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The main objective of this article is to establish generalized fractional Hermite-Hadamard and related type integral inequalities for
h-Godunova-Levin convexity and h-Godunova-Levin preinvexity with extended Wright generalized Bessel function acting as
kernel. Moreover, Hermite-Hadamard-type and trapezoid-type inequalities for several known convexities including God-
unova-Levin function, classical convex, s-Godunova-Levin function, P-function, and s-convex function are deduced as cor-
ollaries. These obtained results are analyzed in the form of generalization of fractional inequalities.

1. Introduction

The convexity, preinvexity, and their generalizations have
been widely discussed by researchers due to its immense uses
in different fields [1-11].

Many inequalities have been extensively analyzed and
reported in research fields as a result of convexity and its
generalizations in engineering and sciences [12-25]. Among
them, a highly worked inequality is Hermite-Hadamard
inequality is defined as

X+y 1 (7 O(x)+0(y)

for convex function [26-29]; ®: ] — R, x, y € JCR, x< y,
J<R which is playing a significant role in immense appli-
cations of inequalities and is widely used by researchers
[30,31].

In recent years, the concept of convexity has been ex-
tended to s-Godunova-Levin type of convexity by Dragomir
[32]. Moreover, s-Godunova-Levin-type convexity has been

studied in [33]. The h-convexity was introduced by Varo-
sanec in [34]. Ohud Almutari introduced h-God-
unova-Levin convexity and h-Godunova-Levin preinvexity
[35] by combining the concepts of Dragomir and Varosanec.
In this study, we have considered h-Godunova-Levin
convex and h-Godunova-Levin preinvex function to obtain
generalized fractional version of Hermite-Hadamard-type
inequality and trapezoid-type inequalities related to Her-
mite-Hadamard inequality.

Definition 1 (see [27, 36]). A function ®: ] — R is called
convex if the following inequality holds:

O[ou+(1-6)v]<dO(u) +(1-6)0(v), (2)
for 6 € [0,1], Vu,ve ]
Definition 2 (see [4]). An invex set JCR, with respect to a

real bifunction ®: J xJ] — R, is defined for u,ve ],
A € [0,1] as follows:
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v+ A0 (u,v) € J. (3)

Definition 3 (see [4]). The preinvex function ®: ] — R is
defined for x, y € J and A € [0, 1] as follows:

O(y+A{(x,¥)<AO(x) + (1 -1)O(y), (4)

where ] is an invex set with respect to (.

Definition 4 (see [37]). A positive valued function
®: JCR — R is said to be a Godunova-Levin if
0 (u) N 0 (v)

5 1-8

Ou+(1-06v)< (5)

forall u,veJ, § € (0,1)

Definition 5 (see [35]). Suppose h: (0,1) — R. A non-
negative function ®: ] — R is said to be h-God-
unova-Levin, for all u,v € J and & € (0, 1), if
O (u) N o (v)

h(8) h(1-96)

O0u+(1-96)v)< (6)

Definition 6 (see [35]). A function ®: ] — R is said to be
h-Godunova-Levin preinvex with respect to { if, for all
u,ve], ¢e(0,1),

O (u)
h(1-¢)

()
h(¢)

O(u+¢l(v,u) <

+

(7)

holds.

Definition 7 (see [38]). Pochammer’s symbol is defined for
6 €N as

1, for§ =0,y+#0,
(Y)a = ,
ply+1)--(p+6-1), foré>1,
r é
(y)s = (ry(;) ) (®)
r 1)
(Y)m(? = (yr—('—yr)n))

for y € C and m >0, where I being the gamma function.

Definition 8 (see [38]). The integral representation of the
gamma function is defined as

I'(8) = j:o e 7dz, 9)

for R (t) > 0.

Definition 9 (see [39-41]). The classical beta function is
defined for R (m) >0 and N (n) >0 as
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1
B(m,n) = J 8" (1 - 8" 1ds
0

(10)
_I(m)I'(n)

T T(m+n)

Definition 10 (see [42-44]). Extended beta functions are
defined for R (m) >0, R (n) >0, and R (p) >0 as follows:

! -
B, (m,n) = JO 212! exp<

z(l—z))dz' (11)

Definition 11 (see [45]). Ali et al. defined and investigated
the generalized Bessel-Maitland function (eight parameters)
with a new fractional integral operator and discussed its
properties and relations with Mittag-Leffler functions. The
function of generalized Bessel-Maitland is as follows:

& (0)s,(9),,(-y)"
]w669 (y) = ( ép P ,
pEmao Y I)Z::')r((/)p + Y +1)(0),,

(12)

where ¢,9,6,5,9€¢C, R($)>0, R(v)= -1, R(0)>0,
R >0, R(I)>0,&m,0=0, and m,E>R(¢) + 0.

Definition 12 (see [46]). The extended generalized Bes-
sel-Maitland function is defined for u,v,1,p,y,c €C,
RW)>0, R(»=-1, R(y>0, R(p)>0, R(y)>0,
&,m,0>0, and m, &> R (y) + o as follows:

wEmac _ - ﬂp (7’ + 5”: c— ’7) (C)fn (V),m Y
Py (49) = ,;)/5(11,6 ST+ D@

(13)

Generalized fractional integral operators are widely
discussed, and many researchers have contributed to the
field [47, 48]. Ali et al. defined a new generalized fractional
operator as follows.

Definition 13 (see [46]). The generalized fractional integral
operators, with extended generalized Bessel-Maitland
function as kernel, are defined, for u,v,1,p,y,c€C,
R >0, R(v)=-1, R(yn)>0, R(p)>0, R(y)>0,
&,m,0>0, and m, &> R (u) + o, as follows:

Em.o, [ Emio, )
(=i s)en = [ G oot e,

(14)

q
(Zhimee £) (x,7) = J (t = x) T (w (= x)' 7) f (DL,

X

(15)

In the paper, we obtain Hermite-Hadamard- and
trapezoid-type inequalities using the generalized fractional
integral operator with extended generalized Bessel-Maitland
function as its nonsingular kernel.

The structure of the paper is as follows.
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In Section 2, we present Hermite-Hadamard inequalities
for h-Godunova-Levin convex function using the general-
ized fractional operator. Section 3 is devoted to trapezoid-
type inequalities related to Hermite-Hadamard inequality
for h-Godunova-Levin preinvex function using the gener-
alized fractional operator.

In our work, we have frequently used the given
notations:

U’ _ [ gubmoc

() (@0) =(T5me 0 (v p) (16)
v _ wEm,o,c

(87,)(@,0) = <sv,,n)p,y;v_ @) (u, p). (17)

2. Hermite—-Hadamard Inequalities via
h-Godunova-Levin Convex Function

In this section, we establish Hermite-Hadamard inequalities
for h-Godunova-Levin convex function using the general-
ized fractional operator as follows.

Theorem 1. Let ©: [u,v] — R be a h-Godunova-Levin
convex function, where 0<u<v and © € L [u,v] with
h: (0,1) — R is a positive function and h () # 0; then, for
the generalized fractional integral defined in (33), we have

h(172) _(u+v\/ oy , L , it ,
2 ®( 2 )(‘suw’) (w > 1) SE [(‘Su,v/) (w ’®) +(‘Sv,v’) (w ’®)]
®(u)+®(v) 1 1 Emyoc
8" 3 &; p)dé, 18
2 J[h(8)+h(1—8)] Sy (905P) (18)
;W
S v-w”
Proof. By the h-Godunova-Levin convexity of @ on the  leads to
interval [u,v], let x, y € [u,v], and we have Uty
1- 1-
OUx+(1-8y)< @(x) °w (19) ®< 2 ><h(1/2) O amreizaus ool
“h® Th(-8 (22)
where if we take Multiplying both sides by 5" 34 Eﬂm';c (wd"; p) and in-
x=8u+(1-8v,y=(1-8u+dy (20)  tegrating the resulting inequality on [0, 1] with respect to J,
we have
1
_1 21
§ > (21)

Sy

®<u+v>J s Cw,llfmaC(w&u p)do

2

h(1/2) S py

8 GO (08", p)O (S + (1 — O)v)dd

I s 5 Enrxc (w08 p)O((1 - O)u + 6v)d6]

By (n+én,c

- 17) (C)fn (y)an

o(3)2

& Bp(n+iénc

S B = (un+v' +1)(p),n

-n) (c)gn (P)on

1 U
(—w)" J PRGED
0

(—w)"

_h(1/2) Zﬁ(q,

=L (pn+v' +1)(p)m

1 , 1 ’
x“ 8@ (Su + (1 —6)v)d6+J 8 e (1 —6)u+6v)d8].
0 0
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Solving the integrals involved in inequality (23), we

obtain
h(172) _(u+v\, o\ ,
T2 0(* 1) (80, (@ 1) <5 [(81) (@:0) +(S),) (') (24)
For the second part of inequality, again using h-God- Addition of these inequalities gives
unova-Levin convexity of ®, we have
Ow) O
®(8u+(1_8))_h(8)+h(1 5 (25)
O (u) Q(v)
O((1=0u+d)<ya=5+ 375y (26)
1
OWWu+(1-O+0((1-0u+dv)< (O(u) + ®(V))[h(6) A 6)]’ (27)

Multiplying both sides by 8" 34 Eﬂ”;;')c(w(sy p) and in-

tegrating the resulting inequality on [0, 1] with respect to 6,
we obtain

1 !
J 8" FHEM (w8t p)© (du + (1 - 8)¥)dd + j 0 Fi e (wd; p)O((1 - B)u+ 6v)dd
00 Sve,

S ey
(28)
vaﬂfmof .
<(®(u)+®(v))J [h((S) h(1—a) 4 (bt p)do.
Solving the integrals involved leads to
1 ~ut I, ®(u +®(V) ! 1 1 v athm,o.c .
S [(85) (@' 0)+(5),) (v 0)] < Jo[h(8)+h(l—6)]6 S (' p)ds. (29)

Combining (24) and (29), we reach to inequality. [ Corollary 1. Choosing h(8) = & in Theorem 1, we obtain
Hermite-Hadamard-type inequality for s-Godunova-Levin

function:

2’ (u+V>( )@ 1)<s [( /) (@,0) +(3),) (¢, ©)]

2
(30)

®(u)+®(v) 1 v esthEm,o.c
2 J [ (1—6) ]8 Pvlwy (3" p)dd.
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Corollary 2. Choosing h(8) =1 in Theorem 1, we obtain
Hermite-Hadamard-type inequality for p function:

10(*5)(800) @ ) <5 [(80,) (@) (31 (@ ©)

< (Ow) +0()(Sh,) (@', 1).

(31)

Corollary 3. Choosing h(8) = 1/6 in Theorem 1, we obtain
Hermite-Hadamard-type inequality for convex function:

i®<u;1}>(‘s ) (' 1)<1 (s,

/) (@) +(Sy

5
y ! g ! i’ !
@(M-ZF V)(SW )(“’ , I)SE (\sw/)(w ,0) +(‘5v,v’)(w ,@)]
SW(SZL’)(W’, 1).
(32)

Corollary 4. Choosing h(8) = in Theorem 1, we obtain
Hermite-Hadamard-type inequality for Godunova-Levin
function:

)@, 0)]

Corollary 5. Choosing h(8) = 1/6° in Theorem 1, we obtain
Hermite-Hadamard-type inequality for s-convex function:

> to(* ) (s,) (@) <[

O(u)+O(v) ([ 9
u)+ v s thEm,oc
= 2 Jo[l 6:| I:npy (wd"; p)do.
S, ) (0, 0) +(Shy ) (o, 0)]
(34)

S®(u)+®(v)

2

3. Trapezoid-Type Inequalities Related to
Hermite-Hadamard Inequalities for
h-Godunova—Levin Preinvex Function

In this section, Wright generalized that the Bessel function is
restricted to a real valued function. The trapezoid-type in-
equalities related to Hermite-Hadamard inequalities using
fractional integral with Wright generalized Bessel function
in its kernel can be obtained with the help of the following
lemma.

Lemma 1. Consider a function ©:] = [u,u+{(v,u)]
— R with u,v € R; let © € L, [u,u + {(v,u)] be a differ-
entiable function, where | = [u,u + { (v, u)] is taken to be an
open invex set with respect to (: ] x ] — R with { (v,u) >0,
for u,v € J; then, for the generalized fractional integral de-
fined in (33), we have

@(u)+®(u+((v,u)) w.&,m,o,c 1
G4mO (05 p) =
2 vaipsy p 2 (v,u)"

(St @ @) +(3057 ) ) (' 0)

_{nu) L
2

(35)

1 U
J 65+ (1 - 88" S5 (wé; p)ds.
0 vpy

where T=[8" S, 1,p, Y57 (w(8)"; P)O' (u + 60 (v, 1))

as + Io_(l -90)" M:E,;Z;C (w(1=0)"; p)®" (u + 8¢ (v, u))

dsé, o' = (w/C(v,u)").
Proof. Consider
1 !
I= J & 3"?5""’0’6 (0(8)"; p)®' (1 + 8 (v,u))d$
o vanpy

Jl—(l 6)V°”Em”(w(1—6)" Pp)® (u+ 8¢ (v,u))dd

Sy
(36)
Let
I=1+1, (37)
First, we consider I;:
& (11+EH,C—I1)(C)H( )(m n
L=y el ()
w0 Bl e =T (un+ v+ 1) (P)yuy
(38)

1 /
: j 8" (14 + 0 (v, 1))do.
0

Integrating by parts, we have



) ﬁp (n+&n,c—m) (e (V)on

I =
' Zﬁ(w— T (un+v' + 1) (P,

n=0

(_w)n l:(sv’ +un
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O (u + 8¢ (v, )"
C(v,u) 0

’ 1,
Y “‘”J a“”“@(mac(v,u))da],

{(vu)

S By(n+iénc

- ’7) (C)En (V)on

I, =
' Zﬁ(ﬂ’c_ﬂ)r([’ln-"vl-’_l)(f))mn

n=0

(—w)" (39)

x [G(ﬁfﬁg’ “) Z (:i‘g J; 8”10 (u+ 6 (v, u))da],
1= P (B )
Continuing in the same manner, we obtain
= FO B @)= e (W) (6,0),
_ 0@+ ?((;t;)((% u))ﬁ,: f”n;:c(  p) - w L))v'u (40)
() 0 0) (g ) @ 0)]

Multiplying by {(v,u)/2, we get the required result.
By Lemma 1, we present the following theorem.

Theorem 2. Consider a function ©: ] = [u,u+ ((v,u)]
— (0,00) with ] € R, and let it be a differentiable function

®(u) + ®(u + ((V:u))o,p,fmac
2 V’?P}’

x I:(SZ:((v,u),v'—l) (w” ®) +(

<L o' o] sfe’ ) [, S

6V’+‘M7l _ (1 _ 6)V’+‘M}’l

T

dé.

(w; p) -

on J. Also, suppose that |®'| is a h-Godunova-Levin preinvex
function on J; then, for the generalized fractional integral
defined in (33) with the restricted Wright generalized Bessel
function to a real valued function, we have

L
20 (v, u)V,

L) (@, 0)]

(41)
(77 + Ens 7’]) (C)En (Y)on (_w)n

BT (un+v' +1)(p)
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Proof
1© (1) + © (u+ (v, 1) s ptmac !
g (w; p) - ,
| 2 vy P 20 (v,u)"

(S ) @0 + (S ) a0)

ZIC(v,u)I
2

8 — (1= 8)" " |@" (u + 8¢ (v, u))[dd

{nu) i By (1 + &n,c = 1) () (V)
T2 SlBte-mT(un+ v +1)(p),,

1
' j
0

C(V, U) o Z By (n+&n,c = 1) (e (1) on
s1B (e =T (un+v' +1)(p),.n

1
<,
<{(V u) §| ﬁp(n + fl’l,C - ’1) (C)En (y)an
B 2 n:olﬁ(ﬂ>c - ”I)F(V” + V’ + 1) (p)mn

1
x[|®' ()| JO
C(v,u) P3| By (n+8n,c = 1) (g, (1)
(jertof +1er (v)i)JO,;)|/5(n,c—n)F(un+V’ 1) (P

(42)

0w 0w

ORI

6v’+pm _ (1 _ 8)VI+[/WI

81/ +un ( _ 6)1/ +un

1
h(1-9) d‘s]

81/,4-[1}1 _ (1 _ 6)1/+‘un

‘dé ‘e’ (v)lj

h(6)

v +un ( 1- 8) v +un
h(d) |

dé.

Corollary 6. Taking ((v,u) = v —u in Theorem 2, we obtain
the following inequality:

®(u)+®(V)o.yfmoc 1
PP -

x[(812) (@ 0) +(S1y) (¢ 0)]]

v—u , , I ﬁp(ﬂ"'&’lc ﬂ)(c)fn(y)tm EPRY
<— (lo'w) +le WDI Z|/3(,7,C_;7)r (un+v' +1)(p)mn( “

(43)

0

y 8v'+/m _ (1 _ a)v’ﬂm
| @

dé.

Theorem 3. Suppose that ©: ] = [u,u+{(v,u)] — on J with p>1 and q= p/(p —1); then, for the generalized
(0,00) with ] € R, and let it be a differentiable function on J.  fractional integral defined in (33) with the restricted Wright
Also, suppose that |®' |1 is a h-Godunova-Levin preinvex function ~ generalized Bessel function to a real valued function, we have
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I@ (W) +0 (2u +{(v, u)),,;;s;;,z,c (@ p)——
i 20(v,u)”

(S ) @0+ (S ) @ 0)|

(44)
L8 1o ol +fe! )
VI et t Yo\
Vv aphEm,oc . _ v sEm,o,c Y2 L
(J-o 03 Py (@3 p)=(1-0"F S ey (-9 p)' d8> <Joh(5)d6) '
Proof. Using Lemma 1, we have
|® (M) +0 (I/I + ((V) u))o,y,f,m,a,c (w. ) _ 1
| 2 Vapy (@3P v
20 (v, u)
X[(SZ:«v,u),v’—l)(w 0) +(S )(‘”l’®)H
(45)
:‘((v, u)
2
AL Il 8 GO (9ot p) — (1 - 8)” T (w (1 - O )||® (u + 8¢ (v, u))|do.
- 2 viipy ’ Synpy p ’
Using Hoélder’s integral inequality, we have
1/p
v u 4 ,M,0,C v »M,0,C
s%(] 8 B (w8 p) — (1) T4 (w(1 - 0 ) d8)
1 e (46)
<j @' (u+6((v,u))|qd8) ,
0
where (1/p) + (1/q) = 1. Now, since |®'|? is an h-Godunova-Levin preinvex, we
obtain
! e wl" o’
l q l
JO 10 (u + 8L (v, u))|'dd < IO( T |
(47)

<(|©’ ()| +|0' (v)|q)J mda

Using (47) in (46) leads to the result. O
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Theorem 4. With the assumptions of Theorem 3, we get the
following  inequality — related to  Hermite-Hadamard

inequality:
|®(u)+®(u+((v,u)) /AEmoc 1 ut ! u+((vu
3 (w 7P)_77[Su+ vay'—1) (@5 0) + uy' - w ®]
| 2 vnpy ZC(V,M)V ( {(vu), 1)( ) ( X )( )
’ 1 (1/q)
C(Vﬂfl) o, Em,0,0 vo' LEm,o,c 1\
< 21/q (|®( )|q+|® (V)l) C+1r/py<w p) < ) 5+117py w(i) ’p (48)
1/
[0 B (w0 p) - (1= 8 B (w1 - 0 p)| T
S ey vy as| .
0 h(é)
where V', u € R*, Proof. From Lemma 1, we have

|®(u) +0(u+ ((V’u))o,yfmac

| 2 v JP5Y ( ap)
1 ~ut ~(u ( v,u)) ! ((V, u)
(S a0 (5 ) w0 |
’ (49)
1
S((‘;u) JO VS[:EJZ;‘/C(‘U&M P) (1- 8)1/ cvyfmUC(w(l_(S)y )|
|®' (u+ 8¢ (v, u))|d6.
Applying power-mean inequality, we obtain
|®(u) +0O(u+ ((V’ u))o.y,&m,o,c .
| > By oy (@3P)
1 u i u+¢(vu))” !
T TRERCEp IR
((V;M) ! v et m,o.c . v o,yfmac u. =) (50)
S, jo 8 BT (w0 p) (1= 8 0 (w(1 - ' p)|dd

()

x|©' (u + 8¢ (v,u))|"dd) ™.

8" B (w0 p) - (1= 8) L (w(1 - 0 p)|

. ! . . . .
Since |@'|? is an h-Godunova-Levin preinvex, we obtain
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}

vy

1

v apEm,oc u“. 18 tbmoc
8 G (Wb p) (1 - 8)” G

(SV, S/A,f,m,o,c ((U(S‘u; p) —(1- 6)1/3.
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(0 (1= 8 p)||® (u + 8¢ (v,w)['dd

[Lf,m,a,c (a)(l _ 5)‘u7 P)|I
|

vy vVimpy INT!
®
=1 1(3) (w)
V, ,6,M,0,C 1/, o4 ,m,o,C (51)
g Sl:’iv,p,y (@3 p)-(1-9) ‘s!:’i/,;w (w1 _6)M;p)|I@r 71456
" h(1-0) &' )]
8" GHEMOE (s p) — (1 - 8)” FHE™T (@ (1 - 8) p)’
—(10' (Wl +10' (|1 J vpy vy .
(lo"al +lo'ml") | o)
Now, consider
! v ettt m,oc Vi v b m,onc U
| Jo st @sts p) - (1= 9 S (w1 - 0 p)
N C Cen\Y)on n ! v +un v +un
-3 By (n+3 11)(,)5 ) a) J 57 _ (1 — 5yl d
ZIB(c =T (un+v' +1)(p),,,, 0
2| B, (n+&n,c—n) (g (Pon "
=Y |t — (-w) (52)
B e =T (un+ v + 1) (p),n
1/2 , , 1 ' /
X|:J- <(1_8)v+yn_5v+[m>d6+J- ((Svﬂm_(l_a)vﬂm)]
0 1/2
[ tmoc (1Y cubmo 1)" .
O

4. Conclusion

In the present paper, the advanced approach of the gen-
eralized fractional version of Hermite-Hadamard-type and
trapezoid-type integral inequalities for a recently introduced
function, h-Godunova-Levin convex, and h-God-
unova-Levin preinvex have been established by using
fractional integral operator with Wright generalized Bessel
function as its kernel. Convexities and its different forms
have remarkable uses in many fields and is extensively
worked by researchers. Since h-Godunova-Levin convex
function is generalization of several known convexities, so
the results have been also deduced for them in the form of
corollaries.
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