þ

with κ defined as in (38), then the sequence fðxn, ynÞg gener-
ated by Algorithm 3 converges weakly to a solution of problem
(32).

Proof. Let zn = ðxn, ynÞ and let A,U , T be defined as above.
Thus, problem (32) is equivalently changed into finding z
∈H such that

z ∈ F Uð Þ,
Az ∈ F Tð Þ:

ð43Þ

Moreover, Algorithm 3 can be rewritten as

zn+1 = zn − τn I −Uð Þzn + A∗ I − Tð ÞAzn½ �: ð44Þ

Note that by Lemma 10, U is κ-strictly pseudocontrac-
tive and T is −1-strictly pseudocontractive. Hence, by Theo-
rem 5, we conclude that fzng converges weakly to some
z = ðx, yÞ such that

z ∈ F Uð Þ,
Az ∈ 0f g:

ð45Þ

By Lemma 11, it is readily seen that x ∈
T

iFðUiÞ, y ∈T
jFðT jÞ and A1x = A2y.

We next give an application of our theoretical results to a
problem derived from the real world. In statistics andmachine
learning, least absolute shrinkage and selection operator
(LASSO for short) is a regression analysis method that per-
forms both variable selection and regularization in order to
enhance the prediction accuracy and interpretability of the
statistical model it produces. It was originally introduced by
Tibshirani in [24] who coined out the term and provided fur-
ther insights into the observed performance.

Subsequently, a number of LASSO variants have been
created in order to remedy certain limitations of the original
technique and to make the method more useful for particu-
lar problems. Among them, elastic net regularization adds
an additional ridge regression-like penalty which improves
performance when the number of predictors is larger than
the sample size, allows the method to select strongly corre-
lated variables together, and improves overall prediction
accuracy. More specifically, the LASSO is a regularized
regression method with the L1 penalty, while the elastic net
is a regularized regression method that linearly combines
the L1 and L2 penalties of the LASSO and ridge methods.
Here, the L1 penalty is defined as kxk1 =∑n

i=1jxij, and the

L2 penalty is defined as kxk2 = ð∑n
i=1jxij2Þ

1/2
.

Example 2 (see [25]). The elastic net requires to solve the
problem

min
x∈ℝn

1
2 Ax − y1k k22 + Ax − y2k k22
� �
s:t: xk k1 ≤ t1, xk k22 ≤ t2,

ð46Þ

where A ∈ℝm×n, y1, y2 ∈ℝm, and t1, t2 > 0 are given param-
eters. This problem is a specific SCFP with T1x = y1, T2x =
y2, ∀x ∈ℝm and

U1y =
y, yk k1 ≤ t1,

y −
yk k1 − t1
η yð Þk k2 , yk k1 > t1,

0
B@ ð47Þ

where ηðyÞ ∈ ∂ðkyk1Þ and

U2y =
y, yk k22 ≤ t2,

y −
yk k22 − t2
4 yk k2 , yk k22 > t2:

0
B@ ð48Þ
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Algorithm 4. Let x0 be arbitrary. Given xn, update the next
iteration via

xn+1 = xn − τ〠
2

i=1
αi I −Uið Þxn + A∗ Axn − yið Þ½ �, ð49Þ

where fαig2i=1 ⊂ ð0, 1Þ with ∑t
i=1αi = 1 and τ is a properly

chosen stepsize.

It is clear that the above mappings are, respectively,
firmly nonexpansive and firmly quasi-nonexpansive, which
implies that they are, respectively, −1-strictly pseudocon-
tractive and −1-demicontractive mappings. As an applica-
tion of Theorem 6, we can deduce that the sequence fxng
generated by Algorithm 4 converges to a solution to problem
(46) provided that the stepsize is chosen so that

0 < τ < 2
1 + Ak k2 : ð50Þ
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