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The boundedness, compactness, and essential norm of weighted composition operators from Dirichlet-Zygmund spaces into
Zygmund-type spaces and Bloch-type spaces are investigated in this paper.

1. Introduction

Let HðDÞ denote the space of all analytic functions in the
open unit disk D. For 1 ≤ p <∞, the Dirichlet type space
D

p
p−1 is the set of all f ∈HðDÞ such that

fk kp
D

p
p−1

= f 0ð Þj jp +
ð
D

f ′ zð Þ�� ��p 1 − zj j2� �p−1
dA zð Þ <∞, ð1Þ

where dAðzÞ = ð1/πÞdxdy is the normalized Lebesgue area
measure. Dp

p−1 is a Banach space under the norm k·kDp
p−1
. If

f ′ ∈Dp
p−1, we say that f belongs to the Dirichlet-Zygmund

space, denoted by Z
p
p−1. To the best of our knowledge, this

is the first work to study the Dirichlet-Zygmund space.
Recall that the space B1, called the minimal Möbius

invariant space, is the space of all f ∈HðDÞ that admit the
representation f ðzÞ =∑∞

j=1bjσt jðzÞ for some sequence fbjg
in l1 and t j ∈D. The norm on f ∈ B1 is defined by

fk kB1
= inf 〠

∞

j=1
bj
�� ��: f zð Þ = 〠

∞

j=1
bjσt j

zð Þ
( )

: ð2Þ

Here, σaðzÞ = ða − zÞ/ð1 − �azÞ: For any f ∈ B1, the
authors in [1] showed that there exists a constant C > 0 such

that

C−1
ð
D

f ′′ zð Þ�� ��dA zð Þ ≤ f − f 0ð Þ − f ′ 0ð Þz�� ��
B1
≤ C
ð
D

f ′′ zð Þ�� ��dA zð Þ:

ð3Þ

Therefore, Z1
0 is in fact the space B1.

We call v : D⟶ℝ+ a weight, if v is a continuous,
strictly positive and bounded function. v is called radial, if
vðzÞ = vðjzjÞ for all z ∈D. Let v be a radial weight. Recall that
the Zygmund-type space Zv is the space that consists of all
f ∈HðDÞ such that

fk kZv
= f 0ð Þj j + f ′ 0ð Þ�� �� + sup

z∈D
v zð Þ f ′′ zð Þ�� �� <∞: ð4Þ

Zv is a Banach space under the norm k·kZv
. We say that

f belongs to the Bloch-type space Bv , if

fk kBv
= f 0ð Þj j + sup

z∈D
v zð Þ f ′ zð Þ�� �� <∞: ð5Þ

When vðzÞ = 1 − jzj2, Zv =Z is called the Zygmund space,
andBv =B is called the Bloch space, respectively. In partic-

ular, Zv is just the Bloch space when vðzÞ = ð1 − jzj2Þ2.
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The weighted space, denoted by H∞
v , is the set of all f

∈HðDÞ such that

fk kH∞
v
= sup

z∈D
v zð Þ f zð Þj j <∞: ð6Þ

When vðzÞ = vαðzÞ = ð1 − jzj2Þαð0 ≤ α<∞Þ, we denote H∞
v

by H∞
vα
. In particular, when α = 0, H∞

v0
=H∞ is just the

bounded analytic function space.
We denote by SðDÞ the set of all analytic self-maps of D

for simplicity. Let φ ∈ SðDÞ and ψ ∈HðDÞ. The weighted
composition operator ψCφ is defined as follows.

ψCφ f
� �

zð Þ = ψ zð Þf φ zð Þð Þ, f ∈H Dð Þ, z ∈D: ð7Þ

When ψ = 1, ψCφ is called the composition operator,
denoted by Cφ. See [2, 3] for more results about the theory
of composition operators and weighted composition
operators.

For any φ ∈ SðDÞ, by the Schwarz-Pick lemma, we see that
Cφ : B⟶B is bounded. It was shown in [4] that Cφ : B

⟶B is compact if and only if limj⟶∞kφjkB = 0. Moti-
vated by [4], Colonna and Li in [5, 6] studied the operators
ψCφ : H∞ ⟶Z and ψCφ : Lipα ⟶Z by kψφjkZ and

kj−αψφjkZ , respectively. Here, Lipα is the Lipschtiz space.
The composition operator on the space B1 was extensively
studied in [1]. In [7], Colonna and Li studied the boundedness
and compactness of weighted composition operators from the
minimal Möbius invariant space B1ðZ1

0Þ to the Bloch spaceB
. In [8], Li studied the boundedness and compactness of the
weighted composition operator ψCφ : B1ðZ1

0Þ⟶Z. See [5,
6, 8–17] for more results for composition operators, weighted
composition operators, and related operators on the Zygmund
space and Zygmund-type spaces.

In this paper, we follow the methods of [17] and give
some characterizations for the boundedness, compactness,
and essential norm of the operator ψCφ : Z

p
p−1 ⟶Zμ and

ψCφ : Z
p
p−1 ⟶Bμ.

We denoted by C a positive constant which may differ
from one occurrence to the next. In addition, we will use
the following notations throughout this paper: A ≈ B means
that there exists a constant C such that A ≤ CB, while A ≈ B
means that A ≲ B ≲ A.

2. Main Results and Proofs

In this section, we formulate and prove our main results in
this paper.

Lemma 1. Suppose 1 < p <∞. Then, there exists a positive
constant C such that

f ′ zð Þ�� �� ≤ C fk kZp
p−1

1 − zj j2� �1/p , f ′′ zð Þ�� �� ≤ C fk kZp
p−1

1 − zj j2� �1+ 1/pð Þ , ð8Þ

and k f k∞ ≤ Ck f kZp
p−1

for every f ∈Zp
p−1.

Proof. Suppose r > 0 and g ∈HðDÞ. Then, there exists a con-
stant C > 0 such that

g zð Þj jp ≤ C

1 − zj j2� �α+2
ð
D z,rð Þ

g wð Þj jp 1 − wj j2� �α
dA wð Þ, ð9Þ

which implies that

g zð Þj j ≤
C gk kDp

p−1

1 − zj j2� �1/p and g′ zð Þ�� �� ≤ C gk kDp
p−1

1 − zj j2� �1+ 1/pð Þ : ð10Þ

The inequalities in (8) hold. Here, Dðz, rÞ is the hyper-
bolic disk (see [3]). From (8), we see thatZp

p−1 are contained
in the disk algebra for p > 1. Hence, we get that k f k∞ ≤ C

k f kZp
p−1
.

Lemma 2. Let 1 < p <∞. If f ∈Zp
p−1, then for all t ∈ ð0, 1Þ

and z ∈D \ f0g, there exists a positive constant C such that

f zð Þ − f
t
zj j z

� �����
���� ≤ C fk kZp

p−1
1 − zj jð Þ1−1/p: ð11Þ

Proof. Fix f ∈Zp
p−1. Let t ∈ ð0, 1Þ and z ∈D \ f0g. By Lemma

1,

f zð Þ − f
t
zj j z

� �����
���� ≤

ðt/ zj j
1

zf ′ szð Þds
����

���� ≤
ð1/ zj j
1

z f ′ szð Þ���� ��ds
≤ C fk kZp

p−1

ð1/ zj j
1

zj j
1 − s2 zj j2� �1/p ds

≤ C fk kZp
p−1

1 − zj jð Þ1−1/p,
ð12Þ

as desired.

Using Lemma 2 and similarly to the proof of Lemma 7 in
[18], we get the following lemma.

Lemma 3. Let 1 < p <∞. Every sequence inZ
p
p−1 bounded in

norm has a subsequence which converges uniformly in �D to a
function in Z

p
p−1.

Lemma 4 (see [5]). Let X be a Banach space that is continu-
ously contained in the disk algebra, and let Y be any Banach
space of analytic functions on D. Suppose that

(i) The point evaluation functionals on Y are
continuous

(ii) For every sequence f f ng in the unit ball of X that
exists an f ∈ X and a subsequence f f nj

g such that

f nj
⟶ f uniformly on �D
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(iii) The operator T : X ⟶ Y is continuous if X has the
supremum norm and Y is given by the topology of
uniform convergence on compact sets

Then, T is a compact operator if and only if, given a
bounded sequence f f ng in X such that f n ⟶ 0 uni-
formly on �D, then the sequence kTf nkY ⟶ 0 as n
⟶∞.

The following result is a direct consequence of Lemmas 3
and 4.

Lemma 5. Let 1 < p <∞ and μ be a weight. If T : Z
p
p−1

⟶Zv is bounded, then T is compact if and only if
kTf kkZv

⟶ 0 as k⟶∞ for any sequence f f kg in Z
p
p−1

bounded in norm which converge to 0 uniformly in �D.

Theorem 6. Let v be a radial, nonincreasing weight tending
to zero at the boundary of D. Let 1 < p <∞, ψ ∈HðDÞ, and
φ ∈ SðDÞ. Then, the following statements are equivalent.

(i) The operator ψCφ : Z
p
p−1 ⟶Zv is bounded

(ii) ψ ∈Zv,

P≔ sup
z∈D

v zð Þ 2ψ′ zð Þφ′ zð Þ + ψ zð Þφ′′ zð Þ�� ��
1 − φ zð Þj j2� �1/p <∞,

ð13Þ

and

Q≔ sup
z∈D

v zð Þ ψ zð Þ φ′
�� zð Þ�� ��2

1 − φ zð Þj j2� � 1/pð Þ+1 <∞, ð14Þ

(iii) ψ ∈Zv,

sup
j≥1

j1/pkð2ψ′φ′ + ψφ′′Þφj−1kH∞
v
<∞ and sup

j≥1
jð1/pÞ+1

kψφ′2φj−1kH∞
v
<∞:

Proof. ðiiÞ⇒ ðiÞ. For any z ∈D and f ∈Zp
p−1, by Lemma 1,

we have

ψCφ f
� �

0ð Þ�� �� ≲ ψ 0ð Þj j fk kZp
p−1
,

ψCφ f
� �′ 0ð Þ�� �� ≲ ψ′ 0ð Þ�� �� + ψ 0ð Þφ′ 0ð Þ�� ��

1 − φ 0ð Þj j2� �1/p
 !

fk kZp
p−1
,

v zð Þ ψCφ f
� �′′ zð Þ�� �� ≤ v zð Þ ψ′′ zð Þ f φ zð Þð Þk�� ��

+ v zð Þ f ′′ φ zð Þð Þ ψ zð Þk φ′ zð Þ
� 	2����

����
+ v zð Þ f ′ φ zð Þð Þ 2ψ′ zð Þ�� φ′ zð Þ + ψ zð Þφ′′ zð Þ�� ��

≲ v zð Þ ψ′′ zð Þ�� �� fk kZp
p−1

+ v zð Þ 2ψ′ zð Þφ′ zð Þ + ψ zð Þφ′′ zð Þ�� ��
1 − φ zð Þj j2� �1/p φ zð Þk kZp

p−1

+ v zð Þ ψ zð Þ φ′ zð Þ���� ��2
1 − φ zð Þj j2� � 1/pð Þ+1 fk kZp

p−1
:

ð15Þ

Hence,

ψCφ f
�� ��

Zv
= ψCφ f
� �

0ð Þ�� �� + ψCφ f
� �′ 0ð Þ�� �� + sup

z∈D
v zð Þ ψCφ f

� �′′ zð Þ�� ��
≲ ψ 0ð Þj j + ψ′ 0ð Þ�� �� + ψ 0ð Þφ′ 0ð Þ�� ��

1 − φ 0ð Þj j2� �1/p + P +Q

 !
fk kZp

p−1

<∞:

ð16Þ

Therefore, ψCφ : Z
p
p−1 ⟶Zv is bounded.

ðiÞ⇒ ðiiÞ. Applying the operator ψCφ to zj with j = 0, 1
, 2 and using the boundedness of ψCφ, we get that ψ ∈Zv ,
ψφ ∈Zv, and ψφ2 ∈Zv . Hence, we obtain

sup
z∈D

v zð Þ 2ψ′ zð Þφ′ zð Þ + ψ zð Þφ′′ zð Þ�� �� <∞,

sup
z∈D

v zð Þ ψ zð Þ φ′ zð Þ
� 	2����

���� <∞:

ð17Þ

For any a ∈D, set

f a zð Þ = 1 − aj j2
1 − �azð Þ1/p , ga zð Þ = 1 − aj j2� �2

1 − �azð Þ 1+pð Þ/p , z ∈D: ð18Þ

It is easy to check that

sup
a∈D

f ak kZp
p−1

<∞and sup
a∈D

gak kZp
p−1

<∞: ð19Þ

Therefore, by the boundedness of ψCφ : Z
p
p−1 ⟶Zv

and arbitrary of a ∈D, we get

sup
a∈D

ψCφ f a
�� ��

Zv
<∞and sup

a∈D
ψCφga
�� ��

Zv
<∞: ð20Þ
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For w ∈D, we get

ψCφ f φ wð Þ
� 	

′′ wð Þ = ψ′′ wð Þ 1 − φ wð Þj j2� �1− 1/pð Þ

+
2ψ′ wð Þφ′ wð Þ + ψ wð Þφ′′ wð Þ
� 	

�φ wð Þ
p 1 − φ wð Þj j2� �1/p

+
1 + pð Þψ wð Þ φ′ wð Þ

� 	2
�φ wð Þ2

p2 1 − φ wð Þj j2� � 1/pð Þ+1 ,

ð21Þ

ψCφgφ wð Þ
� 	

′′ wð Þ = ψ′′ wð Þ 1 − φ wð Þj j2� �1− 1/pð Þ

+ 1 + pð Þ
p

2ψ′ wð Þφ′ wð Þ + ψ wð Þφ′′ wð Þ
� 	

�φ wð Þ
1 − φ wð Þj j2� �1/p

+ 1 + pð Þ 1 + 2pð Þ
p2

ψ wð Þ φ′ wð Þ
� 	2

�φ wð Þ2

1 − φ wð Þj j2� � 1/pð Þ+1 :

ð22Þ
From (21) and (22), we obtain

− 1 + pð Þ ψCφ f φ wð Þ
� 	

′′ wð Þ + ψCφgφ wð Þ
� 	

′′ wð Þ
+ pψ′′ wð Þ 1 − φ wð Þj j2� �1− 1/pð Þ

=
1 + pð Þψ wð Þ φ′ wð Þ

� 	2
�φ wð Þ2

p 1 − φ wð Þj j2� � 1/pð Þ+1 ,

ð23Þ

2ψ′ wð Þφ′ wð Þ + ψ wð Þφ′′ wð Þ
� 	

�φ wð Þ
1 − φ wð Þj j2� �1/p

= − ψCφ f φ wð Þ
� 	

′′ wð Þ + ψCφgφ wð Þ
� 	

′′ wð Þ

−
2 1 + pð Þψ wð Þ φ′ wð Þ

� 	2
�φ wð Þ2

p 1 − φ wð Þj j2� � 1/pð Þ+1

= 1 + 2pð Þ ψCφ f φ wð Þ
� 	

′′ wð Þ − ψCφgφ wð Þ
� 	

′′ wð Þ
− 2pψ′′ wð Þ 1 − φ wð Þj j2� �1− 1/pð Þ

:

ð24Þ

From (24), we get

sup
w∈D

v wð Þ 2ψ′ wð Þφ′ wð Þ + ψ wð Þφ′′ wð Þ φ wð Þk�� ��
1 − φ wð Þj j2� �1/p

≤ 1 + 2pð Þ ψCφ f φ wð Þ
��� ���

Zv

+ ψCφgφ wð Þ
��� ���

Zv

+ 2p ψk kZv
<∞:

ð25Þ

On one hand, from (25), we obtain

sup
φ wð Þj j>1/2

v wð Þ 2ψ′ wð Þφ′ wð Þ + ψ wð Þφ′′ wð Þ�� ��
1 − φ wð Þj j2� �1/p <∞: ð26Þ

On the other hand, from the fact that ψ, ψφ ∈Zv, we get

sup
φ wð Þj j≤1/2

v wð Þ 2ψ′ wð Þφ′ wð Þ + ψ wð Þφ′′ wð Þ�� ��
1 − φ wð Þj j2� �1/p

≤
4
3

� �1/p
sup
z∈D

v wð Þ 2ψ′ wð Þφ′ wð Þ + ψ wð Þφ′′ wð Þ�� ��
≲ sup

z∈D
ψφk kZv

+ 2 ψk kZv

� 	
<∞:

ð27Þ

From (26) and (27), we see that P is finite. Using similar
arguments, we see that Q is also finite.

ðiiÞ⇔ ðiiiÞ. From [19], we see that the inequality in is
equivalent to the operator ð2ψ′φ′ + ψφ′′ÞCφ : H∞

v1/p
⟶

H∞
v is bounded. By [20], the boundedness of ð2ψ′φ′ + ψφ′

′ÞCφ is equivalent to

sup
j≥1

2ψ′φ′ + ψφ′′
� 	

φj−1
��� ���

H∞
v

z j−1k kH∞
v1/p

<∞: ð28Þ

From [21], we get limj⟶∞ j1/pkzj−1kH∞
v1/p

= ffiffiffiffiffiffiffiffiffi2/pep
p

, which

together with (28) imply that

sup
j≥1

j1/p 2ψ′φ′ + ψφ′′
� 	

φj−1
��� ���

H∞
v

≈ sup
j≥1

j1/p 2ψ′φ′ + ψφ′′
� 	

φj−1
��� ���

H∞
v

j1/p zj−1k kH∞
v1/p

<∞:

ð29Þ

Similarly, the inequality in is equivalent to

sup
j≥1

j 1/pð Þ+1 ψφ′2φj−1
��� ���

H∞
v

≈ sup
j≥1

j 1/pð Þ+1 ψφ′2φj−1
��� ���

H∞
v

j 1/pð Þ+1 zj−1k kH∞
v 1/pð Þ+1

= sup
j≥1

ψφ′2φj−1
��� ���

H∞
v

z j−1k kH∞
v 1/pð Þ+1

<∞:

ð30Þ

The proof is complete.

Next, we consider the essential norm of ψCφ : Z
p
p−1

⟶Zv . Recall that the essential norm of T : X⟶ Y is
its distance to the set of compact operators K : X ⟶ Y , that
is,

Tk ke,X⟶Y = inf T − Kk kX⟶Y : K is a compact operator
� �

:

ð31Þ

Here, X, Y are Banach spaces, and T is a bounded linear
operator.
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Theorem 7. Let v be a radial, nonincreasing weight tending
to zero at the boundary of D. Let 1 < p <∞, ψ ∈HðDÞ, and
φ ∈ SðDÞ. Suppose that ψCφ : Z

p
p−1 ⟶Zv is bounded.

Then,

ψCφ

�� ��
e,Zp

p−1⟶Zv
≈max E,Gf g ≈max M, Tf g: ð32Þ

Here,

E≔ lim sup
φ zð Þj j⟶1

v zð Þ 2ψ′ zð Þφ′ zð Þ + ψ zð Þφ′′ zð Þ�� ��
1 − φ zð Þj j2� �1/p ,

G≔ lim sup
φ zð Þj j⟶1

v zð Þ ψ zð Þ φ′
�� zð Þ�� ��2

1 − φ zð Þj j2� � 1/pð Þ+1 ,

M ≔ lim sup
j⟶∞

j1/p 2ψ′φ′ + ψφ′′
� 	

φj−1
��� ���

H∞
v

, T

≔ lim sup
j⟶∞

j 1/pð Þ+1 ψ φ′
� 	2

φj−1
����

����
H∞

v

:
ð33Þ

Proof. First we show that kψCφke,Zp
p−1⟶Zv

≳max fE,Gg:
Let fzjgj∈ℕ be a sequence in the unit disk such that jφðzjÞj
⟶ 1 as j⟶∞. Define

kj zð Þ = 1 − φ zj
� ��� ��2

1 − �φ zj
� �

z
� 	1/p −

1 + 2pð Þ 1 + 3pð Þ − 1 + pð Þ
2p 1 + 2pð Þ

1 − φ zj
� ��� ��2� 	2

1 − �φ zj
� �

z
� 	 1/pð Þ+1

+ 1 + p
1 + 2p

1 − φ zj
� ��� ��2� 	3

1 − �φ zj
� �

z
� 	 1/pð Þ+2 ,

mj zð Þ = 1 − φ zj
� ��� ��2

1 − �φ zj
� �

z
� 	1/p − 2

1 − φ zj
� ��� ��2� 	2

1 − �φ zj
� �

z
� 	 1/pð Þ+1

+
1 − φ zj

� ��� ��2� 	3
1 − �φ zj

� �
z

� 	 1/pð Þ+2 :

ð34Þ

After a calculation, we get all kj and mj belong to Z
p
p−1

and

kj φ zj
� �� �

= 0, k′′j φ zj
� �� �

= 0, k′j φ zj
� �� ��� ��

= p
1 + 2p

φ zj
� ��� ��

1 − φ zj
� ��� ��2� 	1/p ,

mj φ zj
� �� �

= 0,m′j φ zj
� �� �

= 0, m′′j φ zj
� �� ���� ���

=
2 φ zj
� ��� ��2

1 − φ zj
� ��� ��2� 	 1/pð Þ+1 :

ð35Þ

Moreover, kj and mj converge to 0 uniformly on �D as j

⟶∞. Hence, for any compact operator K : Z
p
p−1 ⟶Zv

, by Lemma 5, we get

ψCφ − K
�� ��

Z
p
p−1⟶Zv

≳ lim sup
j⟶∞

ψCφ kj
� ��� ��

Zv
− lim sup

j⟶∞
K kj
� ��� ��

Zv

≳ lim sup
j⟶∞

v zj
� �

2ψ′ zj
� �

φ′ zj
� �

+ ψ zj
� �

φ′′ zj
� �

φ zj
� ����� ��

1 − φ zj
� ��� ��2� 	1/p ,

ψCφ − K
�� ��

Z
p
p−1⟶Zv

≳ lim sup
j⟶∞

ψCφ mj

� ��� ��
Zv

− lim sup
j⟶∞

K mj

� ��� ��
Zv

≳ lim sup
j⟶∞

v zj
� �

ψ zj
� �

φ′
�� zj
� ��� ��2 φ zj

� ��� ��2
1 − φ zj

� ��� ��2� 	 1/pð Þ+1 :
ð36Þ

Hence,

ψCφ

�� ��
e,Zp

p−1⟶Zv
= inf

K
ψCφ − K
�� ��

Z
p
p−1⟶Zv

≳ lim sup
j⟶∞

v zj
� �

2ψ′ zj
� �

φ′ zj
� �

+ ψ zj
� �

φ′′ zj
� �

φk zj
� ��� ��

1 − φ zj
� ��� ��2� 	1/p

= lim sup
φ zð Þj j⟶1

v zð Þ 2ψ′ zð Þφ′ zð Þ + ψ zð Þφ′′ zð Þ�� ��
1 − φ zð Þj j2� �1/p = E,

ψCφ

�� ��
e,Zp

p−1⟶Zv
≳ lim sup

φ zð Þj j⟶1

v zð Þ ψ zð Þ φ′
�� zð Þ�� ��2

1 − φ zð Þj j2� � 1/pð Þ+1 =G, ð37Þ

as desired.
Next, we show that

ψCφ

�� ��
e,Zp

p−1⟶Zv
≲max E,Gf g: ð38Þ

Let r ∈ ½0, 1Þ. Define Kr : HðDÞ⟶HðDÞ by

Kr fð Þ zð Þ = f r zð Þ = f rzð Þ, f ∈H Dð Þ: ð39Þ

It is clear that Kr is compact on Z
p
p−1 and

kKrkZp
p−1⟶Z

p
p−1

≤ 1. Moreover, f r − f ⟶ 0 uniformly on

compact subsets of D as r⟶ 1. Let fr jg ⊂ ð0, 1Þ such that

r j ⟶ 1 as j⟶∞. Then, ψCφKrj
: Z

p
p−1 ⟶Zv is com-

pact for each j ∈ℕ. Hence,

ψCφ

�� ��
e,Zp

p−1⟶Zv
≤ lim sup

j⟶∞
ψCφ − ψCφKrj

��� ���
Z

p
p−1⟶Zv

:

ð40Þ

Thus, we only need to prove that

lim sup
j⟶∞

ψCφ − ψCφKrj

��� ���
Z

p
p−1⟶Zv

≲max E,Gf g: ð41Þ
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For any f ∈Zp
p−1 with k f kZp

p−1
≤ 1, by the facts that

lim
j⟶∞

ψ 0ð Þf φ 0ð Þð Þ − ψ 0ð Þf r jφ 0ð Þ� ��� �� = 0,

lim
j⟶∞

ψ′ 0ð Þ f − f r j

� 	
′ φ 0ð Þð Þ + ψ 0ð Þ f − f r j

� 	
′ φ 0ð Þð Þφ′ 0ð Þ

��� ��� = 0,

ð42Þ

we have

lim sup
j⟶∞

ψCφ − ψCφKrj

� 	
f

��� ���
Zv

= lim sup
j⟶∞

v zð Þ ψ · f − f r j

� 	
∘ φ

� 	
′′ zð Þ

��� ���
≤ lim sup

j⟶∞
sup

φ zð Þj j≤rt
v zð Þ f − f r j

� 	
′ φ zð Þð Þ 2ψ′

�� zð Þφ′ zð Þ + ψ zð Þφ′′ zð Þ
��� ���

+ lim sup
j⟶∞

sup
φ zð Þj j>rt

v zð Þ f − f r j

� 	
′ φ zð Þð Þ 2ψ′

�� zð Þφ′ zð Þ + ψ zð Þφ′′ zð Þ
��� ���

+ lim sup
j⟶∞

sup
z∈D

v zð Þ f − f r j

� 	
φ zð Þð Þ ψ′′

�� zð Þ
��� ���

+ lim sup
j⟶∞

sup
φ zð Þj j≤rt

v zð Þ f − f r j

� 	
′′ φ zð Þð Þ φ′

�� zð Þ
��� ���2 ψ zð Þj j

+ lim sup
j⟶∞

sup
φ zð Þj j>rt

v zð Þ f − f r j

� 	
′′ φ zð Þð Þ φ′

�� zð Þ
��� ���2 ψ zð Þj j

≔ P1 + P2 + P3 + P4 + P5,

ð43Þ

where t ∈ℕ is large enough such that rj ≥ 1/2 for all j ≥ t.

Since f r j − f ⟶ 0, r j f ′r j − f ′ ⟶ 0, and r2j f r j′ ′ − f ′′⟶ 0
uniformly on compact subsets of D as j⟶∞, by Lemma
3, we obtain

P3 = lim sup
j⟶∞

sup
z∈D

v zð Þ f − f r j

� 	
φ zð Þð Þ ψ′′

�� zð Þ
��� ���

≤ ψk kZv
lim sup
j⟶∞

sup
w∈D

f wð Þ − f r jw
� ��� �� = 0,

ð44Þ

P1 = lim sup
j⟶∞

sup
φ zð Þj j≤rt

v zð Þ f − f r j

� 	
′ φ zð Þð Þ 2ψ′

�� zð Þφ′ zð Þ + ψ zð Þφ′′ zð Þ
��� ���

≲ ψφk kZv
+ ψk kZv

� 	
lim sup
j⟶∞

sup
wj j≤rt

f ′ wð Þ − r j f ′ rjw
� ��� �� = 0,

ð45Þ

P4 = lim sup
j⟶∞

sup
φ zð Þj j≤rt

v zð Þ f − f r j

� 	
′′ φ zð Þð Þ φ′

�� zð Þ
��� ���2 ψ zð Þj j

≲ ψφ2�� ��
Zv

+ ψφk kZv
+ ψk kZv

� 	
lim sup
j⟶∞

sup
wj j≤rt

f ′′ wð Þ − r2j f ′′ rjw
� ���� ��� = 0:

ð46Þ

Using Lemma 1 and k f kZp
p−1

≤ 1, we obtain

P2 = lim sup
j⟶∞

sup
φ zð Þj j>rt

v zð Þ f − f r j

� 	
′ φ zð Þð Þ 2ψ′

�� zð Þφ′ zð Þ + ψ zð Þφ′′ zð Þ
��� ���

≲ lim sup
j⟶∞

f − f r j

��� ���
Z

p
p−1

sup
φ zð Þj j>rt

v zð Þ 2ψ′ zð Þφ′ zð Þ + ψ zð Þφ′′ zð Þ�� ��
1 − φ zð Þj j2� �1/p :

ð47Þ

Taking the limit as t⟶∞, we get

P2 ≲ E: ð48Þ

Similarly,

P5 = lim sup
j⟶∞

sup
φ zð Þj j>rt

v zð Þ f − f r j

� 	
′′ φ zð Þð Þ φ′

�� zð Þ
��� ���2 ψ zð Þj j

≲ lim sup
j⟶∞

f − f r j

��� ���
Z

p
p−1

sup
φ zð Þj j>rt

v zð Þ φ′ zð Þ�� ��2 ψ zð Þj j
1 − φ zð Þj j2� � 1/pð Þ+1 :

ð49Þ

Taking the limit as t⟶∞, we get

P5 ≲G: ð50Þ

Hence, by (43), (44), (45), (46), (48), and (50), we get

lim sup
j⟶∞

ψCφ − ψCφKrj

��� ���
Z

p
p−1⟶Zv

≲max E,Gf g, ð51Þ

which with (40) implies the desired result.
Finally, we prove that

ψCφ

�� ��
e,Zp

p−1⟶Zv
≈max M, Tf g: ð52Þ

On one hand, by the proof of Theorem 6, we see that the
boundedness of ψCφ : Z

p
p−1 ⟶Zv is equivalent to the

boundedness of ð2ψ′φ′ + ψφ′′ÞCφ : H∞
v1/p

⟶H∞
v and ψφ′2

Cφ : H∞
vð1/pÞ+1

⟶H∞
v . From [19, 20], we have

2ψ′φ′ + ψφ′′
� 	

Cφ

��� ���
e,H∞

v1/p⟶H∞
v

≈M, ψφ′2Cφ

��� ���
e,H∞

v 1/pð Þ+1⟶H∞
v

≈ T:

ð53Þ

Hence,

ψCφ

�� ��
e,Zp

p−1⟶Zv
≲ 2ψ′φ′ + ψφ′′
� 	

Cφ

��� ���
e,H∞

v1/p⟶H∞
v

+ ψφ′2Cφ

��� ���
e,H∞

v 1/pð Þ+1⟶H∞
v

≲M + T

≲max M, Tf g:
ð54Þ

On the other hand, from [19, 21], we have

ψCφ

�� ��
e,Zp

p−1⟶Zv
≳ E = 2ψ′φ′ + ψφ′′

� 	
Cφ

��� ���
e,H∞

v1/p⟶H∞
v

= lim sup
j⟶∞

2ψ′φ′ + ψφ′′
� 	

φj−1
��� ���

H∞
v

z j−1k kH∞
v1/p

≈M,
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ψCφ

�� ��
e,Zp

p−1⟶Zv
≳G = ψφ′2Cφ

��� ���
e,H∞

v 1/pð Þ+1⟶H∞
v

= lim sup
j⟶∞

ψφ′2φj−1
��� ���

H∞
v

z j−1k kH∞
v 1/pð Þ+1

≈ T:

ð55Þ

Therefore,

ψCφ

�� ��
e,Zp

p−1⟶Zv
≳max M, Tf g: ð56Þ

The proof is complete.

From Theorem 7 and the well-known result that
kTke,X⟶Y = 0 if and only if T : X⟶ Y is compact, we
get the following corollary.

Corollary 8. Let v be a radial, nonincreasing weight tending
to zero at the boundary of D. Let 1 < p <∞, ψ ∈HðDÞ, and
φ ∈ SðDÞ. Suppose that ψCφ : Z

p
p−1 ⟶Zv is bounded.

Then, the following statements are equivalent:

(i) The operator ψCφ : Z
p
p−1 ⟶Zv is compact

(ii) lim sup
jφðzÞj⟶1

ðvðzÞjψðzÞkφ′ðzÞj2/ð1 − jφðzÞj2Þð1/pÞ+1Þ = 0

and lim sup
jφðzÞj⟶1

ðvðzÞj2ψ′ðzÞφ′ðzÞ + ψðzÞφ′′ðzÞj/

ð1 − jφðzÞj2Þ1/pÞ = 0

(iii) lim sup
j⟶∞

jð1/pÞ+1kψðφ′Þ2φj−1kH∞
v
= lim sup

j⟶∞
j1/p

kð2ψ′φ′ + ψφ′′Þφj−1kH∞
v
= 0

Similarly to the above proof, we can get the characteriza-
tions of the boundedness, compactness, and essential norm of
the weighted composition operator ψCφ : Z

p
p−1 ⟶Bv as

follows. The details are left to the interested readers.

Theorem 9. Let v be a radial, nonincreasing weight tending
to zero at the boundary of D. Let 1 < p <∞, ψ ∈HðDÞ, and
φ ∈ SðDÞ. Then, the following statements are equivalent.

(i) ψCφ : Z
p
p−1 ⟶Bv is bounded

(ii) ψ ∈Bv and

sup
z∈D

v zð Þ ψ zð Þφ′ zð Þ�� ��
1 − φ zð Þj j2� �1/p <∞: ð57Þ

(iii) ψ ∈Bv and sup
j≥1

j1/pkψφ′φj−1kH∞
v
<∞

Theorem 10. Let v be a radial, nonincreasing weight tending
to zero at the boundary of D. Let 1 < p <∞, ψ ∈HðDÞ, and
φ ∈ SðDÞ. Suppose that ψCφ : Z

p
p−1 ⟶Bv is bounded.

Then,

ψCφ

�� ��
e,Zp

p−1⟶Bv
≈ lim sup

φ zð Þj j⟶1

v zð Þ ψ zð Þφ′ zð Þ�� ��
1 − φ zð Þj j2� �1/p ≈ lim sup

j⟶∞
j1/p ψφ′φ j−1�� ��

H∞
v
:

ð58Þ

Corollary 11. Let v be a radial, nonincreasing weight tending
to zero at the boundary of D. Let 1 < p <∞, ψ ∈HðDÞ, and
φ ∈ SðDÞ. Suppose that ψCφ : Z

p
p−1 ⟶Bv is bounded.

Then, the following statements are equivalent:

(i) The operator ψCφ : Z
p
p−1 ⟶Bv is compact

(ii) lim sup
jφðzÞj⟶1

ðvðzÞjψðzÞφ′ðzÞj/ð1 − jφðzÞj2Þ1/pÞ = 0

(iii) lim sup
j⟶∞

j1/pkψφ′φj−1kH∞
v
= 0
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