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In this work, we examine a class of nonlinear neutral differential equations. Krasnoselskii’s fixed-point theorem is used to provide
sufficient conditions for the existence of positive periodic solutions to this type of problem.

1. Introduction

In recent years, differential equations have garnered consider-
able interest (cf. [1, 2] and references therein). Important types
of these problems include differential equations with delay.
For instance, in [1, 3–10], the authors employed a variety of
techniques to determine the existence of positive periodic
solutions. The uniqueness and positivity of a first-order non-
linear periodic differential equation are investigated in [11].
The authors of [12] discussed nearly periodic solutions to non-
linear Duffing equations. Among them, the fixed-point princi-
ple has established itself as a critical tool for studying the
existence and periodicity of positive solutions. Numerous
studies, including [4, 6, 11], examined this method.

In this work, we investigate the following fourth-order
nonlinear neutral differential equation:

d4

dt4
x tð Þ − g t, x t − τ tð Þð Þð Þð Þ = −a tð Þx tð Þ + f t, x t − τ tð Þð Þð Þ:

ð1Þ

Under the assumptions:

(i) a, τ ∈ Cðℝ, ð0,∞ÞÞ

(ii) g ∈ Cðℝ × ½0,∞Þ,ℝÞ and f ∈ Cðℝ × ½0,∞Þ, ½0,∞ÞÞ
(iii) a, τ, gðt, xÞ, f ðt, xÞ are ω-periodic in t, ω is a positive

constant

Krasnoselskii’s fixed-point theorem offers sufficient con-
ditions for the existence of positive periodic solutions to the
aforesaid problem.

Neutral differential equations are employed in various
technological and natural science applications. For example,
they are widely employed to investigate distributed networks
with lossless transmission lines (see [7]). Therefore, their
qualitative qualities are significant.

It is worth noting that Krasnoselskii’s fixed-point theo-
rem was proposed in 2012 in [4] to show the existence of
positive periodic solutions to the nonlinear neutral differen-
tial equation with variable delay of the form

d
dt

x tð Þ − g t, x t − τ tð Þð Þð Þð Þ = r tð Þx tð Þ − f t, x t − τ tð Þð Þð Þ:
ð2Þ

The same researchers evaluated the existence of positive
periodic solutions for two types of second-order nonlinear
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neutral differential equations with variable delay the fol-
lowing year in [5].

d2

dt2
x tð Þ − g t, x t − τ tð Þð Þð Þð Þ = ±a tð Þx tð Þ ± f t, x t − τ tð Þð Þð Þ,

ð3Þ

where Krasnoselskii’s fixed-point theorem is also used as a
tool. The authors of [10] investigated the following third-
order nonlinear neutral differential equations with variable
delay.

d3

dt3
x tð Þ − cx t − τ tð Þð Þð Þ = −a tð Þx tð Þ + f t, x t − τ tð Þð Þð Þ: ð4Þ

The existence of positive periodic solutions is demon-
strated using Krasnoselskii’s fixed-point theorem. In [3], the
authors investigated the fourth-order nonlinear neutral differ-
ential equations with variable delay of the form

d4

dt4
x tð Þ − g t, x t − τ tð Þð Þð Þð Þ = a tð Þx tð Þ − f t, x t − τ tð Þð Þð Þ:

ð5Þ

Krasnoselskii’s fixed-point theorem is used to derive some
sufficient conditions for the existence of positive periodic solu-
tions to the aforementioned problem.

The remainder of this paper is organized as follows: in
the next Section, we deliver the definitions and lemmas
required to prove our main results. In particular, we state
some Green’s function properties related to the problem
(1). Section 3 establishes some necessary conditions for the
existence of positive solutions to our problem (1).

2. Preliminaries

For a fixed ω > 0, we consider a set Pω of continuous scalar
functions x which are periodic in t, with period ω. We recall
that xðt − τÞ and xðtÞ are in Pω and ðPω, k:kÞ is a Banach
space with the supremum norm [13, 14].

xk k≔ sup
t∈ℝ

x tð Þj j = sup
t∈ 0,ω½ �

x tð Þj j: ð6Þ

Define

P+
ω ≔ x ∈ Pω, x > 0f g,m≔ inf

t∈ 0,ω½ �
a tð Þ,

M ≔ sup
t∈ 0,ω½ �

a tð Þ, β≔
ffiffiffiffiffi
M4

p
:

ð7Þ

Lemma 1. The equation

d4

dt4
x tð Þ +Mx tð Þ = h tð Þ, h tð Þ ∈ P+

ω ð8Þ

has a unique ω-periodic solution

x tð Þ =
ðt+ω
t

G t, sð Þh sð Þds, ð9Þ

where

G t, sð Þ = 1
4γ3

A sinh γ s − t −
ω

2

� �
sin γ s − t −

ω

2

� �� �
s ∈ t, t + ω½ �,

�
+B cosh γ s − t −

ω

2

� �
cos γ s − t −

ω

2

� �� ��
,

ð10Þ

A≔
sin γω/2ð Þ cosh γω/2ð Þ − cos γω/2ð Þ sinh γω/2ð Þ

cosh γω − cos γω ,

ð11Þ

B≔
cos γω/2ð Þ sinh γω/2ð Þ + sin γω/2ð Þ cosh γω/2ð Þ

cosh γω − cos γω :

ð12Þ

Proof. First, it is evident that the homogeneous equation
associated with (8) has a solution

x tð Þ = c1e
γ 1+ið Þt + c2e

γ −1+ið Þt + c3e
γ −1−ið Þt + c4e

γ 1−ið Þt , where γ =
ffiffiffi
2

p

2 β:

ð13Þ

Using the parameter variation method, we obtain

c1′ tð Þ = h tð Þ e−tγ 1+ið Þ

−8 1 − ið Þγ3 ,

c2′ tð Þ = h tð Þ etγ 1−ið Þ

8 1 + ið Þγ3 ,

c3′ tð Þ = h tð Þ etγ 1+ið Þ

8 1 − ið Þγ3 ,

c4′ tð Þ = h tð Þ e−tγ 1−ið Þ

−8 1 + ið Þγ3 :

ð14Þ

Keeping in mind that xðtÞ, x′ðtÞ, x′′ðtÞ, and x′′′ðtÞ are
periodic functions, we obtain

c1 tð Þ = tt+ω −
eγ 1+ið Þ ω−sð Þ

8 1 − ið Þγ3 1 − eγ 1+ið Þω� � h sð Þds,

c2 tð Þ = tt+ω −
eγ 1−ið Þs

8 1 + ið Þγ3 1 − eγ 1−ið Þω� � h sð Þds,

c3 tð Þ = tt+ω −
eγ 1+ið Þs

8 1 − ið Þγ3 1 − eγ 1+ið Þω� � h sð Þds,

c4 tð Þ = tt+ω −
eγ 1−ið Þ ω−sð Þ

8 1 + ið Þγ3 1 − eγ 1−ið Þω� � h sð Þds:

ð15Þ
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Hence,

x tð Þ = c1 tð Þeγ 1+ið Þt + c2 tð Þeγ −1+ið Þt + c3 tð Þeγ −1−ið Þt + c4 tð Þeγ 1−ið Þt

=
ðt+ω
t

G t, sð Þh sð Þds,

ð16Þ

where Gðt, sÞ is identified by (10).

Lemma 2. Assume that

ðt+ω
t

G t, sð Þh sð Þds = 1
M

,

max a tð Þ: t ∈ 0, ω½ �f g < 4
π

ω

� �4
:

ð17Þ

Then,

0 < α1 <G t, sð Þ < α2, for all t ∈ 0, ω½ �, s ∈ t, t + ω½ �: ð18Þ

Proof. The definition of Gðt, sÞ gives
ðt+ω
t

G t, sð Þds = 1
4γ3

ðt+ω
t

A sinh γ s − t −
ω

2
� �

sin γ s − t −
ω

2
� �� �

ds
�

+
ðt+ω
t

B cosh γ s − t −
ω

2
� �

cos γ s − t −
ω

2
� �� �

ds
�

= A
16γ4 e

γ s−t−ω/2ð Þ eγ 2s−2t+ωð Þ − 1
� �

cos γ s − t −
ω

2
� �h

++ eγ 2s−2t+ωð Þ + 1
� �

sin γ s − t −
ω

2
� �i			t+ω

t

++ B
16γ4 e

γ s−t−ω/2ð Þ eγ 2s−2t+ωð Þ + 1
� �

sin γ s − t −
ω

2
� �h

−− eγ 2s−2t+ωð Þ − 1
� �

cos γ s − t −
ω

2
� �i			t+ω

t

= 1
4γ4 A cosh γω

2 sin γω

2 − sinh γω

2 cos γω

2
h i

+ 1
4γ4 B cosh γω

2 sin γω

2 + sinh γω

2 cos γω

2
h i

= 1
4γ4 2 cosh γω/2ð Þ sin γω/2ð Þð Þ2 + sinh γω/2ð Þ cos γω/2ð Þð Þ2

cosh γω − cos γω

" #

= 1
4γ4 2 1/2ð Þ cosh γω − 1/2ð Þ cos γω

cosh γω − cos γω

� �
= 1
4γ4 = 1

β4 = 1
M

:

ð19Þ

On the other hand, it is simple to demonstrate that ðd/
dsÞGðt, sÞ = 0 only if s = t + ω/2.

Hence,

G t, tð Þ =G t, t + ωð Þ
= 1
4γ3

sinh γω/2ð Þ cosh γω/2ð Þ + sin γω/2ð Þ cos γω/2ð Þ
cosh γω/2ð Þ − cos γω/2ð Þ = α2,

G t, t + ω

2
� �

= 1
4γ3

cos γω/2ð Þ sinh γω/2ð Þ + sin γω/2ð Þ cosh γω/2ð Þ
cosh γω − cos γω = α1:

ð20Þ

Since

a tð Þ: t ∈ 0, ω½ �f g < 4 π

ω

� �4
, ð21Þ

we get

0 < γω

2 < π

2 : ð22Þ

So,

sin γω

2 > 0, 1 > cos γω

2 > 0, sinh γω

2 > 0: ð23Þ

Consequently,

0 < α1 <G t, sð Þ < α2,  for all t ∈ 0, ω½ �, s ∈ t, t + ω½ �: ð24Þ

Lemma 3. If

max a tð Þ: t ∈ 0, ω½ �f g < 4
π

ω

� �4
, F t, xð Þ > 0: ð25Þ

Then, x ∈ Pω solves equation (1) if and only if

x tð Þ = g t, x t − τ tð Þð Þð Þ +
ðt+ω
t

G t, sð Þ M − a sð Þð Þx sð Þð
+ f s, x s − τ sð Þð Þð Þ −Mg t, x s − τ sð Þð Þð ÞÞds:

ð26Þ

Proof. Let x ∈ Pω be a solution of (1). Equation (1) reads as

d4

dt4
x tð Þ − g t, x t − τ tð Þð Þð Þð Þ +M x tð Þ − g t, x t − τ tð Þð Þð Þð Þ

= −a tð Þx tð Þ + f t, x t − τ tð Þð Þð Þ +M x tð Þ − g t, x t − τ tð Þð Þð Þð Þ
= M − a tð Þð Þx tð Þ + f t, x t − τ tð Þð Þð Þ −Mg t, x t − τ tð Þð Þð Þ:

ð27Þ

According to Lemma 1, we obtain

x tð Þ − g t, x t − τ tð Þð Þð Þ
=
ðt+ω
t

G t, sð Þ M − a tð Þx tð Þ + f t, x t − τ tð Þð Þð Þð Þds

−
ðt+ω
t

G t, sð Þ Mg t, x t − τ tð Þð Þð Þð Þds,

ð28Þ

which implies that

x tð Þ = g t, x t − τ tð Þð Þð Þ +
ðt+ω
t

G t, sð Þ M − a sð Þð Þx sð Þð
+ f s, x s − τ sð Þð Þð Þ −Mg t, x s − τ sð Þð Þð ÞÞds:

ð29Þ

This completes the proof. Let us define the two operators
T 1,T 2 : Pω ⟶ Pω as follows:
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T 1 φð Þ tð Þ≔ g t, φ t − τ tð Þð Þð Þ,

T 2 φð Þ tð Þ≔
ðti+ω
ti

G ti, sð Þ M − a sð Þð Þφ sð Þ + f s, φ s − τ sð Þð Þð Þð

−Mg t, φ s − τ sð Þð Þð ÞÞds:
ð30Þ

We formulate equation (26) in Lemma 3 as follows:

φ tð Þ = T 1φð Þ tð Þ + T 2φð Þ tð Þ: ð31Þ

Remark 4. Any solution to equation (31) is a solution to
problem (1).

Let us introduce the following hypotheses, which are
assumed hereafter:

The function gðt, xÞ is Lipschitz continuous in x. That is
to say, there exists a positive constant k such that

g t, xð Þ − g t, yð Þk k ≤ k x − yk k, for all t ∈ 0, ω½ �, x, y ∈ Pω:

ð32Þ

Lemma 5. Assume that (32) holds and

k < 1: ð33Þ

Then, T 1 is a contraction.

Proof. It is evident that T 1φ is continuous for all φ ∈D.
Moreover,

T 1φð Þ t + ωð Þ = T 1φð Þ tð Þ: ð34Þ

So, for all φ, ψ ∈D, we have

T 1φð Þ tð Þ − T 1ψð Þ tð Þj j
= g t, φ t − τ tð Þð Þð Þ − g t, ψ t − τ tð Þð Þð Þj j
≤ sup

t∈ 0,ω½ �
g t, φ t − τ tð Þð Þð Þ − g t, ψ t − τ tð Þð Þð Þj j ≤ k φ − ψk k:

ð35Þ

Thus,

T 1φ −T 1ψk k ≤ k φ − ψk k: ð36Þ

Consequently, it follows from (33) that T 1 : Pω ⟶ Pω
is a contraction.

Lemma 6. Assume that M < 4ðπ/ωÞ4 and 0 < Fðt, xÞ ≤ C.
Then, T 2 is completely continuous.

Proof. Firstly, we show that T 2 is continuous. To this end,
let fyng be a sequence such that yn ⟶ y in Pω. We have

T 2 ynð Þ tð Þ −T 2 yð Þ tð Þj j
≤
ðt+ω
t

G t, sð Þ M − a sð Þð Þ yn sð Þ − y sð Þj jð
+ f s, yn s − τ sð Þð Þð Þ − f s, y s − τ sð Þð Þð Þj j
+ Mg t, yn s − τ sð Þð Þð Þ −Mg t, y s − τ sð Þð Þð Þj jÞds:

ð37Þ

It follows from the continuity of f and g that

T 2 ynð Þ −T 2 yð Þk k⟶ 0 as n⟶∞: ð38Þ

Thus, T 2 is continuous.
Secondly, we prove that T 2 maps bounded sets into

bounded sets in ðPω, k:kÞ: To this end, let Br = fðx ∈ Pω, kx
k < rÞg be a bounded ball in ðPω, k:kÞ, we have

T 2 xð Þ tð Þj j =
ðt+ω
t

G t, sð Þ M − a sð Þð Þx sð Þ + f s, x s − τ sð Þð Þð Þð
				
−Mg t, x s − τ sð Þð Þð ÞÞds

				
≤
ðt+ω
t

G t, sð Þ M − a sð Þð Þx sð Þ + f s, x s − τ sð Þð Þð Þj
−Mg t, x s − τ sð Þð Þð Þjds:

ð39Þ

From Lemma 2 and since Fðt, xÞ ≤ C, we get

T 2 xð Þ tð Þj j ≤ α2

ðt+ω
t

M −mð Þr + f s, x s − τ sð Þð Þð Þ
−Mg t, x s − τ sð Þð Þð Þds ≤ α2ω M −mð Þr + Cð Þ:

ð40Þ

The estimation of kT 2ðxÞk implies

T 2 xð Þk k ≤ α2ω M −mð Þr + Cð Þ: ð41Þ

This shows that T 2 is uniformly bounded.

Finally, we prove that T 2 sends bounded sets into equi-
continuous sets. Let t1, t2 ∈ ½0, ω�, t1 < t2, and Br be a
bounded set of Pω: For all i ∈ f1, 2g, we have

T 2 xð Þ tið Þj j =
ðti+ω
ti

G ti, sð Þ M − a sð Þð Þx sð Þ + f s, x s − τ sð Þð Þð Þð
					
−Mg t, x s − τ sð Þð Þð ÞÞds

					,  i = 1, 2:

ð42Þ
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Denote T 3 = jT 2ðxÞðt2Þ −T 2ðxÞðt1Þj. So, we obtain

T 3 =
ðt2+ω
t2

G t2, sð Þ M − a sð Þð Þx sð Þ + f s, x s − τ sð Þð Þð Þð
					
−Mg t, x s − τ sð Þð Þð ÞÞds −

ðt1+ω
t1

G t1, sð Þ M − a sð Þð Þx sð Þð

+ f s, x s − τ sð Þð Þð Þ −Mg t, x s − τ sð Þð Þð ÞÞds
					

=
ðt1+ω
t2

G t2, sð Þ M − a sð Þð Þx sð Þ + f s, x s − τ sð Þð Þð Þð
					
−Mg t, x s − τ sð Þð Þð ÞÞds +

ðt2+ω
t1+ω

G t2, sð Þ M − a sð Þð Þx sð Þð

+ f s, x s − τ sð Þð Þð Þ −Mg t, x s − τ sð Þð Þð ÞÞds,

−
ðt2
t1

G t1, sð Þ M − a sð Þð Þx sð Þ + f s, x s − τ sð Þð Þð Þð

−Mg t, x s − τ sð Þð Þð ÞÞs −
ðt1+ω
t2

G t1, sð Þ M − a sð Þð Þx sð Þð

+ f s, x s − τ sð Þð Þð Þ −Mg t, x s − τ sð Þð Þð ÞÞds
					

=
ðt1+ω
t2

G t2, sð Þ −G t1, sð Þð Þ M − a sð Þð Þx sð Þð
					
+ f s, x s − τ sð Þð Þð Þ −Mg t, x s − τ sð Þð Þð ÞÞds

+
ðt2+ω
t1+ω

G t2, sð Þ M − a sð Þð Þx sð Þ + f s, x s − τ sð Þð Þð Þð

−Mg t, x s − τ sð Þð Þð ÞÞds −
ðt2
t1

G t1, sð Þ M − a sð Þð Þx sð Þð

+ f s, x s − τ sð Þð Þð Þ −Mg t, x s − τ sð Þð Þð ÞÞds
					

≤ M −mð Þr
ðt1+ω
t2

G t2, sð Þ − G t1, sð Þð Þj jds
 

+
ðt2+ω
t1+ω

G t2, sð Þds +
ðt2
t1

G t1, sð Þds
!
:

ð43Þ

As t2 ⟶ t1, the right-hand side of the above inequality
tends to zero. By the Arzela-Ascoli theorem, we conclude
that T 2 is a completely continuous operator. This completes
the proof. This section will be concluded by referring to
Krasnoselskii’s fixed-point theorem (see [9]).

Theorem 7. (Krasnoselskii). Let D be a closed convex non-
empty subset of a Banach space ðB, k:kÞ. Suppose that T 1
and T 2 map D into B such that

(i) x, y ∈D, implies T 1x +T 2y ∈D

(ii) T 1 is a contraction mapping

(iii) T 2 is completely continuous

Then, there exists z ∈D with z =T 1z +T 2z:

3. Existence of Positive Periodic Solutions

We will examine the existence of positive periodic solutions
to problem (1) using Krasnoselskii’s fixed-point theorem.
For this purpose, we consider ðB, k:kÞ = ðPω, k:kÞ and for
some positive constant K and L. Moreover, define the set
D = fφ ∈ Pω : K ≤ φ ≤ Lg, which is a closed convex and
bounded subset of the Banach space Pω:

By looking at the three cases gðt, xÞ < 0,gðt, xÞ = 0, and
gðt, xÞ > 0 for all t ∈ℝ,x ∈D, we can prove the existence of
a positive periodic solution of (1).

3.1. The Case gðt, xÞ < 0. We assume that there exist nonpo-
sitive constants k1 and k2 such that

k1 ≤ g t, xð Þ ≤ k2, t or all t ∈ 0:ω½ �, x ∈D: ð44Þ

Theorem 8. Assume that M < 4ðπ/ωÞ4 and the function f
satisfies

K − k1
α1ω

≤ f t, x t − τ tð Þð Þð Þ ≤ L
α2ω

− M −mð ÞL +Mk1: ð45Þ

Then, problem (1) has a positive ω-periodic solution x in
the subset D.

Proof. Let us start by proving that

T 1 φð Þ +T 2 ϕð Þ ∈D,  for allφ, ϕ ∈D: ð46Þ

In fact,

T 1 φð Þ +T 2 ϕð Þ = g t, φ t − τ tð Þð Þð Þ +
ðt+ω
t

G t, sð Þ M − a sð Þð Þφ sð Þð
+ f s, φ s − τ sð Þð Þð Þ −Mg t, φ s − τ sð Þð Þð ÞÞds

≤ α2ω M −mð ÞL −Mk1ð Þ + α2

ðt+ω
t

f s, φ s − τ sð Þð Þð Þds

≤ α2ω M −mð ÞL −Mk1ð Þ + α2ω
L

α2ω
− M −mð ÞL +Mk1


 �
= L:

ð47Þ

On the other hand,

T 1 φð Þ +T 2 ϕð Þ = g t, φ t − τ tð Þð Þð Þ +
ðt+ω
t

G t, sð Þ M − a sð Þð Þφ sð Þð
+ f s, φ s − τ sð Þð Þð Þ −Mg t, φ s − τ sð Þð Þð ÞÞds,

≥ k1 + α1ω
ðt+ω
t

f s, φ s − τ sð Þð Þð Þds, ≥ k1 + α1ω
K − k1
α1ω


 �
= K ,

ð48Þ

which leads to

T 1 φð Þ +T 2 ϕð Þ ∈D,  for allφ, ϕ ∈D: ð49Þ

We conclude from Lemma 5 that T 1 is a contraction.
Also, Lemma 6 implies that the operator T 2 is completely
continuous.
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We deduce from Krasnoselskii’s fixed-point theorem
(see [15], p.~31) that T =T 1 +T 2 has a fixed point φ ∈D
which is a solution to (31). As a result of Remark 4, φ is a
solution to problem (1). This completes the proof.

3.2. The Case gðt, xÞ = 0

Theorem 9. Assume that M < 4ðπ/ωÞ4, and

K
α1ω

≤ f t, x t − τ tð Þð Þð Þ ≤ L
α2ω

− M −mð ÞL, for all t ∈ 0:ω½ �, x ∈D:

ð50Þ

Then, equation (1) has a positive ω-periodic solution x in
the subset D.

Proof. According to [16], we have T 1 = 0. Similarly to the
proof of Theorem 8, we show that (1) has a nonnegative ω
-periodic solution x ∈D. Since Fðt, xÞ > 0, it is easy to see that
xðtÞ > 0; i.e., (1) has a positive ω-periodic solution x ∈D.

3.3. The Case gðt, xÞ > 0.We assume that there exist nonneg-
ative constants k3 and k4 such that

k3 ≤ g t, xð Þ ≤ k4, t or all t ∈ 0:ω½ �, x ∈D: ð51Þ

Theorem 10. Assume that M < 4ðπ/ωÞ4 and the function f
satisfies

K − k1
α1ω

≤ f t, x t − τ tð Þð Þð Þ ≤ L − k4
α2ω

− M −mð ÞL +Mk3:

ð52Þ

Then, problem (1) has a positive ω-periodic solution x in
the subset D.

Proof. According to Lemma 5, it follows that the operator
T 1 is a contraction, and from Lemma 6, the operator T 2
is completely continuous.

Now, we prove that

T 1 φð Þ +T 2 ϕð Þ ∈D, for allφ, ϕ ∈D: ð53Þ

We have

T 1 φð Þ +T 2 ϕð Þ = g t, φ t − τ tð Þð Þð Þ +
ðt+ω
t

G t, sð Þ M − a sð Þð Þφ sð Þð
+ f s, φ s − τ sð Þð Þð Þ −Mg t, φ s − τ sð Þð Þð ÞÞds

≤ k4 + α2ω M −mð ÞL −Mk3ð Þ + α2

ðt+ω
t

f s, φ s − τ sð Þð Þð Þds

≤ k4 + α2ω M −mð ÞL −Mk3ð Þ
+ α2ω

L − k4
α2ω

− M −mð ÞL +Mk3


 �
= L:

ð54Þ

Also,

T 1 φð Þ +T 2 ϕð Þ = g t, φ t − τ tð Þð Þð Þ +
ðt+ω
t

G t, sð Þ M − a sð Þð Þφ sð Þð
+ f s, φ s − τ sð Þð Þð Þ −Mg t, φ s − τ sð Þð Þð ÞÞds

≥ k3 + α1ω
ðt+ω
t

f s, φ s − τ sð Þð Þð Þds ≥ k3 + α1ω
K − k3
α1ω


 �
= K:

ð55Þ

Thus,

T 1 φð Þ +T 2 ϕð Þ ∈D, for allφ, ϕ ∈D: ð56Þ

By Krasnoselskii’s theorem (see [15], p. 31), we deduce
that T =T 1 +T 2 has a fixed point which is a solution to
(31), so problem (1) has a positive ω-periodic solution x in
the subset D.

4. Conclusion

In this work, we established sufficient conditions for the
existence of positive periodic solutions to the fourth-order
nonlinear neutral differential equations with variable delay.
Our proof relies on Krasnoselskii’s fixed-point theorem,
which is an excellent tool when the conditions of the Banach
or Schauder fixed-point theorems are not fulfilled.
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