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This paper investigates the global stabilizing effects of the geometry of the domain at which the flow locates and of the geometric
structure of the solution to the incompressible flows by studying the three-dimensional (3D) incompressible, viscosity, and
diffusivity Boussinesq system in spherical coordinates. We establish the global existence and uniqueness of the smooth solution
to the Cauchy problem for a full 3D incompressible Boussinesq system in a class of variant spherical coordinates for a class of
smooth large initial data. We also construct one class of nonempty bounded domains in the three-dimensional space ℝ3, in
which the initial boundary value problem for the full 3D Boussinesq system in a class of variant spherical coordinates with a
class of large smooth initial data with swirl has a unique global strong or smooth solution with exponential decay rate in time.

1. Introduction and Main Results

In this paper, we consider the Cauchy problem for the
three-dimensional(3D) incompressible Boussinesq (ν, μ > 0)
equations

ut + u · ∇u+∇P = νΔu + ρe3, x ∈ℝ3,  t > 0,
ρt + u · ∇ρ = μΔρ, x ∈ℝ3,  t > 0,
div u = 0, x ∈ℝ3, t > 0,
u 0, xð Þ = u0 xð Þ, ρ 0, xð Þ = ρ0 xð Þ, x ∈ℝ3,

8>>>>><
>>>>>:

ð1Þ

and the initial boundary value problem for the 3D incom-
pressible Boussinesq (ν, μ > 0) equations in the bounded
domain

ut + u · ∇u+∇P = νΔu + ρe3, x ∈Ω,  t > 0,
ρt + u · ∇ρ = μΔρ, x ∈Ω,  t > 0,
div u = 0, x ∈Ω,  t > 0,
u = 0, ρ = 0, x ∈ ∂Ω, t > 0,
u 0, xð Þ = u0 xð Þ, ρ 0, xð Þ = ρ0 xð Þ, x ∈Ω,

8>>>>>>>><
>>>>>>>>:

ð2Þ

respectively. Here, x = ðx1, x2, x3Þ; the unknowns u =
ðu1ðt, xÞ, u2ðt, xÞ, u3ðt, xÞÞT denote the fluid velocity vector
field; P = Pðt, xÞ is the scalar pressure and ρ = ρðt, xÞ is the
scalar density; ν, μ are viscosity and thermal diffusivity,
respectively; n is the unit outer normal vector of bounded
domain Ω; e3 = ð0, 0, 1ÞT is the unit vector in the vertical
direction; and u0 and ρ0 are the given initial velocity and
initial density, respectively, with div u0 = 0. It should be
noted that, if ρ ≡ 0, (1) comes back to the classical 3D incom-
pressible Navier-Stokes equations.

It is well known that the 3D incompressible Navier-
Stokes equations have at least one global weak solution with
the finite energy [1, 2]. However, the issue of the regularity
and uniqueness for the global weak solution is still a
challenging open problem in the field of mathematical fluid
dynamics [3–8].

Recently, motivated by the studies on the axisymmetric
flow (see [6–11] and the references therein), the helical
flow (see [12] and the references therein), and the 3D
incompressible Euler and the SQG (surface quasigeos-
trophic) equations [13–15], we investigate further the global
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dynamical stabilizing effects of the geometry of the domain at
which the flow locates and of the geometry structure of the
solution to the 3D incompressible Navier-Stokes equations.
As an example, we study the 3D incompressible Navier-
Stokes and Euler equations in the spherical coordinate
system, see S. Wang and Y.X. Wang [16], where the existence
and uniqueness of the global strong solution of the 3D
incompressible Navier-Stokes and Euler equations in the
spherical coordinates are obtained for a class of large smooth
initial data with swirl or without swirl.

As stated in the beginning, the present paper is focused
on the Boussinesq system, which plays an important role in
the atmospheric and oceanographic sciences [11, 17–20].
Considering the 2D standard Boussinesq equations with the
viscosity or diffusive coefficient, Hou and Li [21] and Chae
[22] obtain the global well-posedness results similar to the
2D incompressible Navier-Stokes equations [6]. On global
regularity on the smooth solution for the 2D Boussinesq sys-
tem, see also, e.g., [23–25] and the references therein. On the
other hand, comparing with the magnitude of research con-
ducted on the Boussinesq equations on Euclidean domains,
the qualitative behaviour of the model on Riemannian
manifolds has been investigated relatively little, see [26], in
which the convergence of the average of weak solutions of
the 3D equations to a 2D problem is proved by Saito, and
see [27], in which the nondegenerate and partially degenerate
Boussinesq equations on a closed surface are studied by
Li et al..

The global well-posedness for a 3D axisymmetric
Boussinesq system without swirl and with partial viscosity
or thermal diffusivity in the system of cylindrical coordi-
nates is obtained by Abidi et al. in [28], Hmidi and
Keraani in [29], and Hmidi et al. [30, 31], respectively.
For the general 3D Boussinesq system, there exist some
results on the local well-posedness problem, partial regu-
larity, or the global regularity with respect to small initial
data; see [32–37], etc.

In this paper, we further investigate the global stabilizing
effects of the geometry of the domain and the solution to the
three-dimensional incompressible flows by studying the 3D
incompressible axisymmetric Boussinesq system in the sys-
tem of a class of variant spherical coordinates.

Let the matrix

A =
a11 a12 a13

a21 a22 a23

a31 a32 a33

0
BB@

1
CCA, ð3Þ

be a real orthogonal matrix, i.e., ATA = I, where I is an
identity matrix and AT is a transpose of the matrix A. For
the given

α =
α1

α2

α3

0
BB@

1
CCA ∈ℝ3, ð4Þ

and the constant a > 0, introduce a class of variant spherical
coordinates ðr, θ, φÞ defined as

x =
x1

x1

x3

0
BB@

1
CCA =

α1

α2

α3

0
BB@

1
CCA + aA

r sin θ cos φ
r sin θ sin φ

r cos θ

0
BB@

1
CCA, x ∈ℝ3:

ð5Þ

Because the matrix A is an orthogonal one, we have

r = 1
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 xð Þ + η2 xð Þ + ζ2 xð Þ

q
= 1
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 − α1ð Þ2 + x2 − α2ð Þ2 + x3 − α3ð Þ2

q
≥ 0,

0 ≤ θ = arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 xð Þ + η2 xð Þ

q
ζ xð Þ ≤ π, 0 ≤ φ = arctan η xð Þ

ξ xð Þ < 2π,

ð6Þ

where

ξ xð Þ = a11 x1 − α1ð Þ + a21 x2 − α2ð Þ + a31 x3 − α3ð Þ,

η xð Þ = a12 x1 − α1ð Þ + a22 x2 − α2ð Þ + a32 x3 − α3ð Þ,

ζ xð Þ = a13 x1 − α1ð Þ + a23 x2 − α2ð Þ + a33 x3 − α3ð Þ:

8>>>>>>>><
>>>>>>>>:

ð7Þ

Note that, for variant spherical coordinates ðr, θ, φÞ, the
r coordinate is spherical symmetric in ℝ3, but the θ coordi-
nate and φ coordinate are not axisymmetric with respect to
the Cartesian coordinates x ∈ℝ3 except that A = I. Denote

er =A

sin θ cos φ

sin θ sin φ

cos θ

0
BBB@

1
CCCA = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2 xð Þ + η2 xð Þ + ζ2 xð Þ
q

x1 − α1

x2 − α2

x3 − α3

0
BBB@

1
CCCA,

eθ =A

cos θ cos φ

cos θ sin φ

−sin θ

0
BBB@

1
CCCA

=

a11ξ
2 xð Þ + a12ξ xð Þη xð Þ − a13 ξ2 xð Þ + η2 xð Þ

� �

a21ξ
2 xð Þ + a22ξ xð Þη xð Þ − a23 ξ2 xð Þ + η2 xð Þ

� �

a31ξ
2 xð Þ + a32ξ xð Þη xð Þ − a33 ξ2 xð Þ + η2 xð Þ

� �

0
BBBBBB@

1
CCCCCCA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 xð Þ + η2 xð Þ + ζ2 xð Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 xð Þ + η2 xð Þ

q ,
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eφ =A

−sin φ

cos φ

0

0
BBB@

1
CCCA

= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 xð Þ + η2 xð Þ

q
−a11ξ xð Þ + a12η xð Þ
−a21ξ xð Þ + a22η xð Þ
−a31ξ xð Þ + a32η xð Þ

0
BBB@

1
CCCA:

ð8Þ

Also, denote the special bounded domain ~Ω described by
variant spherical coordinates by

~Ω = x1, x2, x3ð Þf
= α1 + aa11r sin θ cos φ + aa12r sin θ sin φð

+ aa13r cos θ, α2 + aa21r sin θ cos φ + aa22r sin θ sin φ

+ aa23r cos θ, α3 + aa31r sin θ cos φ + aa32r sin θ sin φ

+ aa33r cos θÞ
∈ℝ3 : 0 < r0 ≤ r ≤ R0<∞,0 < θ0 ≤ θ ≤ θ1 < π, 0 ≤ φ < 2πg,

ð9Þ

where r0, R0, θ0, θ1 are given fixed positive constants. Here,
we give an explicit example for the domain

~Ω = x1, x2, x3ð Þ
�

=
ffiffiffi
2

p
r sin θ sin φ,−r sin θ cos φ + r cos θ, r sin θ cos φ

�
+ r cos θ

�
∈ℝ3 : 1 ≤ r ≤ 10, π8 ≤ θ ≤

3π
4 , 0 ≤ φ < 2π

�
,

ð10Þ

by taking

a =
ffiffiffi
2

p
, α = 0,A =

0 1 0

−
1ffiffiffi
2

p 0 1ffiffiffi
2

p

1ffiffiffi
2

p 0 1ffiffiffi
2

p

0
BBBBBB@

1
CCCCCCA
,

r0 = 1, R0 = 10, θ0 =
π

8 , θ1 =
3π
4 :

ð11Þ

Now, we consider the 3D incompressible Boussinesq
equations (1) and (2) with the form

u t, xð Þ = ur t, r, θð Þer + uθ t, r, θð Þeθ + uφ t, r, θð Þeφ,
P t, xð Þ = P t, r, θð Þ, ρ t, xð Þ = ρ t, r, θð Þ,

ð12Þ

with

u0 xð Þ = ur0 t, r, θð Þer + uθ0 t, r, θð Þeθ + uφ0 t, r, θð Þeφ, ρ0 xð Þ = ρ0 r, θð Þ:
ð13Þ

When the matrix A is an orthogonal matrix, the gradient
operator ∇ and Laplacian Δ have the expression

∇ = er
1
a
∂r +

1
ar

eθ∂θ +
1

ar sin θ
eφ∂φ,

Δ = 1
a2

∂2r +
2
r
∂r +

1
r2
∂2θ +

cos θ
r2 sin θ

∂θ +
1

r2sin2θ ∂
2
φ

� �
,

ð14Þ

respectively.
Then, one can derive the evolution equations for ður ,

uθ, uφρÞðt, r, θÞ for 3D incompressible Boussinesq equations
as follows:

∂tu
r + ~u · ~∇
	 


ur + 1
a
∂rP = ν ~Δ −

2
a2r2

� �
ur −

2 cos θ
a2r2 sin θ

uθ −
2

a2r2
∂θu

θ

� �
+ uθ
	 
2 + uφð Þ2

ar
+ ρ cos θ,

∂tu
θ + ~u · ~∇
	 


uθ + 1
ar

∂θP = ν ~Δ −
1

a2r2sin2θ

� �
uθ + 2

a2r2
∂θu

r
� �

−
uruθ

ar
+ cos θ
ar sin θ

uφð Þ2 − ρ sin θ,

∂tu
φ + ~u · ~∇
	 


uφ = ν ~Δ −
1

a2r2sin2θ

� �
uφ −

uruφ

ar
−

cos θ
ar sin θ

uθuφ,

∂tρ + ~u · ~∇
	 


ρ = ν~Δρ,

∂ru
r + 2

r
ur + 1

r
∂θu

θ + cos θ
r sin θ

uθ = 0,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð15Þ
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where ~u = urer + uθeθ, and

~∇ = er∂r + eθ
1
r
∂θ, ~Δ = ∂2r +

2
r
∂r +

1
r2
∂2θ +

cos θ
r2 sin θ

∂θ: ð16Þ

Note that equations (15) completely determine the
evolution of the 3D Boussinesq equations in a class of vari-
ant spherical coordinates once the initial conditions and/or
the boundary value conditions are given. Also, the 3D
incompressible Boussinesq system in a class of variant
spherical coordinates is completely different from the one
in cylindrical coordinates because of the complexity of the
last equation in system (15) and of Laplace operator ~Δ given
by (16).

We take the initial condition for system (15) as
follows:

ur , uθ, uφ, ρ
� �

t = 0, r, θð Þ = ur0, uθ0, u
φ
0

� �
r, θð Þ: ð17Þ

Moreover, the boundary condition uj∂Ω = 0, t ≥ 0 is
equivalent to the following condition:

ur , uθ, uφ, ρ
� �

∂Ω
= 0, t ≥ 0: ð18Þ

It is easy to know, by direct computation, that the
vorticity ω = ∇× u can be expressed as

ω t, xð Þ = ωr t, r, θð Þer + ωθ t, r, θð Þeθ + ωφ t, r, θð Þeφ, ð19Þ

with the initial vorticity

ω0 = ω 0, xð Þ = ωr
0 r, θð Þer + ωθ

0 r, θð Þeθ + ω
φ
0 r, θð Þeφ, ð20Þ

where

ωr = 1
ar sin θ

∂θ sin θuφð Þ, ωθ = −
1
ar

∂r ruφð Þ,

ωφ = 1
a

∂ru
θ + uθ

r
−
∂θur

r

� �
:

ð21Þ

It is clear that

div ω = 1
a

∂rω
r + 2

r
ωr + 1

r
∂θω

θ + cos θ
r sin θ

ωθ

� �
≡ 0:

ð22Þ

In addition, we can obtain the equation of ωφ from
(15) as

∂tω
φ + ~u · ~∇
	 


ωφ

= ν ~Δ −
1

a2r2sin2θ

� �
ωφ + urωφ

ar
+ cos θ
ar sin θ

uθωφ

+ cos θ
ar sin θ

∂r −
1
ar2

∂θ

� �
uφj j2

− sin θ∂rρ + cos θ 1
r
∂θρ

� �
:

ð23Þ

We now state our main results as follows:

Theorem 1 (the case of 3D incompressible Boussinesq
equations in ℝ3 without swirl in the sense of spherical coor-
dinates). Assume that ν > 0 and μ > 0. Let ðu0, ρ0Þðt, xÞ be
given by (13) with uφ0 = 0. Let ωφ

0 = ∂ruθ0 + uθ0/r − ∂θur0/r. If
ðu0, ρ0Þ ∈H2ðℝ3Þ with div u0 = 0 and ω

φ
0 /r sin θ ∈ L2ðℝ3Þ,

then the Cauchy problems (15) and (17) have a unique
global strong solution ður , uθ, uφ, P, ρÞðt, r, θ, φÞ with uφ ≡
0 satisfying u ∈ L∞ð0,+∞;H1ðℝ3ÞÞ, given by (12). More-
over, assume that u0ðxÞ = ur0ðr, θÞer + uθ0ðr, θÞeθ is smooth
with ur0ð0, θÞ = uθ0ð0, θÞ = ρ0ð0, θÞjθ=0,π = 0, and furthermore,
with some compatibility conditions for the initial data with
respect to θ = 0, π and r = 0, then the Cauchy problem (1)
to the 3D incompressible Boussinesq equations has a unique
global smooth solution in time.

Theorem 2 (the exponential decay rate in time and the
global strong solution of 3D incompressible Boussinesq
equations in the special bounded domain of ℝ3 with swirl
in the sense of spherical coordinates). Assume that ν > 0
and μ > 0. Let Ω = ~Ω ⊂ℝ3 in (2), given by (9). Let ðu0, ρ0Þ
ðt, xÞ be given by (13) with uφ0 ≢ 0. If ðu0, ρ0Þ ∈H2ðΩÞ with
div u0 = 0 and ðu0, ρ0Þj∂Ω = 0, then the initial-boundary
value problems (15), (17), and (18) to the incompressible
Boussinesq equation (2) have a unique global strong solution
ður , uθ, uφ, P, ρÞðt, r, θ, φÞ satisfying ∂itðu, ρÞ ∈ L∞ð0,+∞;
H1−iðΩÞÞ, i = 0, 1, given by (12), and the exponential decay
rate in time

u, ρð Þ t, ·ð Þk k2H1 Ωð Þ + ut , ρtð Þ t, ·ð Þk k2L2 Ωð Þ ≤ Ce−αt , 0 ≤ t ≤ +∞,
ð24Þ

for some constants C = CðΩ, ν, μ, kðu0, ρ0ÞkH2ðΩÞÞ > 0 and

α = αðΩ, ν, μÞ > 0, independent of t : 0 ≤ t ≤∞. Moreover,
any Leray-Hopf-type global weak solution ðu, ρ, PÞ, given
by (12), to the initial-boundary value problem (2) is globally
smooth in ð0, T� ×Ω1 for any 0 ≤ T ≤∞ and any smooth
domain Ω1 ⊂ ⊂Ω ⊂ℝ3.

Remark 3. The assumptions ν > 0 and μ > 0 are key in the
proofs of Theorems 1 and 2. The key point of the proof of
Theorem 1 is to establish the a priori estimate on the quality
ωφ/rsinθ − ð1/2νÞρ and then to use the special geometry
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structure (12) of the solutions ðu, ρÞðt, xÞ, which guarantees
that there exist some kinds of cancelation regimes so that we
can deal with the vortex stretching term ω · ∇u in the vortic-
ity equation for ω. The present method used in this paper
cannot be extended to the case of ν = 0 or μ = 0. The global
well-posedness problem on the 3D incompressible Boussi-
nesq system with partial viscosity or diffusivity and without
swirl in spherical coordinates is complex because each com-
ponent of the velocity field in spherical coordinates in the
Boussinesq system given by the classical Biot-Savart law is
very complex, which will be discussed in the future. The
classical Biot-Savart law expresses the velocity field that
transports the vorticity in terms of the vorticity itself; see
[38] and the references therein. The assumption in Theorem
2 on the domain Ω = ~Ω with the special geometry structure
given by (9) is key for one to prove our global regularity
for the strong solution and global interior regularity for the
smooth solution in time for 3D Boussinesq equations with
large smooth initial data, which yields to one inequality of
Ladyzhenskaya’s type (see [3] and Lemma 6 for details),
close to a two-dimensional case, for the function ðu, ρÞðt, xÞ
having the special geometry structure (12) for x ∈ ~Ω ⊂ℝ3.
Also, if we replace the domain ~Ω in Theorem 2 by one
smooth domain Ω2 ⊂ℝ3 satisfying that there exists one pos-
itive constant ϵ1, ϵ2, ϵ3, and ϵ4 such that Ω2 ⊂Ωϵ ⊂ℝ3 with

Ωϵ = x1, x2, x3ð Þ�
= r sin θ cos φ, r sin θ sin φ, r cos θð Þ
∈ℝ3 : 0 < ϵ1 ≤ r ≤ ϵ2<∞,0 < ϵ3 ≤ θ ≤ ϵ4 < π, 0 ≤ φ < 2π

�
,

ð25Þ

then the global strong solution obtained in Theorem 2 is also
smooth in ð0,∞Þ ×Ω2.

Remark 4. The axisymmetric flow makes the 3D flow close to
the 2D flow; that is, all velocity components (radial, angular
(or swirl) and x3 component) as well as the pressure are
independent of the angular variable in the cylindrical coor-
dinates. As a kind of fluid with special geometry structure,
we know that the 1D parabolic Hausdorff measure of the
set of possible singular points to the suitable weak solutions
of the incompressible Navier-Stokes or Boussinesq system is
zero; see [7, 8, 39] for details. This implies that the incom-
pressible axisymmetric Navier-Stokes or Boussinesq equa-
tions cannot develop finite time singularities away from the
symmetry axis. Based on this fact, it is not clear whether
the potential finite-time-blow-up set for 3D incompressible
Boussinesq equations in spherical coordinates is only one
point set, where the flow is a special variant of axisymmetric,
i.e., spherically symmetric, in ℝ3. This is the main motiva-
tion of the current paper.

The rest of this paper is organized as follows. In
Section 2, we introduce some technical lemmas used for
the proof of the main theorems. In Section 3, we prove
Theorems 1 and 2.

2. Preliminaries

In this section, we provide some lemmas used for the proof
of the main theorems.

Lemma 5. (see [40]). Let u ∈W1,pðℝ3Þ be a velocity field with
its divergence free and vorticity ω; then, the inequality

∇uk kLp ≤ C pð Þ ωk kLp , ð26Þ

holds for any p ∈ ð1,∞Þ, where the constant CðpÞ depends
only on p.

Lemma 6 (see [3]). Let D ⊆ℝ2; then, there exists a constant
CðDÞ such that, for any f ∈H1

0ðDÞ,

fk kL4 Dð Þ ≤ C Dð Þ fk k1/2L2 Dð Þ ∇fk k1/2L2 Dð Þ: ð27Þ

Lemma 7 (see [41]). Suppose that the initial data ðu0, ρ0Þ
∈H2ðℝ3Þ with div u0 = 0 in (1); then, any Leray-Hopf weak
solution u of 3D incompressible Boussinesq equation (1) is
also a smooth solution in ð0, T� ×ℝ3 if there holds that

u ∈ Lp 0, T ; Lq ℝ3	 
	 

, ð28Þ

in which p and q satisfy the conditions

2
p
+ 3
q
≤ 1 with 3 < q <∞, 2 < p ≤∞: ð29Þ

Lemma 8 (see [42]). Suppose that Ω is smooth and the initial
data ðu0, ρ0Þ in (2) satisfies ðu0, ρ0Þ ∈H2ðΩÞ with div u0 = 0
and ðu0, ρ0Þj∂Ω = 0; then, any Leray-Hopf weak solution u of
3D incompressible Boussinesq equation (2) is also a smooth
solution in ð0, T� ×Ω if there holds that

u ∈ Lp 0, T ; Lq Ωð Þð Þ, ð30Þ

in which p and q satisfy the conditions

2
p
+ 3
q
≤ 1 with 3 < q ≤∞, 2 ≤ p ≤∞: ð31Þ

3. Proof of Main Results

In this section, we give the proofs of Theorems 1 and 2.

Proof of Theorem 1. From (1), for any T > 0, we have the
energy inequality

sup
0≤t≤T

uk k2L2 ℝ3ð Þ+∥ρ∥
2
L2 ℝ3ð Þ

� �

+ 2ν
ðT
0

∇uk k2L2 ℝ3ð Þdt + 2μ
ðT
0

∇ρk k2L2 ℝ3ð Þdt

≤ C T , u0k kL2 ℝ3ð Þ, ρ0k kL2 ℝ3ð Þ
� �

:

ð32Þ
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By the existence and uniqueness of the local smooth
solution to the Cauchy problem (1) for the 3D Boussinesq
equations, it is easy to get that uφ ≡ 0 for the case of no swirl
initial data uφ0 ≡ 0. In this kind of case of no swirl, the veloc-
ity and vorticity satisfy the following special form:

u t, xð Þ = ur t, r, θð Þer + uθ t, r, θð Þeθ, ω t, xð Þ = ωφ t, r, θð Þeφ,
ð33Þ

and hence, equation (23) for ωφ is simplified as

∂tω
φ + ~u · ~∇
	 


ωφ

= ν ~Δ −
1

r2sin2θ

� �
ωφ + urωφ

r
+ cos θ
r sin θ

uθωφ

− sin θ∂rρ + cos θ 1
r
∂θρ

� �
:

ð34Þ

Multiplying (34) by r2 sin2θ and then letting r = 0, θ = 0,
or θ = π and by the existence and uniqueness of the local
smooth solution to the Cauchy problem (1) or (15)–(17)
for the 3D Boussinesq equations, it is easy to see that

ωφ t, 0, θð Þ = ωφ t, r, 0ð Þ = ωφ t, r, πð Þ = 0: ð35Þ

Similarly, we have

ωφ t, r, θð Þ
r sin θ


r=0

= ωφ t, r, θð Þ
r sin θ


θ=0,π

= 0: ð36Þ

Taking ωφðt, r, θÞ = gðt, r, θÞr sin θ, i.e., gðt, r, θÞ = ωφðt,
r, θÞ/r sin θ, satisfying gðt, 0, θÞ = gðt, r, 0Þ = gðt, r, πÞ = 0,
then we have

~u · ~∇
	 


gr sin θð Þ = ur∂r +
uθ

r
∂θ

� �
gr sin θð Þ

= ur sin θ g + r∂rgð Þ + uθ g cos θ + sin θ∂θgð Þ
= r sin θ ~u · ~∇

	 

g + urg sin θ + uθg cos θ,

ð37Þ

~Δ −
1

r2sin2θ

� �
gr sin θð Þ

= ∂2r +
2
r
∂r +

1
r2
∂2θ +

cos θ
r2 sin θ

∂θ −
1

r2sin2θ

� �
gr sin θð Þ

= sin θ ∂2r rgð Þ + 2
r
∂r rgð Þ

� �
+ 1
r
∂2θ g sin θð Þ

+ cos θ
r sin θ

∂θ g sin θð Þ − g
r sin θ

= sin θ r∂2r g + 4∂rg + 2
r
g

� �

+ 1
r

3 cos θ∂θg − g sin θ + sin θ∂2θg + cos2θ
sin θ

g
� �

−
g

r sin θ

= r sin θ ∂2r +
4
r
∂r

� �
g + 2 sin θ

r
g

+ r sin θ
1
r2
∂2θg + 3 cos θ

r2 sin θ
∂θg

� �

+ cos2θ
r sin θ

−
sin θ

r

� �
g −

g
r sin θ

= r sin θ ∂2r +
4
r
∂r +

1
r2
∂2θ +

3 cos θ
r2 sin θ

∂θ

� �
g

+ 2 sin θ

r
+ 1 − 2sin2θ

r sin θ
−

1
r sin θ

� �
g

= r sin θ ~Δ + 2
r
∂r +

2 cos θ
r2 sin θ

∂θ

� �
g:

ð38Þ

Now putting ωφðt, r, θÞ = gðt, r, θÞr sin θ into (34)
and using (37)–(38), we obtain the following equation
for gðt, r, θÞ:

∂tg + ~u · ~∇
	 


g − ν~Δg = 2ν 1
r
∂r +

cos θ
r2 sin θ

∂θ

� �
g

−
1

r sin θ
sin θ∂rρ + cos θ 1

r
∂θρ

� �
:

ð39Þ
To deal with the more singular second term in the right-

hand side of (39), we decompose g into g =G + ð1/2νÞρ;
then, Gðt, r, θÞ = gðt, r, θÞ − ð1/2νÞρðt, r, θÞ satisfies

G t, 0, θð Þ = G t, r, 0ð Þ =G t, r, πð Þ = 0, ð40Þ

and the following equation

∂t G + 1
2ν ρ

� �
+ ~u · ~∇
	 


G + 1
2ν ρ

� �
− ν~Δ G + 1

2ν ρ
� �

= 2ν 1
r
∂r +

cos θ
r2 sin θ

∂θ

� �
G + 1

2ν ρ
� �

−
1

r sin θ
sin θ∂rρ + cos 1

r
∂θρ

� �
,

ð41Þ

which implies that

∂tG + ~u · ~∇
	 


G − ν~ΔG = 2ν 1
r
∂r +

cos θ
r2 sin θ

∂θ

� �
G −

μ − ν

2ν
~Δρ:

ð42Þ

Multiplying equation (42) by G and integrating the
resulting equation on ℝ3, we have

1
2
d
dt

Gk k2L2 ℝ3ð Þ+ν ~∇G
�� ��2

L2 ℝ3ð Þ
= ν

ð
ℝ3

1
r
∂r Gj j2dx +

ð
ℝ3

cos θ
r2 sin θ

∂θ Gj j2dx
� �

−
μ − ν

2ν

ð
ℝ3

G~Δρdx = I1 + I2,

ð43Þ
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where I1 and I2 are defined by and can be estimated as
follows:

I1 = ν
ð
ℝ3

1
r
∂r Gj j2dx +

ð
ℝ3

cos θ
r2 sin θ

∂θ Gj j2dx
� �

= ν
ð2π
0

ðπ
0

ð∞
0

1
r
∂r Gj j2

� �
r2 sin θdrdθdφ

�

+
ð2π
0

ðπ
0

ð∞
0

cos θ
r2 sin θ

∂θ Gj j2
� �

r2 sin θdrdθdφ
�

= ν
ð2π
0

ðπ
0

ð∞
0
r sin θ∂r Gj j2drdθdφ

�

+
ð2π
0

ðπ
0

ð∞
0

cos θ∂θ Gj j2drdθdφ
�

= −ν
ð2π
0

ðπ
0

ð∞
0

Gj j2 sin θ ∂rrð Þdrdθdφ
�

+
ð2π
0

ðπ
0

ð∞
0

Gj j2∂θ cos θð Þdrdθdφ
�
≡ 0,

ð44Þ

I2 = −
μ − ν

2ν

ð
ℝ3

G~Δρdx = μ−ν
2ν

ð
ℝ3

~∇G · ~∇ρdx

≤
ν

2
~∇G
�� ��2

L2 ℝ3ð Þ+C ~∇ρ
�� ��2

L2 ℝ3ð Þ:
ð45Þ

Putting (44) and (45) into (43), we get

1
2
d
dt

Gk k2L2 ℝ3ð Þ + ν∥~∇G∥2L2 ℝ3ð Þ ≤
ν

2 ∥
~∇G∥2L2 ℝ3ð Þ + C∥~∇ρ∥2L2 ℝ3ð Þ,

ð46Þ

which, together with (32), yields to the following estimate for
Gðt, r, θÞ:

G t, r, θð Þk kL2 ℝ3ð Þ
≤ C T ,∥G 0, r, θð Þ∥L2 ℝ3ð Þ, u0k kL2 ℝ3ð Þ, ρ0k kL2 ℝ3ð Þ
� �

:

ð47Þ

Thus, we have

g t, r, θð Þk kL2 ℝ3ð Þ
= G + 1

2ν ρ
����

����
L2 ℝ3ð Þ

≤ Gk kL2 ℝ3ð Þ + C ρk kL2 ℝ3ð Þ

≤ C T , ω
φ
0 r, θð Þ
r sin θ

����
����
L2 ℝ3ð Þ

, u0k kL2 ℝ3ð Þ, ρ0k kL2 ℝ3ð Þ
 !

:

ð48Þ

Next, we obtain the estimate for the vorticity ω = ωφ

ðt, r, θÞeφ, given by (33) in the case of no swirl for the

3D incompressible Boussinesq equation in the spherical
coordinate system.

It is known that the vorticity equation for the vorticity
ω = ∇× u for the 3D incompressible Boussinesq equation is
the following:

∂tω + u · ∇ð Þω − νΔω = ω · ∇u − sin θ∂rρ + cos θ 1
r
∂θρ

� �
eφ:

ð49Þ

Multiplying equation (49) by ω and integrating the
resulting equation on ℝ3, we have, for any T > 0, 0 ≤ t ≤ T ,

1
2
d
dt

ωk k2L2 ℝ3ð Þ + ν ∇ωk k2L2 ℝ3ð Þ
=
ð
ℝ3

ω · ∇ð Þu · ωdx −
ð
ℝ3

ωφ sin θ∂rρ + cos θ 1
r
∂θρ

� �
dx

= J1 + J2,
ð50Þ

where J1 =
Ð
ℝ3 ðω · ∇Þu · ωdx and J2 = −

Ð
ℝ3 ωφðsin θ∂rρ +

cos θð1/rÞ∂θρÞdx can be estimated as follows by using the
special structure (33) of the velocity u and the vorticity ω.
Using (33), with the help of the Hölder inequality,
Gagliardo-Nirenberg inequality, and Young inequality, we
have

J1 =
ð
ℝ3

ωφeφ · er∂r + eθ
1
r
∂θ + eφ

1
r sin θ

∂φ

� �� �

� urer + uθeθ
� �

· ωφeφ
	 


dx

=
ð
ℝ3

ωφ

r sin θ
∂φ urer + uθeθ
� �� �

· ωφeφ
	 


dx

=
ð
ℝ3

ωφ

r sin θ
ur sin θ + uθ cos θ
� �

eφ
� �

· ωφeφ
	 


dx

=
ð
ℝ3

1
r
urωφωφdx +

ð
ℝ3

cos θ
r sin θ

uθωφωφdx

=
ð
ℝ3

urgωφ sin θdx +
ð
ℝ3

uθgωφ cos θdx

≤
ð
ℝ3

urgωφj jdx +
ð
ℝ3

uθgωφ
 dx

≤ urk kL3 ℝ3ð Þ + uθ
��� ���

L3 ℝ3ð Þ

� �
gk kL2 ℝ3ð Þ ωk kL6 ℝ3ð Þ

≤ C uk k1/2L2 ℝ3ð Þ ∇uk k1/2L2 ℝ3ð Þ gk kL2 ℝ3ð Þ ∇ωk kL2 ℝ3ð Þ
≤ C uk k2H1 ℝ3ð Þ +

ν

2 ∇ωk k2L2 ℝ3ð Þ,
ð51Þ

J2 ≤
ð
ℝ3

ωφj j ∂rρj j + 1
r
∂θρ




� �
dx ≤ ωk k2L2 ℝ3ð Þ+ ~∇ρ

�� ��2
L2 ℝ3ð Þ:

ð52Þ
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Putting (51) and (52) into (50), we have

1
2
d
dt

ωk k2L2 ℝ3ð Þ +
ν

2 ∇ωk k2L2 ℝ3ð Þ ≤ C uk k2H1 ℝ3ð Þ + ωk k2L2 ℝ3ð Þ
+ ~∇ρ
�� ��2

L2 ℝ3ð Þ,
ð53Þ

which, by applying Gronwall’s inequality and by using (32),
yields to, for any T > 0,

ω t, ·ð Þk kL2 ℝ3ð Þ

≤ C T , u0k kH1 ℝ3ð Þ,
ω
φ
0

r sin θ

����
����
L2 ℝ3ð Þ

, ρ0k kL2 ℝ3ð Þ
 !

, 0 ≤ t ≤ T ,

ð54Þ
ðt
0

∇ω s, ·ð Þk k2L2 ℝ3ð Þds

≤ C T , u0k kH1 ℝ3ð Þ,
ωφ
0

r sin θ

����
����
L2 ℝ3ð Þ

, ρ0k kL2 ℝ3ð Þ
 !

, 0 ≤ t ≤ T:

ð55Þ
Using Lemma 5, we get from (54) that, for any 0 ≤ T ≤∞,

∇u ∈ L∞ 0, T ; L2 ℝ3	 
	 

, ð56Þ

and hence, by Sobolev’s imbedding theorem, we have, for any
0 ≤ T ≤∞,

u ∈ L∞ 0, T ; L6 ℝ3	 
	 

: ð57Þ

Now, the desired regularity estimate for the 3D incom-
pressible Boussinesq equation (1) is obtained; hence, by
applying Lemma 7, we obtain the results stated in Theorem 1.

The proof of Theorem 1 is complete.

Proof of Theorem 2. We take Ω = ~Ω in Theorem 2, where ~Ω
is given by (9) having one special geometry structure. Also, u
in Theorem 2 is given by (12), which satisfies that juj2 =
u21 + u22 + u23 = ðurÞ2 + ðuθÞ2 + ðuφÞ2 by using the orthogo-
nality of three spherical coordinate unit vectors. Firstly,
for the system (2), we have the following basic energy esti-
mates, for 0 ≤ t ≤ +∞,

d
dt

ð
Ω

u t, ·ð Þj j2dx + 2ν
ð
Ω

∇u t, ·ð Þj j2dx

≤ δ
ð
Ω

u t, ·ð Þj j2dx + C δð Þ
ð
Ω

ρ t, ·ð Þj j2dx,
ð58Þ

d
dt

ð
Ω

ρ t, ·ð Þj j2dx + 2μ
ð
Ω

∇ρ t, ·ð Þj j2dx = 0, ð59Þ

for some constant CðδÞ > 0 and any δ > 0, which, together
with Poincare’s inequality for u and ρ, yield the energy
estimate, for 0 ≤ t ≤ +∞,

u t, ·ð Þk k2L2 Ωð Þ + ρ t, ·ð Þk k2L2 Ωð Þ
� �

+ 2ν
ðt
0

∇u t, ·ð Þk k2L2 Ωð Þdt + 2μ
ðt
0

∇ρ t, ·ð Þk k2L2 Ωð Þdt

≤ C Ω, ν, μ, u0k kL2 Ωð Þ, ρ0k kL2 Ωð Þ
� �

,

ð60Þ

u, ρð Þ t, ·ð Þk k2L2 Ωð Þ ≤ C Ω, ν, μ, u0k kL2 Ωð Þ, ρ0k kL2 Ωð Þ
� �

e−αt ,

ð61Þ
for some constants C = CðΩ, ν, μ, ku0kL2ðΩÞ,∥ρ0∥L2ðΩÞÞ > 0
and α = αðΩ, ν, μÞ > 0.

Next, we give the estimates of ∥∂tðu, ρÞðt, ·Þ∥2L2ðΩÞ.
Differentiating (2) with respect to t, one gets

utt + ut · ∇u + u · ∇ut+∇Pt = νΔut + ρte3,
ρtt + u · ∇ρt + ut · ∇ρ = μΔρt ,
div ut = 0,
ut ∂Ω = 0, ρtj j∂Ω = 0,
ut 0, xð Þ = v0 xð Þ, ρt 0, xð Þ = ρ0 xð Þ,

8>>>>>>>><
>>>>>>>>:

ð62Þ

where v0 and ρ0 satisfy, by using (2), that

v0 + u0 · ∇ð Þu0+∇P0 = νΔu0 + ρ0e3, div v0 = 0, ð63Þ

ρ0 + u0 · ∇ð Þρ0 = μΔρ0: ð64Þ
It is easy to get that

v0k kL2 Ωð Þ ≤ C u0k kH2 Ωð Þ, ρ0k kH2 Ωð Þ
� �

, ð65Þ

ρ0k kL2 Ωð Þ ≤ C u0k kH2 Ωð Þ, ρ0k kH2 Ωð Þ
� �

: ð66Þ

In fact, multiplying (64) by v0 and integrating the
resulting equation on Ω, applying the Hölder inequality,
Gagliardo-Nirenberg inequality, and Young inequality, we
have

v0k k2L2 Ωð Þ = −
ð
Ω

u0 · ∇ð Þu0 · v0dx + ν
ð
Ω

Δu0 · v0dx

+
ð
Ω

ρ0e3 · v0dx

≤ C u0k kL3 Ωð Þ ∇u0k kL6 Ωð Þ v0k kL2 Ωð Þ
+ C Δu0k kL2 Ωð Þ v0k kL2 Ωð Þ + ρ0k kL2 Ωð Þ v0k kL2 Ωð Þ

≤ C u0k kH2 Ωð Þ+∥ρ0∥L2 Ωð Þ
� �

v0k kL2 Ωð Þ,

ð67Þ

which implies (65). Similarly, we have (66).
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Multiplying the first equation in (62) by ut and integrat-
ing the resulting equation on Ω, with the help of the Hölder
inequality, we get

1
2
d
dt

utk k2L2 Ωð Þ + ν ∇utk k2L2 Ωð Þ

=
ð
Ω

ρte3 · utdx −
ð
Ω

ut · ∇ð Þu · utdx ≤ C δð Þ∥ρt∥2L2 Ωð Þ

+ δ∥ut∥2L2 Ωð Þ + C utk k2L4 Ωð Þ ∇uk kL2 Ωð Þ:

ð68Þ

Multiplying the second equation in (62) by ρt and inte-
grating the resulting equation on Ω, with the help of the
Hölder inequality, we get

1
2
d
dt

ρtk k2L2 Ωð Þ + μ ∇ρtk k2L2 Ωð Þ

= −
ð
Ω

ut · ∇ð Þρ · ρtdx ≤ C utk kL4 Ωð Þ ∇ρk kL2 Ωð Þ∥ρt∥L4 Ωð Þ:

ð69Þ

In the following, we use the special geometry structure
(9) of the domain Ω = ~Ω ⊂ℝ3 and the special geometry
structure (12) of the functions ðu, ρÞðt, xÞ in spherical coor-
dinates in ℝ3 to obtain the following inequality for ðut , ρtÞ
ðt, xÞ defined in ½0, tÞ × ~Ω ⊂ ½0,∞Þ × ⊂ℝ3 with ðu, ρÞj∂Ω = 0:
there exists a constant C = CðΩÞ > 0 such that

ut t, ·ð Þk kL4 Ωð Þ ≤ C Ωð Þ ut t, ·ð Þk k1/2L2 Ωð Þ∥∇ut t, ·ð Þ∥1/2L2 Ωð Þ, ð70Þ

ρt t, ·ð Þk kL4 Ωð Þ ≤ C Ωð Þ ρt t, ·ð Þk k1/2L2 Ωð Þ∥∇ρt t, ·ð Þ∥1/2L2 Ωð Þ, ð71Þ
where

∇ = er∂r +
1
r
eθ∂θ +

1
r sin θ

eφ∂φ: ð72Þ

We note that the inequalities (70) are the same as in the
two-dimensional case, which are, in general, not true for the
general functions uðt, xÞ or ρðt, xÞ when x ∈Ω if Ω is the
general bounded domain of ℝ3. However, the equalities
(70) are true under the assumption of Theorem 2 because
of the special geometry structures (9) and (12) for the
domain Ω and the functions ðu, ρÞðt, xÞ, especially ρðt, xÞ
= ρðt, r, θÞ independent of φ and uðt, xÞ = uðt, r, θ, φÞ
depending upon φ only by the three orthogonal unit vectors
in spherical coordinates (the combination of the functions
cos φ and sin φ). In fact, the inequalities (70) and (71) has
been proven by S. Wang and Y.X. Wang in [16] for the
domain Ω ∈ℝ3 having the special geometry structure (9)
and for the function uðt, xÞ, x ∈Ω ⊂ℝ3, with uðt, xÞj∂Ω = 0
having the special geometry structure (12).

For completeness, we give the proof of the inequalities
(70) and (71). Taking f ðt, r, θÞ = ρtr

1/2 sin1/4θ in Lemma 6

with the domain D = ðr0, r1Þ × ðθ0, θ1Þ ⊂ℝ2 and ρðt, r, θÞj∂D
= 0, we get

ρtk k4L4 Ωð Þ =
ð
Ω

ρtj j4 t, r, θð Þdx

=
ð2π
0

ðθ1
θ0

ðR0

r0

ρtð Þ4 t, r, θð Þr2 sin θdrdθdφ

= 2π
ðθ1
θ0

ðR0

r0

ρtr
1/2 sin1/4θ

	 
4
drdθ

≤ C
ðθ1
θ0

ðR0

r0

ρtj jr1/2 sin1/4θ	 
2
drdθ

�
ðθ1
θ0

ðR0

r0

∇r,θ ρtr
1/2sin1/4θ

	 
 2drdθ,

ð73Þ

where C = CðΩÞ is a constant depending upon the domain
Ω = ~Ω, and ∇r,θ = ð∂r , ∂θÞ. It is clear that

ðθ1
θ0

ðR0

r0

ρtj jr1/2 sin1/4θ	 
2
drdθ

= 1
2π

ð2π
0

ðθ1
θ0

ðR0

r0

1
r
ffiffiffiffiffiffiffiffiffiffiffi
sin θ

p ρtj j2r2 sin θdrdθdφ

≤
1
2π

ð2π
0

ðθ1
θ0

ðR0

r0

1
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min

θ∈ θ0,θ1ð Þ
sin θ

q ρtj j2r2 sin θdrdθdφ

= 1
2πr0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min

θ∈ θ0,θ1ð Þ
sin θ

q ρtk k2L2 Ωð Þ,

ð74Þ

ðθ1
θ0

ðR0

r0

∇r,θ ρtr
1/2sin1/4θ

	 
 2drdθ
= 1
2π

ð2π
0

ðθ1
θ0

ðR0

r0

∂r ρtr
1/2sin1/4θ

	 
 2�
+ ∂θ ρtr

1/2sin1/4θ
	 
 2�drdθdφ

≤
1
π

ð2π
0

ðθ1
θ0

ðR0

r0

r sin1/2θ ∂rρtj j2 + ∂θρtj j2	 
�

+ 1
4r sin1/2θ + cos2θ

16 r sin−3/2θ
� �

ρtj j2
�
drdθdφ

= K1 + K2,
ð75Þ

where

K1 =
1
π

ð2π
0

ðθ1
θ0

ðR0

r0

1
r
ffiffiffiffiffiffiffiffiffiffiffi
sin θ

p ∂rρtj j2 + rffiffiffiffiffiffiffiffiffiffi
sin θ

p 1
r
∂θρt



2

 !

� r2 sin θdrdθdφ
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≤
1
π

ð2π
0

ðθ1
θ0

ðR0

r0

1
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min

θ∈ θ0,θ1ð Þ
sin θ

q ∂rρtj j2
0
B@

+ R0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min

θ∈ θ0,θ1ð Þ
sin θ

q 1
r
∂θρt



2
1
CAr2 sin θdrdθdφ

≤
1

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min

θ∈ θ0,θ1ð Þ
sin θ

q max 1
r0
, R0

� �

�
ð
Ω

∂rρtj j2 + 1
r
∂θρt



2

 !
dx

≤
1

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min

θ∈ θ0,θ1ð Þ
sin θ

q max 1
r0
, R0

� �

�
ð
Ω

∂rρtj j2 + 1
r
∂θρt



2
+ 1

rsinθ
∂φρt



2

 !
dx

= 1
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min

θ∈ θ0,θ1ð Þ
sin θ

q max 1
r0
, R0

� �
∇ρtk k2L2 Ωð Þ,

ð76Þ

K2 =
1
π

ð2π
0

ðθ1
θ0

ðR0

r0

1
4r3

ffiffiffiffiffiffiffiffiffiffiffi
sin θ

p + 1
16rsin2θ

ffiffiffiffiffiffiffiffiffiffiffi
sin θ

p
� �

� ρtj j2r2 sin θdrdθdφ

≤
1
π

ð2π
0

ðθ1
θ0

ðR0

r0

1
4r30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min

θ∈ θ0,θ1ð Þ
sin θ

q
0
BBB@

+ 1

16r0 min
θ∈ θ0,θ1ð Þ

sin θ

� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min

θ∈ θ0,θ1ð Þ
sin θ

q
1
CCCA

� ρtj j2r2 sin θdrdθdφ

≤
1
π

1
4r30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min

θ∈ θ0,θ1ð Þ
sin θ

q
0
BBB@

+ 1

16r0 min
θ∈ θ0,θ1ð Þ

sin θ

� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min

θ∈ θ0,θ1ð Þ
sin θ

q
1
CCCA
ð
Ω

ρtj j2dx

≤
1
π

1
4r30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min

θ∈ θ0,θ1ð Þ
sin θ

q
0
BBB@

+ 1

16r0 min
θ∈ θ0,θ1ð Þ

sin θ

� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min

θ∈ θ0,θ1ð Þ
sin θ

q
1
CCCA ρtk k2L2 Ωð Þ

≤ C Ωð Þ 1
4r30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min

θ∈ θ0,θ1ð Þ
sin θ

q
0
BBB@

+ 1

16r0 min
θ∈ θ0,θ1ð Þ

sin θ

� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min

θ∈ θ0,θ1ð Þ
sin θ

q
1
CCCA ∇ρtk k2L2 Ωð Þ,

ð77Þ

with the help of Poincare’s inequality and the fact that
j∇ρðr, θ, φ, tÞj2 = j∂rρj2 + j∂θρ/rj2 + j∂φρ/r sin θj2.

Combining (75) together with (76)–(77), we have

ðθ1
θ0

ðR0

r0

∇r,θ ρtr
1/2sin1/4θ

	 
 2drdθ ≤ C Ωð Þ ∇ρtk k2L2 Ωð Þ: ð78Þ

Thus, putting (74) and (78) into (73), we get (70) and (71).
Combining (68), (69), and (70), with the help of the

Young inequality, we obtain

1
2
d
dt

utk k2L2 Ωð Þ +M1 ρtk k2L2 Ωð Þ
� �

+ ν ∇utk k2L2 Ωð Þ +M1μ∥∇ρt∥
2
L2 Ωð Þ

≤ C δð Þ∥ρt∥2L2 Ωð Þ + δ∥ut∥2L2 Ωð Þ + C utk k2L4 Ωð Þ ∇uk kL2 Ωð Þ
+ C utk kL4 Ωð Þ ∇ρk kL2 Ωð Þ∥ρt∥L4 Ωð Þ

≤ C δð Þ∥ρt∥2L2 Ωð Þ + δ∥ut∥2L2 Ωð Þ
+ C utk kL2 Ωð Þ ∇utk kL2 Ωð Þ ∇uk kL2 Ωð Þ

+ C utk k1/2L2 Ωð Þ∥∇ut∥
1/2
L2 Ωð Þ∥∇ρ∥

1/2
L2 Ωð Þ

� �
� ρtk k1/2L2 Ωð Þ∥∇ρt∥

1/2
L2 Ωð Þ∥∇ρ∥

1/2
L2 Ωð Þ

� �
≤ C δð Þ∥ρt∥2L2 Ωð Þ + δ∥ut∥2L2 Ωð Þ + C ∇uk k2L2 Ωð Þ utk k2L2 Ωð Þ

+ C ∇ρk k2L2 Ωð Þ utk k2L2 Ωð Þ + C ∇ρk k2L2 Ωð Þ ρtk k2L2 Ωð Þ

+ ν

2 ∇utk k2L2 Ωð Þ +
μ

2 ∇ρtk k2L2 Ωð Þ

ð79Þ

for any δ > 0, for suitably large constant M1 > 0 and for
some constants CðδÞ > 0 and C = CðM1,Ω, ν, μÞ > 0, which
yields, by applying Gronwall’s inequality and Poincare’s
inequality, using the estimate (60), to the decay exponen-
tially in time

∥ut t, ·ð Þ∥L2 Ωð Þ+∥ρt t, ·ð Þ∥L2 Ωð Þ

≤ C ∥u0∥H2 Ωð Þ,∥ρ0∥H2 Ωð Þ
� �

e−αt , 0 ≤ t ≤ +∞:
ð80Þ

Finally, we obtain the estimate L∞ð½0, T�;∥∇u∥2L2ðΩÞÞ for u
and for any T > 0.

Multiplying (2) by u and integrating the resulting equa-
tion onΩ, and by using the estimates (61) and (80), we have,
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for 0 ≤ t ≤ +∞,

∇u t, ·ð Þk k2L2 Ωð Þ =
1
ν

ð
Ω

ρe3 · udx −
1
ν

ð
Ω

u · utdx

≤ C νð Þ ∥ρ∥2L2 Ωð Þ+∥u∥
2
L2 Ωð Þ + utk kL2 Ωð Þ uk kL2 Ωð Þ

� �
≤ C u0k kH2 Ωð Þ,∥ρ0∥L2 Ωð Þ
� �

e−αt:

ð81Þ

Combining (60) and (81) together, we have

u ∈ L∞ 0, T ;H1
0 Ωð Þ	 


, ð82Þ

which gives, by Sobolev’s imbedding theorem, that

u ∈ L∞ 0, T ; L6 Ωð Þ	 

: ð83Þ

Thus, we can obtain the desired global regularity esti-
mate for strong solution ðu, ρÞ and the global smooth inte-
rior regularity for the solution ðu, ρÞ by choosing the
suitable cutoff function with compact subset of the domain
Ω, and we can conclude the regularity results on Theorem
2 by using Lemma 8.

Also, it is easy from (59) to get that

∇ρ t, ·ð Þk k2L2 Ωð Þ ≤ C∥ρ t, ·ð Þ∥L2 Ωð Þ∥ρt t, ·ð Þ∥L2 Ωð Þ
≤ Ce−αt , 0 ≤ t ≤ +∞:

ð84Þ

Thus, the decay rate (24) in Theorem 2 can be obtained
from the estimates (61) and (80)–(84).

The proof of Theorem 2 is complete.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was sponsored by the Foundation for Scientific
Research of Zhoukou Normal University (ZKNUC2020004),
the Guangdong Basic and Applied Basic Research Founda-
tion (2022A1515010566), and the National Natural Science
Foundation of China (11831003, 12171111).

References

[1] J. Leray, “Sur le mouvement d’un liquide visqueux emplissant
l’espace,” Acta Mathematica, vol. 63, pp. 193–248, 1934.

[2] E. Hopf and U. Die, “Anfangswertaufgabe f€ur die hydrodyna-
mischen Grundgleichungen,” Mathematische Nachrichten,
vol. 4, pp. 213–231, 1951.

[3] O. A. Ladyzhenskaya, “The mathematical theory of viscous
incompressible flow. Second English edition, revised and

enlarged,” in Mathematics and its Applications, R. A.
Silverman and J. Chu, Eds., Gordon and Breach, Science
Publishers, New York-London-Paris, 1969.

[4] G. Prodi, “Un teorema di unicità per le equazioni di Navier-
Stokes,” Annali di Matematica pura ed applicata, vol. 48,
no. 1, pp. 173–182, 1959.

[5] J. Serrin, “On the interior regularity of weak solutions of the
Navier-Stokes equations,” Archive for Rational Mechanicsand
Analysis, vol. 9, no. 1, pp. 187–195, 1962.

[6] A. Majda and A. Bertozzi, “Vorticity and incompressible flow,”
in Cambridge Texts in Applied Mathematics, p. 27, Cambridge
University Press, Cambridge, 2010.

[7] L. Cafferalli, R. Kohn, and L. Nirenberg, “Partial regularity of
suitable weak solutions of the Navier-Stokes equations,” Com-
munications on Pure and Applied Mathematics, vol. 35, no. 6,
pp. 771–831, 1982.

[8] F. Lin, “A new proof of the Caffarelli-Kohn-Nirenberg theo-
rem,” Communications on Pure and Applied Mathematics,
vol. 51, no. 3, pp. 241–257, 1998.

[9] O. A. Ladyzhenskaya, “Unique global solvability of the three-
dimensional Cauchy problem for the Navier-Stokes equations
in the presence of axial symmetry,” Zapiski Nauchnykh Semi-
narov POMI, vol. 7, pp. 155–177, 1968.

[10] S. Leonardi, J. Málek, J. Necas, and M. Pokorný, “On axially
symmetric flows in ℝ3,” Zeitschrift für Analysis und ihre
Anwendungen, vol. 18, no. 3, pp. 639–649, 1999.

[11] M. R. Ukhovskii and V. I. Iudovich, “Axially symmetric flows
of ideal and viscous fluids filling the whole space,” Journal of
Applied Mathematics and Mechanics, vol. 32, no. 1, pp. 52–
62, 1968.

[12] A. Mahalov, E. S. Titi, and S. Leibovich, “Invariant helical sub-
spaces for the Navier-Stokes equations,” Archive for Rational
Mechanics and Analysis, vol. 112, no. 3, pp. 193–222, 1990.

[13] C. G. Diego, Absence of simple hyperbolic blow-up for the
quasi-geostrophic and Euler equations [PhD Thesis], Princeton
University, 1998.

[14] D. Alonso-Orán, A. Córdoba, and Á. D. Martínez, “Continuity
of weak solutions of the critical surface quasigeostrophic equa-
tion on S2,” Advances in Mathematics, vol. 328, pp. 264–299,
2018.

[15] D. Alonso-Orán, A. Córdoba, and Á. D. Martínez, “Global
well-posedness of critical surface quasigeostrophic equation
on the sphere,” Advances in Mathematics, vol. 328, pp. 248–
263, 2018.

[16] S. Wang and Y. X. Wang, “The global well-posedness for large
amplitude smooth solutions for 3D incompressible Navier-
Stokes and Euler equations based on a class of variant spherical
coordinates,” Mathematics, vol. 8, no. 7, p. 1195, 2020.

[17] P. Contantin and C. R. Doering, “Infinite Prandtl number
convection,” Journal of Statistical Physics, vol. 94, no. 1/2,
pp. 159–172, 1999.

[18] A. Majda, Introduction to PDEs and Waves for the Atmosphere
and Ocean, in: Courant Lecture Notes in Mathematics, New
York University, Courant Institute of Mathematical Sciences,
American Mathematical Society, New York, Providence, RI,
2003.

[19] J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag,
New York, 1987.

[20] B. Wen, N. Diannati, E. Lunasin, G. Chini, and C. Doering,
“New upper bounds and reduced dynamical modeling for Ray-
leigh–Bénard convection in a fluid saturated porous layer,”

11Journal of Function Spaces



Communications in Nonlinear Science and Numerical Simula-
tion, vol. 17, no. 5, pp. 2191–2199, 2012.

[21] T. Y. Hou and C. M. Li, “Global well-posedness of the viscous
Boussinesq equations,” Discrete & Continuous Dynamical Sys-
tems, vol. 12, no. 1, pp. 1–12, 2005.

[22] D. Chae, “Global regularity for the 2D Boussinesq equations
with partial viscosity terms,” Advances in Mathematics,,
vol. 203, no. 2, pp. 497–513, 2006.

[23] H. Abidi and T. Hmidi, “On the global well-posedness for
Boussinesq system,” Journal of Differential Equations,
vol. 233, no. 1, pp. 199–220, 2007.

[24] M. J. Lai, R. H. Pan, and K. Zhao, “Initial boundary value prob-
lem for two-dimensional viscous Boussinesq equations,”
Archive for Rational Mechanics and Analysis, vol. 199, no. 3,
pp. 739–760, 2011.

[25] C. Wang and Z. Zhang, “Global well-posedness for the 2-D
Boussinesq system with the temperature-dependent viscosity
and thermal diffusivity,” Advances in Mathematics, vol. 228,
no. 1, pp. 43–62, 2011.

[26] J. Saito, “Boussinesq equations in thin spherical domains,”
Kyushu Journal of Mathematics, vol. 59, no. 2, pp. 443–465,
2005.

[27] S. Li, J. Wu, and K. Zhao, “On the degenerate Boussinesq equa-
tions on surfaces,” Journal of Geometric Mechanics, vol. 12,
no. 1, pp. 107–140, 2020.

[28] H. Abidi, T. Hmidi, and S. Keraani, “On the global regularity
of axisymmetric Navier-Stokes-Boussinesq system,” Discrete
Continous Dynamical System Journal, vol. 29, no. 3, pp. 737–
756, 2011.

[29] T. Hmidi and S. Keraani, “On the global well-posedness of the
Boussinesq system with zero viscosity,” Indiana University
Mathematics Journal, vol. 58, no. 4, pp. 1591–1618, 2009.

[30] T. Hmidi and F. Rousset, “Global well-posedness for the
Navier-Stokes-Boussinesq system with axisymmetric data,”
Annales de l'IHP Analyse non linéaire, vol. 27, pp. 1227–
1246, 2010.

[31] T. Hmidi and F. Rousset, “Global well-posedness for the Euler-
Boussinesq system with axisymmetric data,” Journal of Func-
tional Analysis, vol. 260, no. 3, pp. 745–796, 2011.

[32] R. Danchin and M. Paicu, “Existence and uniqueness results
for the Boussinesq system with data in Lorentz spaces,” Phy-
sica D, vol. 237, no. 10-12, pp. 1444–1460, 2008.

[33] J. Fan and Y. Zhou, “A note on regularity criterion for the 3D
Boussinesq system with partial viscosity,” Applied Mathemat-
ics Letters, vol. 22, no. 5, pp. 802–805, 2009.

[34] D. Fang, W. Le, and T. Zhang, “Global solutions of 3D axisym-
metric Boussinesq equations with nonzero swirl,” Nonlinear
Analysis, vol. 166, pp. 48–86, 2018.

[35] D. Fang, C. Liu, and C. Qian, “On partial regularity problem
for 3D Boussinesq equations,” Journal of Differential Equa-
tions, vol. 263, no. 7, pp. 4156–4221, 2017.

[36] Q. Jiu and H. Yu, “Global well-posedness for 3D generalized
Navier-Stokes-Boussinesq equations,” Acta Mathematicae
Applicatae Sinica, English Series, vol. 32, no. 1, pp. 1–16, 2016.

[37] Z. Ye, “A logarithmically improved regularity criterion of
smooth solutions for the 3D Boussinesq equations,” Osaka
Journal of Mathematics, vol. 53, pp. 417–423, 2016.

[38] K. Choi, T. Y. Hou, A. Kiselev, G. Luo, V. Sverak, and Y. Yao,
“On the finite-time blowup of a one-dimensional model for
the three-dimensional axisymmetric Euler equations,” Com-

munications on Pure and Applied Mathematics, vol. 70,
no. 11, pp. 2218–2243, 2017.

[39] Q. Jiu, Y. Wang, and G. Wu, “Partial regularity of the suitable
weak solutions to the multi-dimensional incompressible Bous-
sinesq equations,” Journal of Dynamics and Differential Equa-
tions, vol. 28, no. 2, pp. 567–591, 2016.

[40] D. Chae and N. Kim, “Axisymmetric weak solutions of the 3-D
Euler equations for incompressible fluid flows,” Nonlinear
Analysis, vol. 29, no. 12, pp. 1393–1404, 1997.

[41] J. Fan, F. Li, and G. Nakamura, “Regularity criteria and uni-
form estimates for the Boussinesq system with temperature-
dependent viscosity and thermal diffusivity,” Journal of Math-
ematical Physics, vol. 55, no. 5, p. 051505, 2014.

[42] J. Fan, F. Li, and G. Nakamura, “Regularity criteria for the
Boussinesq system with temperature-dependent viscosity and
thermal diffusivity in a bounded domain,” Discrete & Contin-
uous Dynamical Systems, vol. 36, no. 9, pp. 4915–4923, 2016.

12 Journal of Function Spaces


	On the 3D Incompressible Boussinesq Equations in a Class of Variant Spherical Coordinates
	1. Introduction and Main Results
	2. Preliminaries
	3. Proof of Main Results
	Data Availability
	Conflicts of Interest
	Acknowledgments

