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In this paper, we study the existence and uniqueness of the mild solution of the fractional integro-differential with the nonlocal
initial condition described by the Caputo fractional operator. Note that here the order of the Caputo derivative satisfies the
condition that α ∈ ð1, 2Þ. The existence of α-resolvent operator in Banach space and fixed point theorem has been utilized in
the proof of the existence of the mild solution. We have established in this paper the Hyers-Ulam stability of the mild solution
of the considered fractional integro-differential equation. An illustrative example has been provided to support the main
findings of the paper.

1. Introduction

This paper focuses on the application of fractional operators
in modeling and studying fundamental mathematics. Note
that there exist many fractional operators in the field of frac-
tional calculus: Caputo derivative [1, 2], Caputo-Fabrio
derivative [3, 4], see also in [4], where we can find the oper-
ator with exponential kernel. We have the Atangana-
Baleanu derivative [5], the Riemann-Liouville fractional
operator [1, 2], and many other fractional derivative opera-
tors similar to the previously cited operators [6, 7]. For paper
supporting the applications of fractional calculus in the
mathematical physics field see in [8, 9], in mathematical
physics field see in [10–12], in biology [13–16], in statistical
data [14], on vibration equation [10], on fluid modeling for
getting analytical solutions via the Laplace transform
method [9], in same direction see [17] and Khalid et al. in
[18], the application of the Laplace transform is also applied
by Sene in the following investigation [19] and in [20] where
the Fourier transform is applied to the fractional operator to
get the analytical solution of the fluid model. In the present
paper, we will focus on the fractional-integro differential
equation focussed in the literature [21], also studied in the
literature with the integer-order derivative in the following

works [22, 23]. In the present paper, we consider the frac-
tional version defined by the equation

Dαy tð Þ = Ay tð Þ +
ðt
0
B t − sð Þy sð Þ + h t, yð Þ, for t ∈ 0, b½ �, ð1Þ

y 0ð Þ − g yð Þ = y0 ∈ X: ð2Þ
Here, X is a Banach space, where our investigation will

be focussed. In this paper A : DðAÞ⟶ X is a sectorial oper-
ator of type Ωðγ, θÞ; in other words, for λ ∈ ρðAÞ such that
jλj > γ, we have that jarg ðλÞj < θ defined in DðAÞ ⊂ X into
X, BðtÞ is a closed linear operator with its domain satisfying
the condition DðBÞ ⊃DðAÞ. The function h : ½0, b� × C⟶ X
is a continuous function, and the function g : Cð½0, b�, XÞ
⟶ X is a given continuous function. For more piece of
information on the definition of the same problem (1) in
the integer-order version, see in [22]. The problem reported
in Equation (1) is new in the context of fractional calculus
because, at first, the Caputo fractional operator has been
considered; second, some new resolvents will be introduced,
and at last, the nonlocal condition gives the system interest
audience. The studies of the Hyers Ulam stability will be a
novel notion in the present investigation and can be
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considered a novel aspect of the present paper. In our prob-
lem, the order is considered into the interval α ∈ ð1, 2Þ. As it
will be noticed later in the illustration section the present
problem has many domains of applications notably in frac-
tional heat processes. The same direction of investigations
has been focussed in the literature, see the following paper
[21]. In our information, there are not many investigations
of the stability analysis of the solutions of the fractional
integro-differential equations. We notice that the fractional
integro-differential equation has begun to attract some
researchers, and some results are well established in the liter-
ature like the definition and the existence of the α-resolvant
operator; see more pieces of information in [24]. For short,
the problem under investigation can be considered a new
open problem in fractional calculus and merits more inves-
tigations in the future. The main importance of this investi-
gation is to see the influence of the fractional operator in the
investigation. The existence and the uniqueness of the mild
solution of the model (1) will be focused on. For the findings
related to the existence and the uniqueness of the mild solu-
tion, various fixed points theorems have been used, namely,
the Banach fixed point theorem.

In fractional calculus, there exist works related to the
integro-differential equations but many of them focus on
the problems of the solutions, we mean the determination
of the analytical solutions and the numerical solutions. In
other words, in the applied mathematics view points of
integro-differential equations, here, fundamental mathemat-
ics aspect is considered notably; we prove the existence of at
least one mild solution for the problem considered with a
novel initial condition, we mean nonlocal initial condition.
For the literature review, we can cite the following papers.
In fractional calculus, the existence of the analytic α-resol-
vant operator in the fractional integro-differential equation
with Caputo derivative has been proprosed [24]. They con-
sider the following the problem:

Dαy tð Þ = Ay tð Þ +
ðt
0
B t − sð Þy sð Þ, for t ∈ 0, b½ �,

y 0ð Þ = y0, y′ 0ð Þ = 0:
ð3Þ

In [21], Agarwal et al. have proposed the existence of the
mild solution of the fractional integro-differential equation
described by Caputo derivative and with delay. In the same
direction of the investigations, general results on the exis-
tence of a mild solution with fractional integro-differential
equations with delay have been proposed by Santos et al.
in [25]. For investigation related to the study of the upper
bound of the α-resolvant operators, see Shu and Wang in
[26]. In [27], Wang and Shu have investigated the existence
of a positive mild solution for fractional differential evolu-
tion equations with nonlocal conditions, where the order
describes the condition 1 < α < 2. The fractional differential
equations used in their investigations were described by
the Caputo derivative. For problems related to the existence
of mild solutions using fractional resolvents, we have the fol-
lowing investigations [28, 29]. There also exist many investi-
gations related to the integro-differential equation described

by integer-order derivative; we cite the most relevant of
them for the present investigations, refer to the papers by
Ezzinbi et al. [22, 23] and Diop et al. [30, 31] and for the
problem concerning the existence of mild solutions for a
semilinear integro-differential equation with nonlocal initial
conditions by Lizama and Pozo in [32].

In this paper, we consider fractional integro-differential
equation with the nonlocal initial condition initiated studied
in the literature by Lizama and Pozo in [32]. The difference
between the problem (1) and Lizama and Pozo work is that
in our present investigations, here, we consider the Caputo
derivative with the order into ð1, 2Þ which is also a novel
aspect in the fractional calculus. Many real problems in frac-
tional calculus are considered in the interval ð0, 1Þ: The sec-
ond impact of the paper is the stability analysis provided in
this paper. The existence of the mild solution for our consid-
ered problem will generate the definition of a new family of
operators called the α-resolvant operators. The examples
provided in this paper will provide the applicability of our
findings in fractional diffusion processes.

The present paper is described in the following form: In
Section 2, we define the fractional operators used in the pres-
ent investigations. In Section 3, we recall the preliminary
results established in the literature. In Section 4, we provide
the existence and the uniqueness of the mild solution using
the fixed point theorem. We also focus on the Hyers-Ulam
stability of the solution of the considered model in this
paper. In Section 5, we describe the example which illus-
trates our main findings. We finish with Section 6 with the
concluding remarks and open a new door of investigations.

2. Fractional Operators

This section will be the part where we recall the fractional
operator used in this section. For generalization, we consider
the fractional-order derivative in their general forms. The
attraction of this part will be the fractional integral, the
Caputo fractional operator, and the Riemann-Liouville inte-
gral. There exist also recent fractional operators such as the
Caputo-Fabrizio and Atangana-Baleanu fractional operators
well established in the literature. At first, the following defi-
nition is the definition of the Rieman-Liouville integral
which plays much interest in the determination of the form
of the analytical solutions using the Volterra integral.

Definition 1 (see [1, 2]). We utilize a function represented by
f : ½0,+∞½⟶ℝ, then we define the called in the literature
the Riemann-Liouville integral of the considered function
as the form that

Iα fð Þ tð Þ = 1
Γ αð Þ

ðt
0
t − sð Þα−1 f sð Þds, ð4Þ

where Γð⋯Þ symbolizes the Gamma Euler function and the
order α verifies the condition as α > 0.

The next definition is the definition of the Riemann-
Liouville derivative associated with the previous integral.
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The information on this derivative can be found in the paper
in the literature in the following reference paper [1, 2].

Definition 2 (see [1, 2]). We utilize the Riemann-Liouville
derivative of the considered function f : ½0,+∞½⟶ℝ, of
order α as the form represented by

Dα f tð Þ = 1
Γ n − αð Þ

d
dt

� �nðt
0
f sð Þ t − sð Þn−α−1ds, ð5Þ

for the time t > 0, the order of the derivative satisfies the
condition that α ∈ ðn − 1, nÞ, and where Γð⋯Þ symbolizes
the Gamma Euler function.

We continue with the Caputo derivative utilized in our
investigation. As previously mentioned, we use the order of
the derivative satisfying the condition that α ∈ ðn − 1, nÞ.
We have the following definition.

Definition 3 (see [1, 2]). We utilize the Caputo fractional
derivative of the considered function f : ½0,+∞½⟶ℝ, of
order α as the form represented by

Dα f tð Þ = 1
Γ n − αð Þ

ðt
0
f nð Þ sð Þ t − sð Þn−α−1ds, ð6Þ

for the time t > 0, the order of the derivative satisfies the
condition that α ∈ ðn − 1, nÞ, and where Γð⋯Þ symbolizes
the Gamma Euler function.

Note that the previous definition is utilized in our inves-
tigation with the condition that α ∈ ð1, 2Þ which means that
n = 2. The previous definitions of the fractional operators
are important because first, they permit the prediction of
the future of the dynamic system using the information
obtained from the past of the system. The memory property
of the fractional operators is the main objective of their
attraction to model real-world problems. In the literature,
there also exist many controversies on the validity of the
fractional operators, and there exist nowadays many ques-
tions without answers concerning the utility of the fractional
operator. Apart from the classical derivative, there exist in
the literature the so-called derivative with exponential ker-
nel, namely, the Caputo-Fabrizio derivative and the deriva-
tive with Mittag-Leffler kernel, namely, the Atangana-
Baleanu derivative, the definitions of these derivatives can
be found in the literature [3–5].

Before closing this part, we recall the Laplace transform
of the Caputo derivative in our context, which will be pro-
vided to get the form of the solution of our present model.
We have the following representation for the Laplace trans-
form

L Dα
c fð Þ tð Þf g = sαL f tð Þf g − sα−1 f 0ð Þ − sα−2 f ′ 0ð Þ: ð7Þ

In the previous Equation (7), we considered n = 2 and
applied the formulation of the Laplace transform reported
in the literature on fractional calculus [1, 2].

3. Preliminaries Results

This section will be part where we describe we recall the
existing results in the literature necessary for our extension.
Let the fractional integro-differential be defined by the fol-
lowing equation, that is

Dαy tð Þ = Ay tð Þ +
ðt
0
B t − sð Þy sð Þ, for t ∈ 0, a½ �, ð8Þ

y 0ð Þ = y0 ∈ X: ð9Þ
where A is a closed densely defined linear operator on a
Banach space described by ðX, k⋯kXÞ. Note that for the
manupulation of DðAÞ, we will use the norm formulated as
the form kxkY = kAxkX + kxkX for x ∈ X, and furthermore,
it is considered as Banach space represented by ðY , k⋯kYÞ.
ðBðtÞÞt≥0 is a family of a linear operator on X such that Bðt
Þ is continuous from the set Y to the set X for almost all t
≥ 0: The function BðtÞy is considered to be measurable
and satisfying to the following inequality:

B tð Þyk kX ≤ b tð Þ yk kY , ð10Þ

where y ∈ Y and the function b : ℝ+ ⟶ℝ+ is locally inte-
grable function. Equation (8) can be found in [22, 23] in
context of integer-order derivative. We introduce the follow-
ing definition concerning an important operator known as
the α-resolvent operator, which has been already defined in
the literature.

Definition 4 (see [25]). The α-resolvent operator of the frac-
tional integro-differential equation represented in Equation
(5) is a bounded linear operator ðRαÞt≥0 satisfying the fol-
lowing properties:

(a) The function represented by Rα : ℝ
+ ⟶LðXÞ is

strongly continuous and verifies the property that
Rαð0Þx = x for all x ∈ X and α ∈ ð1, 2Þ, and further-
more, we have kRαðtÞkLðXÞ ≤Meβt , where M and
β are constant

(b) for all x ∈DðAÞ, Rαð:Þx ∈Cð½0,+∞, ½DðAÞ�Þ ∩C1ðð
0,+∞½, XÞ and the following equations held for every
t ≥ 0

DαRα tð Þx = ARα tð Þx +
ðt
0
B t − sð ÞRα sð Þx sð Þds,

DαRα tð Þx =Rα tð ÞAx +
ðt
0
B t − sð ÞRα sð Þx sð Þds:

ð11Þ

Definition 5 (see [25]). The existence of the unique α-resol-
vent operator for our considered fractional problem is possi-
ble under the following assumptions

(a) The operator A : DðAÞ ⊆ X⟶ X is a closed densely
defined linear operator on a Banach space ðX, k:kXÞ
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(b) There exists a subspace D ⊆DðAÞ dense in ½DðAÞ�
and positive constant C1, such that AðDÞ ⊆DðAÞ, ~B
ðλÞðDÞ ⊆DðAÞ, kA~BðλÞykX ≤ C1kykX for every y ∈
D and all λ ∈Ω, where

Ω = λ ∈ℂ : arg λð Þ ≤ θf g: ð12Þ

The detail of the present definition with the function
used in its form can be found in the originated paper [25].
There exists a third condition for the existence of the α
-resolvent operator but we advise the readers to refer to
the paper [25]. The form of the alpha-resolvent operator in
our paper will depend on the application of the Laplace
transform as described later in the main results of this paper.
It is now ready for our problem to be definite and to give the
form of the potential mild solution. We now consider the
fractional integro-differential equation with a nonlocal ini-
tial condition defined by the following equation

Dαy tð Þ = Ay tð Þ +
ðt
0
B t − sð Þy sð Þ + h t, yð Þ, for t ∈ 0, a½ �,

ð13Þ

y 0ð Þ − g yð Þ = y0 ∈ X: ð14Þ

The first objective will be to determine the form of its
analytical solution via the α-resolvent operator. Before, we
introduce a new family of fractional operators defined in
the following definition.

Definition 6.We consider that α ∈ ð1, 2Þ, and then, we repre-
sent the family ðSαÞt≥0 for the fractional integro-differential
Equation (13) under the condition (14) by the following
form:

Sα tð Þ = 1
2πi

ð
Ω

eλt λα−1I − A − B̂ λð Þ� �−1
dλ, ð15Þ

for each t ≥ 0 and i is an imaginary number in complex
space and Ω being a suitable path.

It is straightforward to see that the new operator Sα is
admitting the upper bound which can be expressed via norm
inLp space. The upper bound of this operator will be deter-
mined and used later in our investigations. Note that the
operator defined in Equation (15) will be obtained by the
application of the inverse of the Laplace transform.

This section summarized the fundamental results
already established in the literature. The main objective of
our paper is to prove the existence and uniqueness of at least
one mild solution for our considered problem in the intro-
duction section. The second objective will be to study the
stability analysis of the solution is Hyers-Ulam stability.
Here, note that the Caputo derivative has been used in all
investigations.

4. Main Findings

This section will be the part where the findings of the paper
have been assigned. The first objective or finding of our
paper is to determine the form of solution for fractional
integro-differential (1) with a nonlocal initial condition con-
sidered in Equation (2). We describe our first finding in the
following theorem.

Theorem 7. We consider that the function h : ½0, b� × C
⟶ X, then the mild solution of the fractional integro-
differential Equation (1) has the following form:

y tð Þ = Rα tð Þ y0 + g yð Þð Þ +
ðt
0
Sα t − sð Þh s, y sð Þð Þds, ð16Þ

where the α-resolvent operator Rα, and the fractional operator
Sα decribed by the following form:

Rα tð Þ = 1
2πi

ð
Ω

eλtλα−1 λαI − A − B̂ λð Þ� �−1
dλ,

Sα tð Þ = 1
2πi

ð
Ω

eλt λαI − A − B̂ λð Þ� �−1
dλ:

ð17Þ

Proof. The technique of the proof exists in the literature;
here, we adapt it for our context. We just replace the initial
condition with a nonlocal initial condition. Applying the
Laplace transform to both sides of Equation (1), we get the
following form

λα�y − λα−1y 0ð Þ − λα−2y′ 0ð Þ = A�y + �B�y + �h,
λα�y − λα−1y 0ð Þ = A�y + �B�w + �h,

�y λαI − A − �B
� �

= λα−1w 0ð Þ + �h,

λα−1 λαI − A − �B
� �−1w 0ð Þ + λαI − A − �B

� �−1�h = �y:

ð18Þ

From the inverse of the Laplace transform, it follows the
solution takes the form described in Equation (16), and the α
-resolvent operator and the second operator Sα are described
by the forms

Rα tð Þ = 1
2πi

ð
Ω

eλtλα−1 λαI − A − B̂ λð Þ� �−1
dλ, ð19Þ

Sα tð Þ = 1
2πi

ð
Ω

eλt λα−1I − A − B̂ λð Þ� �−1
dλ: ð20Þ

In Equations (19) and (20), the term i represents an
imaginary variable. This first result is very important
because all the findings in this paper come from the solution
established in Equation (16). And we can note that the α
-resolvent operator Rαð⋯Þ and the second operator Sαð⋯Þ
is obtained via the applications of the inverse of the Laplace
transform.

4.1. Existence Results of the Mild Solution. This section is
devoted to providing the existence of at least one mild solu-
tion for our fractional problem (1) with a nonlocal initial
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condition. Let the function x : ½0, b�⟶ X according to the
previous section, the mild solution of Equation (1) signified
here can be expressed like the following form

y tð Þ = Rα tð Þ y0 + g yð Þð Þ +
ðt
0
Sα t − sð Þh s, y sð Þð Þds, ð21Þ

for all t ∈ ½0, b�. For the existence and the uniqueness, we
make the following assumptions which will be used to prove
our finding.

(H1) We suppose that the α-resolvent operator Rα, and
the fractional operator Sα are both bounded as the following
relationships kRαðtÞkX ≤Mb, and kSαðtÞkX ≤Mw where
Mb and Mw are constants.

(H2) The function hð:,yÞ is measurable for all y ∈ X and
satisfies the Caratheodory conditions. The function h(t,.) is
continuous with respect to almost all of the first argument
with t ∈ ½0, b�.

(H3) Let the existence of a function ρ ∈ L1ð½0, b�,ℝ+Þ
and a continuous and nondecreasing function ϖ : ℝ+ ⟶
ℝ+ verifying the relationship that khðt, yÞkX ≤ ρðtÞϖðkykÞ
for all t ∈ ½0, b� and y ∈ X.

(H4) Let the existence of a nondecreasing continuous
function defined by π : ℝ+ ⟶ℝ+ verifying for all y ∈Cð½
0, b�, XÞ the condition that kgðyÞkX ≤ πðkyk∞Þ. And for
the rest in our present context, we define the ball as the form
Br = fy ∈Cð½0, b�, XÞ: kykCð½0,b�,XÞ ≤ rg:

(H5) Note that as previously mentioned, the function g
is a continuous function and furthermore, we add the
assumption that g : Cð½0, b�, XÞ⟶ X is lipschitz continu-
ous. Let a constant k such that

g y1ð Þ − g y2ð Þk kX ≤ k y1 − y2k kX : ð22Þ

We now start proving the existence of at least one mild
solution for our problem described by Caputo derivative
with the novel initial condition which is a nonlocal condi-
tion. We describe one of the findings of the paper in the fol-
lowing theorem.

Theorem 8. We assume that the assumptions (H1), (H2),
(H3), (H4), and (H5) are hold. Thus, our model described
by Equation (1) with nonlocal initial condition Equation (2)
has at least one mild solution for all t ∈ ½0, b�.

Proof. The proof of the previous theorem combines the 3
steps described in the present proof. The first step will con-
sist to prove our following operator is well defined.

We use Equation (21) and (H4) to define the following
operator as the form described as P : Br ⟶Cð½0, b�, XÞ
such that

Pyð Þ tð Þ = Rα tð Þ y0 + g yð Þð Þ +
ðt
0
Sα t − sð Þh s, y sð Þð Þds: ð23Þ

Procedure 1. The first step consists to prove that P : Br
⟶ Br . The proof is inspired from [22]. Before the proof,
we assume the following condition that is hold

max Mb,Mwf g lim
r⟶∞

π rð Þ
r

+ ϖ rð Þ
r

ðt
0
ρ sð Þds

� �
< 1: ð24Þ

To arrive at our end, we apply the norm considered in
our Banach space, (H1), (H3), and (H4) and we use, we
get that the following relationship

Pyð Þ tð Þk kX ≤ Rα tð Þ y0 + g yð Þð Þk kX +
ðt
0
Sα t − sð Þh s, y sð Þð Þds

����
����
X

≤Mb y0k kX + π rð Þð Þ +Mwϖ rð Þ
ðt
0
ρ sð Þds:

ð25Þ

We proceed by contradiction; we want to prove that we
can find r > 0 such that the following condition holds that
is Py ∈ Br . Now, by contradiction procedure, we suppose that
the assumption is not held, and then, for each r > 0, we can
find y ∈ Br satisfying the condition that Py ∉ Br . In other pro-
cedures, that means

r < Pyð Þ tð Þk kX ≤Mb y0k kX + π rð Þð Þ +Mwϖ rð Þ
ðt
0
ρ sð Þds,

ð26Þ

and then we get the following relationship

1 < max Mb,Mwf g y0k kX
r

+ π rð Þ
r

� �
+ max Mb,Mwf g

r
ϖ rð Þ

ðt
0
ρ sð Þds:

ð27Þ

Applying the Infinium by taking r⟶∞, we arrive to
the following relationship

1 <max Mb,Mwf gliminf
r⟶∞

π rð Þ
r

+ ϖ rð Þ
ðt
0
ρ sð Þds

� �
: ð28Þ

We clearly observe that this Equation (28) contradicts
the relation established in Equation (24) and then we con-
clude that kðPyÞðtÞkX ≤ r; thus, that means Py ∈ Br for all y
∈ Br .

Procedure 2. The first step consists to prove that P : Br
⟶ Br is an continuous function. We use the classical pro-
cedure to prove the continuity of the previous function, that
is we take numerical suite family fðynÞn≥0g included in Br

satisfying the property that yn ⟶ �y as n converges to ∞.
For simplification, we decompose operator (23) in two sub-
operator, we denote that

P1y = Rα tð Þ y0 + g yð Þð Þ: ð29Þ

We apply the considered norm in our Banach space, and
we utilize the assumptions for our model in Equation (34),
the reader can also refer to (H1) and (H5), that is, g is a
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continuous function, then we get the following relationship

P1yn − P1�yð Þ tð Þk kX ≤Mb g ynð Þ − g �yð Þð Þk kX : ð30Þ

We continue our started decomposition in previous lines
by letting that the function P2 represented as the form

P2y =
ðt
0
Sα t − sð Þh s, y sð Þð Þds: ð31Þ

We apply the considered norm in our Banach space, and
we use the assumptions (H1) and (H2) where it is stipulated
that the h is a continuous function, then we get the following
relationships:

P2yn − P2�yð Þ tð Þk kX ≤
ðt
0
Sα t − sð Þ h s, yn sð Þð Þ − h s, �y sð Þð Þð Þds

����
����
X

≤
ðt
0
Sα t − sð Þk kX h s, yn sð Þð Þ − h s, �y sð Þð Þð Þk kXds

≤Mw

ðt
0

h s, yn sð Þð Þ − h s, �y sð Þð Þð Þk kXds:

ð32Þ

Combining Equation (30) and Equation (32) and using
the theorem of convergence known as the Lebesgue-
dominated convergence theorem and the continuity of the
functions g and h described in the assumptions (H2) and
(H5), we get the following relation

Pyn − P�yð Þ tð Þk kX ≤Mb g ynð Þ − g �yð Þð Þk kX
+Mw

ðt
0

h s, yn sð Þð Þ − h s, �y sð Þð Þð Þk kXds⟶ 0 as n⟶∞,

ð33Þ

where Py = P1y + P2y; thus, kðPyn − P�yÞðtÞkX ⟶ 0. That
means using the classical procedure that the function P
: Br ⟶ Br is a continuous function.

Procedure 3. This step consists to prove that fPy : y ∈ Brg
is relatively compact. We conserve the decomposition consid-
ered in the previous procedures. We begin to prove that the
function Py is an equicontinuous function and bounded in
the set Br. We have the following relationships that

P1y t2ð Þ − P1y t1ð Þð Þ tð Þk kX = Rα t2ð Þg y t2ð Þð Þ − Rα t1ð Þg y t2ð Þð Þk kX
≤ Rα t2ð Þ − Rα t1ð Þk kX g y t2ð Þð Þk kX

+ Rα t1ð Þk kX g y t2ð Þð Þ − g y t1ð Þð Þk kX :
ð34Þ

Equation (1) needs the uniform continuity of the α-resol-
vent operator family in the set Br, which is satisfied because the
operator Rαð:Þ is continuous in a compact set. The same for
the function g which is continuous in a compact set. Then,
we can observe that when t2 ⟶ t1, then we have that
kðP1yðt2Þ − P1yðt1ÞÞðtÞkX ⟶ 0: That is equivalent to the
equicontinuity of the function Py1. We now prove the bound-
edness of this operator using the assumptions (H1) and (H4),

we have

P1y tð Þk kX = Rα tð Þ y0 + g y tð Þð Þð Þk kX ≤Mb y0k kX + π rk k∞
� �

:

ð35Þ

Finally, we confirm the relative compactness of the first
operator Py1. We continue with the operator Py2. We have
the following relationships

P2y t2ð Þ − P2y t1ð Þð Þ tð Þk kX
≤

ðt1
0
Sα t2 − sð Þh s, y sð Þð Þds −

ðt1
0
Sα t1 − sð Þh s, y sð Þð Þds

����
����
X

+
ðt2
t1

Sα t2 − sð Þh s, y sð Þð Þds
�����

�����
X

:

ð36Þ

Let us consider the following transformation for simplifi-
cation in the calculations, the first transformation is defined by

I1 =
ðt1
0
Sα t2 − sð Þ − Sα t1 − sð Þð Þh s, y sð Þð Þds: ð37Þ

Applying the considered norm in our Banach space, we
find the following relationship is satisfied as well, thus

I1k kX ≤ sup
s∈ 0,t1½ �

Sα t2 − sð Þ − Sα t1 − sð Þk k
ðt1
0
h s, y sð Þð Þds

����
����:
ð38Þ

By Equation (38), since the operator Sαð⋯Þ is a continu-
ous function, we can observe that when t2 ⟶ t1, then I1
⟶ 0. We repeat the same procedure with a second function
that I2 represented by the form that

I2 =
ðt2
t1

Sα t2 − sð Þh s, y sð Þð Þds
�����

�����
X

: ð39Þ

We adopt the same procedure and using the assumption
(H3). Applying the classical norm adopted in this work, we
get that the following relationship

I2k kX ≤Mwϖ rð Þ t2 − t1k kX : ð40Þ

Utilizing Equation (40), we get that
kðP2yðt2Þ − P2yðt1ÞÞðtÞkX ⟶ 0 as t2 ⟶ t1, and it forward
to see the operator is bounded, and then, we conclude that P
y is an equicontinuous and bounded function in the set Br. It
follows from the Ascoli-Arzela theorem that fPy : y ∈ Brg is
relatively compact. And then, we get from the three proce-
dures that using Schauder fixed point theorem the operator
P has at least one fixed point in the set Br, that is, the system
defined by Equation (1) has at least one mild solution.

4.2. Hyers-Ulam Stability Analysis. We continue this section
with Ulam-Hyers stability analysis of the fractional integro-
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differential Equation (1) considered in this paper. We give
the following definition related to the stability analysis. Note
that in the context of fractional calculus, the stability in
Hyers and Ulam’s sense of the integro-differential equation
in the form of Equation (1) under initial condition Equation
(2) is novel in the literature.

Definition 9. The integro-fractional differential equation
considered in this paper represented in Equation (1) with
nonlocal initial condition (2) is Hyers-Ulam stable if we
can find positive constant D satisfying the condition repre-
sented in the following form: for every λ, if

y tð Þ − Rα tð Þ y0 + g yð Þð Þ +
ðt
0
Sα t − sð Þh s, y sð Þð Þds

����
����
X

≤ λ,

ð41Þ

there exists y∗ verifying the condition that

y∗ tð Þ = Rα tð Þ y0 + g y∗ð Þð Þ +
ðt
0
Sα t − sð Þh s, y∗ sð Þð Þds, ð42Þ

such that

y tð Þ − y∗ tð Þk kX ≤Dλ: ð43Þ

Theorem 10. We consider that the assumptions (H1), (H2),
(H3), (H4), and (H5) are hold. Then, the solution of the frac-
tional integro-differential Equation (1) under nonlocal initial
condition (2) is Hyers-Ulam stable.

Proof. In this part, we will be helped by the results estab-
lished in the previous theorem. We first consider that y be
the solution of the fractional integro-differential Equation
(1) under nonlocal initial condition (2) and y∗ be any other
approximate solution of our considered fractional differen-
tial equation. Applying the considered norm in our present
paper and with the aid of assumptions (H1), (H2), (H3),
(H4), and (H5), from which we get in particular the
Lipschitz continuous condition for the function g, we get
the following relationships:

y1 − y∗1k kX = Rα tð Þg y1ð Þ − Rα tð Þg y∗1ð Þk kX
≤ Rα tð Þk kX g y1ð Þ − g y∗1ð Þk kX
≤Mbk sup

0≤s≤b
y1 sð Þ − y∗1 sð Þk kX :

ð44Þ

Note that we use decomposition of the solution y in two
subsolution. We repeat the previous procedure for the sec-
ond part

y2 − y∗2k kX =
ðt
0
Sα t − sð Þh s, y sð Þð Þds −

ðt
0
Sα t − sð Þh s, y∗ sð Þð Þds

����
����
X

≤ Sα tð Þk kX
ðt
0
h s, y sð Þð Þ − h s, y∗ sð Þð Þk kXds:

ð45Þ

Under the second assumption ðH2Þ that we have the fol-
lowing relationship using the previous equation

y2 − y∗2k kX ≤MwLρ bð Þ sup
0≤s≤b

y1 sð Þ − y∗1 sð Þk kX : ð46Þ

Combining Equation (44) and Equation (46) and remov-
ing the indices, we get the following relationship for the sta-
bility analysis condition that is

y − y∗k kX ≤ Mbk +MwLρ bð Þ
h i

sup
0≤s≤b

y sð Þ − y∗ sð Þk kX : ð47Þ

The stability in sense of Hyers-Ulam for the solution of
the fractional integro-differential Equation (1) with the non-
local initial condition (2) follows by supposing that D =Mb

k +MwLρðbÞ.

5. Illustrative Example

In the present part, we give an illustrative example to illustrate
the findings in this paper. The integer-order version of the
example addressed in this can be found in the literature. Let
the fractional integro-differential equation described by the
Caputo derivative and represented as the following form

Dα
t w y, tð Þ = Aw y, tð Þ +

ðt
0
βe−κ t−sð ÞAw y, sð Þ +m1 tð Þm2 w y, tð Þð Þ,

ð48Þ

w 0, tð Þ =w 2π, tð Þ, ð49Þ

w0 yð Þ =w y, 0ð Þ +
ð2π
0
k y, sð Þw 0, sð Þds, ð50Þ

where t ∈ I, y ∈ ½0, 2π�, the function k : ½0, 2π� × I ⟶ℝ+ is a
continuous function satisfying the condition that kð2π, tÞ = 0,
c is positive constant and, furthermore, κ and β verify the con-
dition that −κ ≤ β ≤ 0 ≤ κ. Furthermore, in our modeling, the
operator A is represented as the following form that

Awð Þ y, tð Þ = a1 yð Þ ∂2

∂y2
w y, tð Þ + b1 yð Þ ∂

∂y
w y, tð Þ + c1 yð Þw y, tð Þ,

ð51Þ

with the functions a1, b1, and c1 verifying the usual uniform
ellipticity conditions. In this present section, the set DðAÞ
can be represented as the form DðAÞ = fv ∈ X : v′, v′′ ∈ X, v
ð0Þ = vð2πÞg. The objective is to rewrite the present Equation
(49) in the form described by our fractional integro-
differential Equation (1). Let the function h : I × ½0, b�⟶ I
represented by hðw, tÞ =m1ðtÞm2ðwðy, tÞÞ, where the func-
tion m1ð:Þ is integrable function and in particular uniformly
continuous and the functionm2ð⋯Þ is supposed in our model
to be Lipschitz continuous with constant L. Under these prop-
erties, we will prove our function h is also Lipschitz continuous
and therefore satisfies the assumption (H2).
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h w1, tð Þ − h w1, tð Þk kX ≤ m1 tð Þk k m2 w1, tð Þ −m2 w2, tð Þk kX
≤ m1 tð Þk kL w1 −w2k kX :

ð52Þ

Note that Equation (52) is obtained by using the Lipschitz
continuous of the functionm2ð⋯Þ. Note that from the condi-
tion of the Lipschitz continuous the following relationship is
hold

h w, tð Þk kX ≤ m1 tð Þk k m2 0ð Þ + L wk kX½ �, ð53Þ

by supposing that ϖðkwkÞ =m2ð0Þ + LkwkX , then the
assumption (H1)-(H2) is held. We consider that the function
gðwÞ = Ð 2π

0 kðy, sÞwð0, sÞds. We try to prove the asumptions
(H3)-(H5) are held. Applying the norm and using the Poin-
care inequality, we get the following relationships

g wð Þk kX ≤
ð2π
0
k y, sð Þds

� �1/2 ð2π
0
w 0, sð Þds

� �1/2

≤
ð2π
0
k y, sð Þds

� �1/2
wk k1/2,

ð54Þ

and then the conditions established in (H3)-(H5) are held.
Finally, we can affirm that Equation (49) can be rewritten as
the form

Dαw = Aw +
ðt
0
B t − sð Þw sð Þ + h t,wð Þ, for t ∈ I, ð55Þ

w 0ð Þ − g wð Þ =w0 ∈ X = L2 0, 2π½ �,ℝð Þ, ð56Þ

where BðtÞ = βe−κtA. Then, as all assumptions are satisfied,
thus, we can conclude about the existence of at least one mild
solution for our fractional integro-differential Equation (1).

It is hard in the present form to see the impact of the
fractional-order derivative. To solve this problem, we have
just determine and prove the resolvents operators are
bounded. Let the present context form of the solution of
fractional differential equation described in Equation (49)
be written as the following form:

w y, tð Þ = Rα tð Þ w0 + g wð Þð Þ +
ðt
0
Sα t − sð Þh s,w sð Þð Þds: ð57Þ

where the α-resolvent operator Rα, and Sα are the resolvents
operators. In the present example, the α-resolvant operator
Rα can be expressed as the following form:

Rα tð Þ = 1
2πi

ð
γ

eλtλα−1 λα−1I − A − B̂ λð Þ� �−1
dλ: ð58Þ

It is obtained via the application of the inverse of the
Laplace transform. Note that applying the Laplace transform

to both sides of Equation (55), we get the following form:

λα�w − λα−1w 0ð Þ − λα−2w′ 0ð Þ = A�w + �B�w + �h,
λα �w − λα−1w 0ð Þ = A�w + �B�w + �h,
�w λαI − A − �B
� �

= λα−1w 0ð Þ + �h,

λα−1 λαI − A − �B
� �−1w 0ð Þ + λαI − A − �B

� �−1�h = �w:

ð59Þ

From the inverse of the Laplace transform, it follows that
the solution of Equation (55) under Equation (56) takes the
form described in Equation (57) and the α-resolvant opera-
tor the form described in Equation (58); furthermore, the
second operator Sα should be described by the form

Sα tð Þ = 1
2πi

ð
γ

eλt λα−1I − A − B̂ λð Þ� �−1
dλ, ð60Þ

where in our context we have that B̂ðλÞ = βA/λ + κ. The
objective to prove the impact of the fractional-order is to
prove the previous operators Rα and Sα are bounded and
then all assumptions will be held. Let A be a sectiorial oper-
ator in Ωðγ, θÞ. The first remark is that the function

ðλα−1I − A − B̂ðλÞÞ−1 is an inverse continuous function and

then there is positive constant Mb such that kλα−1
ðλαI − A − B̂ðλÞÞ−1k ≤Mb/λ, seen in [24]. Following the
same investigations, we have the following relationships:

Rα tð Þk k = 1
2πi

ð
Ω

eλtλα−1 λα−1I − A − B̂ λð Þ� �−1
dλ

����
����

≤Mb
1
2πi

ð
Ω

λ−1eλtdλ
����

���� =Mb × 1, ≤Mb:

ð61Þ

We continue by finding the upper bound for the opera-
tor Sα; we have the following relationships:

Sα tð Þk k = 1
2πi

ð
Ω

eλt λα−1I − A − B̂ λð Þ� �−1
dλ

����
����

≤Mb
1
2πi

ð
Ω

λ−αeλtdλ
����

���� =Mw:

ð62Þ

The impact of the order of the fractional derivative can
be noticed in the upper bound Mw which depends on the
order of the Caputo fractional derivative. Then, we conclude
that the present problem satisfies the assumptions (H1),
(H2), (H3), (H4), and (H5), and then, it has at least one
mild solution.

Except for the applications of the fractional integro-
differential to heat equation as previously provided, the frac-
tional integro-differential equations can also be applied in
modeling fractional epidemic models, modeling physics
phenomena, stochastic modeling, and others see the follow-
ing investigations [30, 32].

8 Journal of Function Spaces



6. Conclusion

In this paper, we have studied new results related to the frac-
tional integro-differential equation described by the Caputo
derivative. We have proved the existence of at least one mild
solution for the considered fractional integro-differential
equation. We have introduced the notion of Hyers-Ulam
stability not previously mentioned in the literature with the
fractional integro-differential equation under consideration
in this paper. The main results of this paper have been illus-
trated with fractional heat equations which have many appli-
cations in real-world problems. This new paper contributes
to the applications of fractional calculus in real-world prob-
lems. The problem of the existence and uniqueness of frac-
tional integro-differential equations with local and nonlocal
initial conditions constitutes a good challenge for future
investigations; there exist many types of differential equa-
tions in this direction where the existence of a mild solution
has not been proved. The present investigations will open
new doors for future works. The stability analysis adopted
in this paper will open news directions of investigations.
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