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In this paper, our focus is to acquaint with the Suzuki-type mappings to establish some fixed point results using the new
w-interpolative approach.We present some results for interpolative contraction operators via the w-admissible maps which satisfy
the Kannan, Ćirić–Reich–Rus, and Hardy–Rogers contractions in quasi-partial b-metric space. Further, the outcomes so obtained
are affirmed with relevant examples.

1. Introduction

In the early 20th century, Fréchet [1], a French mathema-
tician, initiated the concept of metric space, and due to its
efficiency and practicable implementations, the idea has
been upgraded, improved, and generalized by many authors.
In 1922, Banach [2] discovered a remarkable result, that is,
Banach contraction principle, which holds a significant
position in the field of nonlinear analysis. Later, Karapinar
[3] introduced quasi-partial metric spaces which were fol-
lowed by the discovery of b−metric spaces in 1993, by
Czerwik [4]. Gupta and Gautam [5] generalized quasi-partial
metric to quasi-partial b−metric space and proved some
fixed point results for such spaces. After all these classical
results, Suzuki [6] introduced a new type of mappings which
generalized the well-known Banach contraction principle.

In 2014, the notion of w-orbital admissible maps was
introduced by Popescu [7] which is a refinement of the
concept of α-admissible maps of Samet et al. [8].

Suppose S is a self-map defined on G and
w: G × G⟶ [0,∞] is a mapping where G is nonempty.
(e mapping S is said to be w-orbital admissible if for all
η ∈ G, we have

w(η, Sη)≥ 1⟶ w Sη, S
2η ≥ 1. (1)

If the continuity of the involved contractive mappings is
removed, we necessarily need (G, qpb) to be w-regular, i.e., if
ηn  is a sequence in (G, qpb) such that ηn ⟶ t ∈ G as

n⟶∞ and w (ηn, ηn+1) ≥ 1 for each n, then we have
w(ηn, t)≥1.

We show that the condition of w-regularity holds in
quasi-partial b-metric space by using w-admissibility con-
dition. In our earlier work [9], we have shown that w-ad-
missibility holds in quasi-partial b-metric space, i.e.,
w(ηn, Sηn)≥ 1; then, as n⟶∞, we get ηn ⟶ t, and
hence we get the condition for w-regularity.

(roughout the paper, R+, N, and ϕ stand for the set of
positive real numbers, natural numbers, and an empty set,
respectively. Let Ψ be the set of all nondecreasing self-
mappings ψ on [0,∞) such that 

∞
r�1 ψ

r(η)<∞ for every
η> 0. Notice that for Ψ ∈ ψ, we have ψ(0) � 0 and ψ(η)< η
for all η> 0 (see [10]).

2. Preliminaries

Definition 1 (see [5]). A function qpb: G × G⟶ R+ is said
to be a quasi-partial b-metric on a nonempty set G if it
satisfies the properties

(1) qpb(η, η) � qpb(η, ζ) � qpb(ζ, ζ) implies η � ζ;
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(2) qpb(η, η)≤ qpb(ζ, η);
(3) qpb(η, η)≤ qpb(η, ζ);
(4) qpb(η, ζ)≤ s[qpb(η, σ) + qpb(σ, ζ)] − qpb(σ, σ),

where s is called the coefficient of (G, qpb) such that s≥ 1 for
all η, ζ, σ ∈ G.

Definition 2 (see [5]). Suppose (G, qpb) is a quasi-partial
b-metric space. (en,

(1) A sequence ηn  is called a Cauchy sequence if and
only if limn,m⟶∞qpb(ηn, ηm) and limn,m⟶∞
qpb(ηm, ηn) exist finitely.

(2) A sequence ηn  ⊂ G converges to η ∈ G if and only if
qpb(η, η) �

limn⟶∞qpb(η, ηn) � limn⟶∞qpb(ηn, η).
(3) (G, qpb) is said to be complete if every Cauchy se-

quence ηn  ⊂ G converges with respect to τqpb
to a

point η ∈ G that holds

qpb(η, η) � lim
n,m⟶∞

qpb ηn, ηm( 

� lim
n,m⟶∞

qpb ηm, ηn( .
(2)

(4) A mapping f: G⟶ G is said to be continuous at
η0 ∈ G if for every ε> 0, there exists δ > 0 such that
f(B(η0, δ)) ⊂ B(f(η0), ε).

Definition 3 (see [9]). Suppose (G, qpb) is a quasi-partial
b-metric space. A self-map S: G⟶ G is known as a
w-interpolative Ćirić–Reich–Rus contraction if there exist
λ ∈ ψ and a map w: G × G⟶ [0,∞] with real numbers
α, β> 0, satisfying α + β< 1, that holds

w(η, ζ)qpb(Sη, Sζ)≤ λ qpb(η, ζ) 
β
. qpb(η, Sη) 

α

. qpb(ζ, Sζ) 
(1− α− β)

,
(3)

for all η, ζ ∈ G.

Definition 4 (see [11]). Suppose (G, qpb) is a quasi-partial
b-metric. Define a self-mapping S: G⟶ G and a map
w: G × G⟶ [0,∞) where λ ∈ ψ that holds

w(η, ζ)qpb(Sη, Sζ)≤ λ qpb(η, ζ) 
α

( · qpb(η, Sζ) 
β

· qpb(ζ, Sζ) 
c

·
1
2s

qpb(η, Sζ)( + qpb(ζ, Sη) 
1− α− β− c

, (4)

for all η, ζ ∈ G and real numbers α, β, c> 0 that satisfy the
condition α + β + c< 1. Such a mapping is known as
w-interpolative Hardy–Rogers-type contraction.

Definition 5 (see [10]). A mapping S is said to satisfy
C-condition on (G, qpb), if it satisfies
1
2

qpb(η, Sη) ≤ qpb(η, ζ)⇒qpb(Sη, Sζ)≤ qpb(η, ζ), (5)

for all η, ζ ∈ G.
(roughout the paper, qpb and Cqpb denote the quasi-

partial b-metric space and complete quasi-partial b-metric
space, respectively. One can see for more related point re-
sults in [12–15] and the references therein.

3. Main Results

We now define the main results for Suzuki-type mappings
using the notion of w-interpolation (see 16, 17) and the fact
that the condition of w-regularity holds in quasi-partial
b−metric space (see 18–20]).

Definition 6. Let (G, qpb) be a quasi-partial b-metric space
and there exists a self-map w: G × G⟶ [0,∞) with a real
number α ∈ [0, 1). A self-map S: G⟶ G is said to be a
w-ψ-interpolative Kannan contraction of Suzuki type if
there exist ψ ∈ Ψ that satisfies

1
2

qpb(η, Sη) ≤ qpb(η, ζ)

⇒w(η, ζ)qpb(Sη, Sζ)≤ψ qpb(η, Sη) 
α

qpb(ζ , Sζ) 
1− α

 ,

(6)

for all η, ζ ∈ G.

Theorem 1. Suppose (G, qpb) is a Cqpb and S: G⟶ G is a
w-ψ-interpolative Kannan contraction of Suzuki type. Let S

be a w-orbital admissible map and w(η0, Sη0)≥ 1 for some
η0 ∈ G. <en, S possesses a fixed point in G if any of the
following conditions hold:

(1) (G, qpb) is w-regular.
(2) S is continuous.
(3) ψS2 is continuous and w(η, Sη)≥ 1 when η ∈ Fix(S2).

Proof. Let η0 ∈ G with the condition w(η0, Sη0)≥ 1 and
ηn  be the sequence such that Sn(η0) � ηn for each positive
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integer n. For some η0 ∈ N, we have ηn0
� ηn0+1

. Hence, we
get ηn0

� Sηn0
, so ηn0

is a fixed point of S. Hence, the proof is
complete.

On the contrary, take ηn ≠ ηn+1 for every positive integer
n. As S is w-orbital admissible, we have the condition w(η0, S
η0)� w(η0, η1) ≥ 1 which implies that w(η1, S η1)� w(η1,
η2) ≥ 1. Proceeding in a similar way, we get

w ηn, ηn+1( ≥ 1. (7)

Hence, choosing η� ηn−1 and ζ � S ηn−1 in (6) gives
1
2

qpb(η, ζ) �
1
2

qpb ηn−1, Sηn−1( 

�
1
2

qpb ηn−1, ηn( ≤ qpb ηn−1, ηn( ,

(8)

which implies

qpb ηn, ηn+1( ≤w ηn−1, ηn( qpb Sηn−1, Sηn( 

≤ψ qpb ηn− 1, Sηn− 1(  
α
. qpb ηn, Sηn(  

1− α
 

� ψ qpb ηn− 1, ηn(  
α
. qpb ηn, ηn+1(  

1− α
 

< qpb ηn− 1, ηn(  
α
. qpb ηn, ηn+1(  

1− α
.

(9)

Hence, we have

qpb ηn, ηn+1(  
α < qpb ηn− 1, ηn(  

α
, (10)

which equivalently can be written as

qpb ηn, ηn+1( < qpb ηn−1, ηn( . (11)

(us, we get that qpb(ηn−1, ηn)  is a nonincreasing
sequence of positive terms, so there exists l≥ 0 such that
limn⟶∞ qpb(ηn−1, ηn) � l. On the other hand, from the

above equations and the nondecreasing nature of function ψ,
we obtain

qpb ηn, ηn+1( ≤ψ qpb ηn−1, ηn( ( ≤ψ2
qpb ηn−2, ηn−1( ( 

≤ . . . ≤ψn
qpb η0, η1( ( .

(12)

By triangular inequality, for all j ≥ 1, we get

qpb ηn, ηn+j ≤ sqpb ηn, ηn+1(  + s
2
qpb ηn+1, ηn+2(  + · · · + s

j
qpb ηn+j−1, ηn+j  

≤ sψn
qpb η0, η1(  + s

2ψn+1
qpb η0, η1(  + · · · + s

jψn+j− 1
qpb η0, η1(  

� 

n+j−1

m�n,r�1
s

rψm
qpb η0, η1( ( 

� Pn+j−1 − Pn−1,

(13)

where Pk � sk 
k
m�0 ψm(qpb(η0, η1)). But, the series


∞
m�0 ψm(qpb(η0, η1)) is convergent, so there exists a pos-

itive real number p such that limk⟶∞ Pk � p. Letting n and
j⟶∞ in the above inequality, we get

qpb ηn, ηn+j ⟶ 0. (14)

Hence, ηn  is a Cauchy sequence and using the com-
pleteness property of qpb space, it shows that there exists
t ∈ G such that

lim
n⟶∞

ηn � t. (15)

Also, we claim that S possesses a fixed point as t.
In the case when assumption (1) holds true, we have w

(ηn, t)≥ 1 and we claim that
1
2

qpb ηn, Sηn( ≤ qpb ηn, t(  or
1
2

qpb Sηn, S Sηn( ( 

≤ qpb Sηn, t( ,

(16)

for every n ∈ N. On the contrary, if the above condition
is not true, then by triangular inequality in qpb space, we
have
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qpb ηn, ηn+1(  � qpb ηn, Sηn(  + qpb(t, t)≤ qpb ηn, t(  + qpb t, Sηn( 

<
1
2

qpb ηn, Sηn(  +
1
2

qpb Sηn, S Sηn( ( 

�
1
2

qpb ηn, ηn+1(  +
1
2

qpb ηn+1, ηn+2( 

≤
1
2

qpb ηn, ηn+1(  +
1
2

qpb ηn, ηn+1(  � qpb ηn, ηn+1( ,

(17)

which is a contradiction, and hence our claim is proved. If
the first condition holds, we obtain

qpb ηn+1, St( ≤w ηn, t( qpb Sηn, St( 

≤ψ qpb ηn, Sηn(  
α
. qpb(t, St) 

1−α

� ψ qpb ηn, Sηn+1(  
α
. qpb(t, St) 

1−α

< qpb ηn, Sηn+1(  
α
. qpb(t, St) 

1−α
.

(18)

If the second condition holds, we get

qpb ηn+2, St( ≤w ηn+1, t( qpb S
2ηn, St 

≤ψ qpb Sηn, S
2ηn  

α
. qpb(t, St) 

1−α

� ψ qpb ηn+1, ηn+2(  
α
. qpb(t, St) 

1−α

< qpb ηn+1, ηn+2(  
α
. qpb(t, St) 

1−α
.

(19)

(erefore, letting n⟶∞, we get qpb(t, St) � 0, that is,
t � St.

In the case when assumption (2) holds, we have that the
mapping S is continuous, so we get

St � lim
n⟶∞

Sηn � lim
n⟶∞

Sηn+1 � t. (20)

In the case when assumption (3) holds, we have
ψS2t �ψlimn⟶∞S2ηn �ψlimn⟶∞ηn+2 � ψt and we prove
that St � t. On the contrary, take St≠ t; then,

1
2

qpb St,ψS
2
t  �

1
2

qpb(St,ψt)≤ qpb(St,ψt). (21)

By (6), we get

qpb(t, St)≤w(St, t)qpb S
2
t, St 

≤ψ qpb St, S
2
t  

α
. qpb(t, St) 

1− α

� ψ qpb ηn+1, ηn+2(  
α
. qpb(t, St) 

1− α

< qpb(St, t) 
α
. qpb(t, St) 

1− α

� qpb(t, St).

(22)

Hence, it is a contradiction. (us, t � St, that is, t is a
fixed point of the mapping S. □

Example 1. Let G � [0, π/4] and define qpb: G × G⟶ [0,
∞) such that

qpb(η, ζ) � Sinη + Sinζ. (23)

Define a self-mapping S: G⟶ G as

Sη �
π/9, η ∈ [0, π/8),

η, η ∈ [π/8, π/4].
 (24)

Also, define w: G × G⟶ [0, ∞) such that

w(η, ζ) �
2, η � π/9 and ζ � π/5,

0, otherwise.
 (25)

Choose α � 1/3 and define the function ψ ∈ Ψ as
ψ(η) � 2η/3. (e only case we need to verify is when η� π/9
and ζ � π/5; as for the remaining cases, we have w(η, ζ) � 0,
which clearly implies that inequality (6) holds. So, when
η� π/9 and ζ � π/5, we get

1
2

qpb

π
9

,
Sπ
9

   �
1
2

qpb

π
9

,
π
9

   � 0.342≤ 0.929

� qpb

π
9

,
π
5

 ,

(26)

which implies

w
π
9

,
π
5

 qpb

π
9

,
π
5

 ≤ψ qpb

π
9

,
π
9

  
1/3

qpb

π
5

,
π
5

  
2/3

 .

(27)

Hence, all the assumptions of (eorem 1 are satisfied,
which follows that the mapping S owns a fixed point, that is,
η � π/9, as shown in Figure 1.

Corollary 1. Let (G, qpb) be a C qpb and S be a self-map on
G, satisfying

1
2

qpb(η, Sη) ≤ qpb(η, ζ)

⇒qpb(Sη, Sζ)≤ψ qpb(η, Sη) 
α

qpb(ζ, Sζ) 
1− α

 ,

(28)

for all η, ζ ∈ G, where α ∈α ∈ [0, 1). <en, S owns a fixed
point in G.

Proof. For the proof, take w(η, ζ) � 1 in (eorem 1. □

Corollary 2. Let (G, qpb) be a C qpb and S be a self-map on
G, satisfying
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1
2

qpb(η, Sη) ≤ qpb(η, ζ)

⇒ qpb(Sη, Sζ)≤g qpb(η, Sη) 
α

qpb(ζ, Sζ) 
1− α

 ,

(29)

for all η, ζ ∈ G, where α ∈ [0, 1). <en, S owns a fixed point in
G.

Proof. For the proof, take ψ(η) � ηg, with g ∈ [0, 1) and
η> 0 in Corollary 1. □

Definition 7. Suppose (G, qpb) is a quasi-partial b-metric
space. Define a self-mapping S: G⟶ G such that there
exist ψ ∈ Ψ satisfying

1
2

qpb(η, Sη) ≤ qpb(η, ζ),

w(η, ζ)qpb(Sη, Sζ)≤ψ qpb(η, ζ) 
β

qpb(η, Sη) 
α
. qpb(ζ, Sζ) 

1− α− β
 ,

(30)

for all η, ζ ∈ G and real numbers α, β > 0 that satisfy
α+ β < 1. Such a mapping is called w-ψ-interpolative
Ćirić–Reich–Rus contraction of Suzuki type (see 21–23).

Theorem 2. Suppose (G, qpb) is a C qpb and S: G⟶ G is a
w-ψ-interpolative Ćirić–Reich–Rus contraction of Suzuki
type. Let S be a w-orbital admissible map and w(η0, Sη0) ≥ 1
for some η0 ∈ G. <en, S possesses a fixed point in G if any of
the conditions hold:

(1) (G, qpb) is w-regular.
(2) S is continuous.
(3) ψS2 is continuous and w(Sη, η)≥ 1 when η ∈ Fix(S2).

Proof. Let η0 ∈ G with the condition w(η0, Sη0)≥ 1 and
ηn  be the sequence such that Sn(η0) � ηn for each positive
integer n. Assume that for some η0 ∈ N, we have the

condition ηn0
� ηn0+1

. Hence, we get ηn0
� S ηn0

, which implies
ηn0

is the fixed point of S. So, the proof is complete.
On the contrary, take ηn ≠ ηn+1 for each positive integer

n. Since S is w-orbital admissible, we have w(η0, S η0)� w(η0,
η1) ≥ 1, which implies that w(η1, S η1)� w(η1, η2) ≥ 1.
Proceeding similarly,

w ηn, ηn+1( ≥ 1. (31)

Hence, choosing η� ηn−1 and ζ � S ηn−1 in (30), we get
1
2

qpb(η, ζ) �
1
2

qpb ηn−1, Sηn−1( 

�
1
2

qpb ηn−1, ηn( ≤ qpb ηn−1, ηn( ,

(32)

which implies

qpb ηn, ηn+1( ≤w ηn−1, ηn( qpb Sηn−1, Sηn( 

≤ψ qpb ηn− 1, ηn(  
β
. qpb ηn− 1, Sηn− 1(  

α
. qpb ηn, Sηn(  

1− α− β
 

� ψ qpb ηn− 1, ηn(  
β
. qpb ηn− 1, ηn(  

α
. qpb ηn, ηn+1(  

1− α− β
 .

(33)

4

3

2

1

3

2

1

0

2.0

1.5

1.0

Figure 1: (e graphical surface represents a 3-D view of the function, qpb(η, ζ) � Sinη + Sinζ. Clearly, the fixed point of the map S is π/9.
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(en, using ψ(η)< η for every η > 0, we get

qpb ηn, ηn+1( ≤ qpb ηn− 1, ηn(  
β+α

. qpb ηn, ηn+1(  
1− β− α

,

(34)

which equivalently can be written as

qpb ηn, ηn+1(  
α+β < qpb ηn− 1, ηn(  

α+β
. (35)

So, we get

qpb ηn, ηn+1( < qpb ηn−1, ηn( . (36)

Hence, it shows that qpb(ηn−1, ηn)  is a decreasing
sequence. Eventually, we have

qpb ηn, ηn+1( ≤ψ qpb ηn−1, ηn( ( . (37)

In a similar way, we get

qpb ηn, ηn+1( ≤ψn
qpb η0, η1( ( . (38)

Since ηn  is a fundamental sequence, applying trian-
gular inequality, we get

qpb ηn, ηn+l( ≤ sqpb ηn, ηn+1(  + s
2
qpb ηn+1, ηn+2(  + · · · + s

l
qpb ηn+l−1, ηn+l(  

≤ sψn
qpb η0, η1(  + s

2ψn+1
qpb η0, η1(  + · · · + s

lψn+l− 1
qpb η0, η1(  

� 
∞

k�n,r�1
s

rψk
qpb η0, η1( ( .

(39)

Taking n⟶∞, we deduce that ηn  is a fundamental
sequence in qpb and by the completeness property of qpb,
there exists t ∈ G satisfying

lim
n⟶∞

qpb ηn, t(  � 0. (40)

If assumption (1) holds, then we have w (ηn, t)≥ 1 and
we claim that

1
2

qpb ηn, Sηn( ≤ qpb ηn, t(  or
1
2

qpb Sηn, S Sηn( ( 

≤ qpb Sηn, t( ,

(41)

for every n ∈ N. On the contrary, suppose the above in-
equality does not hold; then, by triangular inequality in qpb,
we have

qpb ηn, ηn+1(  � qpb ηn, Sηn(  + qpb(t, t)≤ qpb ηn, t(  + qpb t, Sηn( 

<
1
2

qpb ηn, Sηn(  +
1
2

qpb Sηn, S Sηn( ( 

�
1
2

qpb ηn, ηn+1(  +
1
2

qpb ηn+1, ηn+2( 

≤
1
2

qpb ηn, ηn+1(  +
1
2

qpb ηn, ηn+1(  � qpb ηn, ηn+1( .

(42)

Hence, the contradiction occurs. (erefore, for every
n ∈N, our claim holds. If the first condition holds, we obtain

qpb ηn+1, St( ≤w ηn, t( qpb Sηn, St( 

≤ψ qpb ηn, t(  
β
. qpb ηn, Sηn(  

α
. qpb(t, St) 

1− α− β

� ψ qpb ηn, t(  
β
. qpb ηn, Sηn+1(  

α
. qpb(t, St) 

1− α− β

< qpb ηn, t(  
β
. qpb ηn, Sηn+1(  

α
. qpb(t, St) 

1− α− β
.

(43)

If the second condition holds true, clearly t is the fixed
point of S in a similar manner. Furthermore, if the w-regular

condition is removed and S is a continuous map, we get a
fixed point in G because
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t � lim
n⟶∞

ηn+1 � lim
n⟶∞

Sηn � S lim
n⟶∞

ηn  � St. (44)

Finally, if the last condition holds, i.e., ψS2 is continuous,
we easily obtain ψS2 � ψt. Suppose on the contrary that
St≠ t, since w(Sη, η)≤ 1 for any η ∈ Fix (S2) and

1
2

qpb St,ψS
2
t  �

1
2

qpb(St,ψt)≤ qpb(St,ψt). (45)

We have

qpb(t, St) � qpb S
2
t, St ≤w(St, t)qpb S

2
t, St 

≤ψ qpb(St, t) 
α
. qpb St, S

2
t  

β
. qpb(t, St) 

1− α− β

< qpb(St, t) 
α
. qpb(St, t) 

β
. qpb(t, St) 

1− α− β

� qpb(t, St),

(46)

which is a contradiction. So, t � St, that is, the mapping S

owns a fixed point t. □

Example 2. Suppose G � 0, 1/4, 1/3, 1/2, 1{ } and define
qpb: G × G⟶ [0, ∞) such that

qpb(η, ζ) � η + ζ. (47)

Let the transformation S: G⟶ G maps as follows:

S(0) � S
1
4

  � S(1)

S
1
3

  �
1
3
,

S
1
2

  � 0.

(48)

Also, define w: G × G⟶ [0, ∞) such that

w(η, ζ) �

0.2, (η, ζ) � (0, 1), 0,
1
3

 , (1, 0) ,

0, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(49)

Choose α � β � 1/3 and define the function ψ ∈ Ψ as
ψ(η) � η/2. We need to check when w(η, ζ) � 1. So, the
following cases occur.

Case 1. When (η, ζ) � (0, 1),

1
2

qpb(0, S0)  �
1
2

qpb 0,
1
2

   �
1
4
≤ 1 � qpb(0, 1), (50)

which implies

w(0, 1)qpb

1
2
,
1
2

 ≤ψ qpb(0, 1) 
1/3

qpb 0,
1
2

  
1/3



. qpb 1,
1
2

  
1/3

.

(51)

Case 2. When (η, ζ) � (0, 1/3),

1
2

qpb(0, S0)  �
1
2

qpb 0,
1
2

   �
1
4
≤
1
3

� qpb 0,
1
3

 , (52)

which implies

w 0,
1
3

 qpb

1
2
,
1
3

 ≤ψ qpb 0,
1
3

  
1/3

qpb 0,
1
2

  
1/3



. qpb

1
3
,
1
3

  
1/3

.

(53)

Case 3. When (η, ζ) � (1, 0),
1
2

qpb(1, S1)  �
1
2

qpb 1,
1
2

   �
3
4
≤ 1 � qpb(1, 0), (54)

which implies

w(1, 0)qpb

1
2
,
1
2

 ≤ψ qpb(1, 0) 
1/3

qpb 1,
1
3

  
1/2



. qpb 0,
1
2

  
1/3

.

(55)

Hence, all the assumptions of (eorem 2 are satisfied,
and it follows that the mapping S owns a fixed point, that is,
η � 1/3, as shown in Figure 2.

Definition 8. Let (G, qpb) be a quasi-partial b-metric space.
Define a self-mapping S: G⟶ G with ψ ∈ Ψ satisfying
1
2

qpb(η, Sη) ≤ qpb(η, ζ),

qpb(Sη, Sζ)≤ψ qpb(η, ζ) 
βmiddot; qpb(η, Sη) 

α


. qpb(ζ, Sζ) 
1− α− β

,

(56)

for all η, ζ ∈ G and α, β > 0 with the condition α+ β < 1.
Such a mapping is called a ψ-interpolative Ćirić–Reich–Rus
contraction of Suzuki type.

Corollary 3. Suppose (G, qpb) is a C qpb and S is a ψ-in-
terpolative Ćirić–Reich–Rus contraction of Suzuki type. <en,
S owns a fixed point in G.

Proof. For the proof, take w(η, ζ) � 1 in (eorem 2. □

Corollary 4. Suppose (G, qpb) is a C qpb and S is an in-
terpolative Ćirić–Reich–Rus contraction of Suzuki type if
there exist g ∈ [0, 1) and positive reals α, β > 0, with α + β < 1
such that
1
2

qpb(η, Sη) ≤ qpb(η, ζ)⇒qpb(Sη, Sζ)

≤g qpb(η, ζ) 
β

qpb(η, Sη) 
α

qpb(ζ, Sζ) 
1− α− β

 ,

(57)

for all η, ζ ∈G. <en, S possesses a fixed point in G.
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Proof. In(eorem 2, it is sufficient to put ψ(η) � gη, for all
η> 0 and g ∈ [0, 1), for the proof. □

Definition 9. Let (G, qpb) be a qpb space and define a map
w: G × G⟶ [0, ∞). A mapping S: G⟶ G is

w-ψ-interpolative Hardy–Rogers contraction of Suzuki type
if there exists ψ ∈ Ψ with real numbers α, β, c > 0, holding
α+ β+ c < 1 such that

1
2

qpb(η, Sη) ≤ qpb(η, ζ),

w(η, ζ)qpb(Sη, Sζ)≤ψ qpb(η, ζ) 
αmiddot; qpb(η, Sη) 

β
. qpb(ζ, Sζ) 

c
.
1
2v

qpb(ζ, Sη) + qpb(η, Sζ)  
1− α− β− c

 ,

(58)

for all η, ζ ∈ G and v≥ 1 (see [24]).

Theorem 3. Suppose (G, qpb) is a C qpb and S: G⟶ G is a
w − ψ-interpolative Hardy–Rogers contraction of Suzuki type.
Let S be a w-orbital admissible mapping and w(η0, S η0) ≥ 1
for some η0 ∈G. <en, S possesses a fixed point in G if any of
the conditions hold:

(1) (G, qpb) is w-regular.
(2) S is continuous.
(3) ψS2 is continuous and w(S η, η) ≥ 1 when η ∈Fix (S2).

Proof. Let η0 ∈ G with the condition w(η0, S η0) ≥ 1 and
ηn  be the sequence such that Sn(η0) � ηn for each positive
integer n. Assume that for some η0 ∈ N, we have the

condition ηn0
� ηn0+1

. Hence, we get ηn0
� S ηn0

which implies
ηn0

is a unique fixed point of S. Hence, the proof is complete.
Now, consider ηn ≠ ηn+1 for each positive integer n. As S

is w-orbital admissible, we have the condition w(η0, S
η0)� w(η0, η1) ≥ 1 which implies that w(η1, S η1)� w(η1,
η2) ≥ 1. Proceeding in a similar way, we get

w ηn, ηn+1( ≥ 1. (59)

Choosing η� ηn−1 and ζ � S ηn−1 in (58), we get
1
2

qpb(η, ζ) �
1
2

qpb ηn−1, Sηn−1( 

�
1
2

qpb ηn−1, ηn( ≤ qpb ηn−1, ηn( ,

(60)

which implies

qpb ηn,ηn+1( ≤w ηn−1,ηn( qpb Sηn−1,Sηn( 

≤ψ qpb ηn−1,ηn(  
α
. qpb ηn−1,Sηn−1(  

β
. qpb ηn,Sηn(  

c
.
1
2v

qpb ηn,Sηn−1(  + qpb ηn−1,Sηn(   
1−α−β−c

 

�ψ qpb ηn−1,ηn(  
α
. qpb ηn−1,ηn(  

β
. qpb ηn,ηn+1(  

c
.
1
2v

qpb ηn,ηn(  + qpb ηn−1,ηn+1(   
1−α−β−c

 .

(61)

1

2

2.0

1.5

0.5

0.0

1.0

1.0

3

4

5

Figure 2: (e 3-D plane in yellow represents the quasi-partial b-metric space defined by the function, qpb(η, ζ) � η + ζ. Clearly, the fixed
point of S is 1/3.
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(en, using ψ(η)< η for every η > 0, we get

qpb ηn, ηn+1(  
1− c ≤ qpb ηn− 1, ηn(  

β+α
.
1
2v

qpb ηn, ηn(  + qpb ηn− 1, ηn+1(   
1− α− β− c

, (62)

which is equivalent to

qpb ηn, ηn+1( < qpb ηn−1, ηn( . (63)

Hence, qpb(ηn−1, ηn)  is a decreasing sequence. Even-
tually, we have

qpb ηn, ηn+1( ≤ψ qpb ηn−1, ηn( ( . (64)

In a similar way, we get

qpb ηn, ηn+1( ≤ψn
qpb η0, η1( ( . (65)

Since ηn  is a fundamental sequence, applying trian-
gular inequality,

qpb ηn, ηn+l( ≤ sqpb ηn, ηn+1(  + s
2
qpb ηn+1, ηn+2(  + · · · + s

l
qpb ηn+l−1, ηn+l(  

≤ sψn
qpb η0, η1(  + s

2ψn+1
qpb η0, η1(  + · · · + s

lψn+l− 1
qpb η0, η1(  

� 
∞

k�n,r�1
s

rψk
qpb η0, η1( ( .

(66)

Taking n⟶∞, we deduce that ηn  is a fundamental
sequence in qpb space and by the completeness property of
qpb, there exists t ∈ G satisfying

lim
n⟶∞

qpb ηn, t(  � 0. (67)

Now we show that t is the fixed point of S. If assumption
(1) holds true, then we have w(ηn, t)≥ 1 and we claim that

1
2

qpb ηn, Sηn( ≤ qpb ηn, t(  or
1
2

qpb Sηn, S Sηn( ( 

≤ qpb Sηn, t( ,

(68)

for every n ∈ N. Suppose the above condition does not hold;
then, by triangular inequality in qpb, we have

qpb ηn, ηn+1(  � qpb ηn, Sηn(  + qpb(t, t)≤ qpb ηn, t(  + qpb t, Sηn( 

<
1
2

qpb ηn, Sηn(  +
1
2

qpb Sηn, S Sηn( ( 

�
1
2

qpb ηn, ηn+1(  +
1
2

qpb ηn+1, ηn+2( 

≤
1
2

qpb ηn, ηn+1(  +
1
2

qpb ηn, ηn+1(  � qpb ηn, ηn+1( ,

(69)

which is a contradiction. (erefore, for every n ∈N, either

1
2

qpb ηn, Sηn( ≤ qpb ηn, t(  or
1
2

qpb Sηn, S Sηn( ( ≤ qpb Sηn, t(  (70)
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holds. If the first condition holds, we obtain

qpb ηn+1, St( ≤w ηn, t( qpb Sηn, St( 

≤ψ qpb ηn, t(  
α
. qpb ηn, Sηn(  

β
. qpb(t, St) 

c
.
1
2v

qpb ηn, ηn(  + qpb(t, St)  
1− α− β− c



� ψ qpb ηn, t(  
α
. qpb ηn, Sηn(  

β
. qpb(t, St) 

c
.
1
2v

qpb ηn, ηn(  + qpb(t, St)  
1− α− β− c



< qpb ηn, t(  
α
. qpb ηn, ηn+1(  

β
. qpb(t, St) 

c
.
1
2v

qpb t, ηn+1(  + qpb ηn, St(   
1− α− β− c

.

(71)

If assumption (2) holds, we get that t is the fixed point of
S in a similar manner. Furthermore, if the w-regular con-
dition is removed and S is continuous, then we get that S

owns a unique fixed point in G because

t � lim
n⟶∞

ηn+1 � lim
n⟶∞

Sηn � S lim
n⟶∞

ηn  � St. (72)

Finally, if the last condition holds, i.e., ψS2 is continuous,
we easily obtain ψS2 � ψt. Suppose on the contrary that
St≠ t, since w(Sη, η) ≤ 1 for any η ∈ Fix (S2) and

1
2

qpb St,ψS
2
t  �

1
2

qpb(St,ψt)≤ qpb(St,ψt). (73)

We have

qpb(t, St) � qpb S
2
t, St ≤w(St, t)qpb S

2
t, St 

≤ψ qpb(St, t) 
α
. qpb St, S

2
t  

β
. qpb(t, St) 

c
.
1
2v

qpb(t, St) + qpb(t, St)  
1− α− β− c



< qpb(St, t) 
α
. qpb(St, t) 

β
. qpb(t, St) 

c
.
1
2

qpb(t, St) + qpb(t, St)  
1− α− β− c



� qpb(t, St),

(74)

which is a contradiction. So, t � St, which implies that t is a
fixed point of the map S. □

Definition 10. Let (G, qpb) be a quasi-partial b-metric space.
A mapping S: G⟶ G is said to be a ψ-interpolative
Hardy–Rogers contraction of Suzuki type if there exist ψ and
α, β, c > 0, with the condition α+ β+ c < 1 such that

1
2

qpb(η, Sη) ≤ qpb(η, ζ),

qpb(Sη, Sζ)≤ψ qpb(η, ζ) 
α

qpb(η, Sη) 
β
. qpb(ζ, Sζ) 

c
.
1
2v

qpb(ζ, Sη) + qpb(η, Sζ)  
1− α− β− c

 ,

(75)

for all η, ζ ∈ G.

Corollary 5. Let (G, qpb) be a C qpb and S be a ψ-inter-
polative Hardy–Rogers contraction of Suzuki type. <en, the
mapping S possesses a fixed point in G.

Proof. For the proof, take w(η, ζ) � 1 in (eorem 3. □

Example 3. Let G � [0, 3] and define qpb: G × G⟶ [0,∞)
such that
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qpb(η, ζ) � |η + ζ| + η. (76)

Let the mapping S: G⟶ G be defined as

Sη �

2, η ∈ [0, 1)

2
3
, η ∈ [1, 2),

η, η ∈ [2, 3].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(77)

Also, define w: G × G⟶ [0, ∞) such that

w(η, ζ) �
0.1, η � 0 and ζ � 3,

0, otherwise.
 (78)

Choose α � β � c � 1/4 and define the function ψ ∈ Ψ as
ψ(η) � η/3. For η, ζ ∈ [0, 2), we have w(η, ζ) � 0, which
clearly implies that inequality (58) holds. As per the defi-
nition of function w, the only case left is when we have η� 0
and ζ � 3 as w(η, ζ) � 1, so
1
2

qpb(0, S0)  �
1
2

qpb(0, 2)  � 1≤ 3 � qpb(0, 3), (79)

which implies

w(0, 3)qpb(2, 3)≤ψ qpb(0, 3) 
1/4

qpb(0, 2) 
1/4

qpb(3, 3) 
1/4 1

2v
qpb(3, 2) + qpb(0, 3) 

1/4
 , (80)

where we assume v � 1. Hence, the assumptions of (eorem
3 are satisfied, so the mapping S owns a fixed point, that is,
η � 2, as shown in Figure 3.

4. Conclusion and Future Aspects

(e paper propounds the idea of using interpolation in
noteworthy Suzuki-type mappings in the quasi-partial
b-metric space. (e incentive behind the paper was to in-
troduce new concepts on completeness of w-ψ-interpolative
Kannan, Ćirić–Reich–Rus, and Hardy–Rogers contractions
of Suzuki-type mappings in quasi-partial b-metric space.
Further, some fixed point results are obtained and are
validated by illustrative examples. Interpolation is a noble
concept which can be utilized to obtain different interpo-
lative contraction of Suzuki-type mappings in other well-
known spaces in the future. We are certain that the paper is a
significant improvement of the known results in the existing
fixed point literature.
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[1] M. Fréchet, “Sur quelques points du calcul fonctionnel,”
Rendiconti del Circolo Matematico di Palermo, vol. 22,
pp. 1–72, 1906.

[2] S. Banach, “Sur les opérations dans les ensembles abstraits et
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