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The boundedness, compactness, and essential norm of weighted composition operators from Dirichlet-Zygmund spaces into
Zygmund-type spaces and Bloch-type spaces are investigated in this paper.

1. Introduction

Let H(D) denote the space of all analytic functions in the
open unit disk D. For 1< p < oo, the Dirichlet type space
925 | is the set of all f € H(D) such that

U118, =P + [ [ @F (1= ) dage) <oor 1)

where dA(z) = (1/m)dxdy is the normalized Lebesgue area

measure. 95_1 is a Banach space under the norm ||| B If

fled »-1> We say that f belongs to the Dirichlet-Zygmund
space, denoted by Z”_|. To the best of our knowledge, this

is the first work to study the Dirichlet-Zygmund space.
Recall that the space B;, called the minimal Mobius

invariant space, is the space of all f € H(D) that admit the

representation f(z) =}, b0 ( ) for some sequence {b;}

in I' and t; € D. The norm onf € By is defined by

Hﬂ&ﬂﬁ{gwwﬂ@=2%%&%~ 2)

Here, 0,(z)=(a-2z)/(1-az). For any feB,, the
authors in [1] showed that there exists a constant C > 0 such

that

c*IJ £ (2)|dA(z) < || - £(0) - ’0)z}|glscj IF"(2)|dA(2)
D D

(3)

Therefore, Z is in fact the space B;.

We call v:D— R, a weight, if v is a continuous,
strictly positive and bounded function. v is called radial, if
v(z) = v(|z|) for all z € D. Let v be a radial weight. Recall that
the Zygmund-type space Z,, is the space that consists of all
f € H(D) such that

£z, = £ O]+ |f'(0 (@) <c0. (4)

)| +supv(z
zeD

Z, is a Banach space under the norm |-|| ;- . We say that
belongs to the Bloch-type space %, if
8 ype sp v

/llzs, = 17 (0)] + supv(= )If'(2)] <o0 (5)

When v(z) =1 - |z|>, Z, = Z is called the Zygmund space,
and %, = A is called the Bloch space, respectively. In partic-

(1-]2)"

ular, Z, is just the Bloch space when v(z) =
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The weighted space, denoted by H;°, is the set of all f
€ H(D) such that

1l = supv(2)|f (2) < co. ©

When v(2) = v,(z) = (1 - |z]*)"(0 < a<c0), we denote H®
by HJ. In particular, when a=0, H)?=H® is just the
bounded analytic function space.

We denote by S(D) the set of all analytic self-maps of D
for simplicity. Let ¢ € S(D) and y € H(D). The weighted
composition operator yC,, is defined as follows.

(VC) (@) =¥()f (9(2)).f €H(D),zeD.  (7)

When y=1, yC, is called the composition operator,
denoted by C,- See [2, 3] for more results about the theory
of composition operators and weighted composition
operators.

For any ¢ € §(D), by the Schwarz-Pick lemma, we see that
Cy: HB —> R is bounded. It was shown in [4] that Cy: RB
— % is compact if and only if lim; . [¢/[| 5 = 0. Moti-
vated by [4], Colonna and Li in [5, 6] studied the operators
vC,: H® — Z and yC, : Lip, — Z by |y¢/[|5 and
i *w¢’|| & respectively. Here, Lip, is the Lipschtiz space.
The composition operator on the space B, was extensively
studied in [1]. In [7], Colonna and Li studied the boundedness
and compactness of weighted composition operators from the
minimal Mobius invariant space B, (Z) to the Bloch space
. In [8], Li studied the boundedness and compactness of the
weighted composition operator yC,, : B,(Z, o) — Z. See [5,
6, 8-17] for more results for composition operators, weighted
composition operators, and related operators on the Zygmund
space and Zygmund-type spaces.

In this paper, we follow the methods of [17] and give
some characterizations for the boundedness, compactness,
and essential norm of the operator yC,, : 2"2_1 — %, and
yC, : zg,l — B,

We denoted by C a positive constant which may differ
from one occurrence to the next. In addition, we will use
the following notations throughout this paper: A = B means
that there exists a constant C such that A < CB, while A =B
means that A<B<A.

2. Main Results and Proofs

In this section, we formulate and prove our main results in
this paper.

Lemma 1. Suppose 1< p <oo. Then, there exists a positive
constant C such that

Clf
< P

: , Cllflle
f@ls——5 ()< o
ol e

= (1 B |Z|2)1+(1/p) ’

and |flleo <Cllfll 72, for every f € Zy.,.
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Proof. Suppose r > 0 and g € H(D). Then, there exists a con-
stant C > 0 such that

9(2)f < C)Mj (@) (1- |wp) dA(w), (9)

(1-1z)? D(zr)
which implies that

Clgllyy.
(1 _ |Z|2)1/p

Clgllsr,

and|g'(z)| < W.

19(2)| < (10)

The inequalities in (8) hold. Here, D(z, r) is the hyper-
bolic disk (see [3]). From (8), we see that 2“5,1 are contained
in the disk algebra for p > 1. Hence, we get that ||f]|, <C

||f||2“§71' |

Lemma 2. Let I<p<oo. If f € .Zg,l, then for all t € (0,1)
and z € D\ {0}, there exists a positive constant C such that

(i)

Proof. Fix f € 2"5,1. Lett€(0,1) and ze D\ {0}. By Lemma

-1 (5 <
<clfly | Wd

1-1/
<Cllfllg (=12

<Clfllg (1=12)" ()

t/|z| 1/|2|
Jl zf' (sz)ds SL 2|\ f' (s2)|ds

1/|z|

(12)
as desired. O

Using Lemma 2 and similarly to the proof of Lemma 7 in
[18], we get the following lemma.

Lemma 3. Let I < p < 0o. Every sequence in Zg_l bounded in
norm has a subsequence which converges uniformly in D to a
function in ?ﬁ_z-

Lemma 4 (see [5]). Let X be a Banach space that is continu-
ously contained in the disk algebra, and let Y be any Banach
space of analytic functions on D. Suppose that

(i) The point evaluation functionals on Y are

continuous

(ii) For every sequence {f,} in the unit ball of X that
exists an f € X and a subsequence {f, } such that
J

f, — f uniformly on D
J
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(iii) The operator T : X — Y is continuous if X has the
supremum norm and Y is given by the topology of
uniform convergence on compact sets

Then, T is a compact operator if and only if, given a
bounded sequence {f,} in X such that f, — 0 uni-

formly on D, then the sequence ||Tf ||, — 0 as n

— Q.

The following result is a direct consequence of Lemmas 3
and 4.

Lemma 5. Let 1<p<oco and u be a weight. If T: Z)_,
— Z, is bounded, then T is compact if and only if
ITfillg — 0 as k— oo for any sequence {f} in Z',_

bounded in norm which converge to 0 uniformly in D.

Theorem 6. Let v be a radial, nonincreasing weight tending
to zero at the boundary of D. Let 1 <p < oo, v € H(D), and
¢ € S(D). Then, the following statements are equivalent.

(i) The operator yC, : :Z"g_l — Z, is bounded
(ii)) ye Z,

v(2)| 2y’ (2)9' (2) +y(2)9"' ()|

P:=sup - < 00,
zeD (1 _ |(/)(Z)|2) P
(13)
and
2
v(2)|v(2)|lo’ (=
Q:=sup | )Hz (1/p3+}1 < 00, (14)
D (1-g(2)[)
(iii) v € Z,,
supjf 1(2y"9" +y9" )/ ||y <00 and S.“?j(”")”
2 i
2 i
”V"Pl ol 1||H5° < 00.
Proof. (ii) = (i). For any z€ D and f € & p » by Lemma 1,
we have
|(WCf) O < [ O,

+

L"’i”') flsr.

vC,f) (0)| < | |v'(0) o
R (e

V(@) (vCof) @) (2w (2

+v(2)

)If ()]
o IvE (¢'@)
v@)|f (9@)||12v' (2)¢' (2) + v(2)e"(2)|
<v(2)|v" @)1z,
22y’ (2)9' (2) + w(2)9'(2)]
(1-le(2)P)"”
v(@)|v(2)|e (o)
—M\If\l
(1= fp(z)2) T

lo@lr,

(15)
Hence,

’ +supv

() (vCof) " (2)]

Q) 1fllz2,

(16)

|(WCaf ) (O)] +[(wCyf) (0

; v(0)p (0)
< <|1//(0)|+|1// (0)] + W +P+

[WCof |, =

< 00.

Therefore, yC,, :

(i) = (ii). Applying the operator yC, to 2 with j=0,1
,2 and using the boundedness of yC,, we get that y € Z,
vo € Z,, and yo® € Z . Hence, we obtain

zg_l — Z, is bounded.

supv(2)|2y’ (2)9 (2) + (2)9"'(2)| < o0,
, (17)
supv(2)| y(2) (¢ (2)) | < co.

For any a € D, set

_ 1-jaf _ (1-1af)
fal2) = m’ a(2) = (1-az)"DP eD. (18)
It is easy to check that
sup||f,llz» < ooand sup||g,[|z» <oo. — (19)
aeD Pl aeD [

Therefore, by the boundedness of yC, : L‘Z“g,l — Z,
and arbitrary of a € D, we get

su£||1//C¢fa||z < ooand suﬂg”wC(PgaHz < 0. (20)
ae v ae v



For w € D, we get

<V’C<pfrp(w)) "(w) =y (w) (1~ |p(w)?) TP

(2 W)e' (w) + y(w)e" (W) g(w)
p(1-o(w) |z) p

(L+p)y(w) <</>' (w))z(p(_w)z

P (1~ [g(w)?) "

+

+
(21)

w”(w)(l _ ‘(p(LU)|2)1_(1/P)
ep (Y@@ +w(w)<p1:’( o)
P (1—\<p D

)
(L p)(1+29) V() (¢@) 9w)”
I (1 lg(w) ‘2) (1p)+1

(WCng(p(w)) ()=

(22)

From (21) and (22), we obtain

(14 2) (VoS ) (@) + (¥CoGyi) ) (w)
oy (w) (1= Jg(w)])
(L) (9 ) 9w’

(1~ [p(w)?)""!

(1= lp(w)[)"”

=~ (VCofp) @)+ (VCyly ) @)
201+ p)(w) (¢ (W) ( y (24)
p(1- |¢<w>|2) e
= (1+29) (VCof g ) "(@) = (¥CyFyiu) )" (w)
- 2py"" () (1 - [p(w)| ) "
From (24), we get

sup "2 @0 () + y(w)e" (w)lp(w)]
(1= lpw))"”

<1+ ZP)HWCM,)HEV ¥ chqogw)uzv +2p]ly]l 5, < oo.

(25)
On one hand, from (25), we obtain
w) 2y (w)e' (W) + y(w)e' (w
p TV @0 W] o
fowp12 (1-|gp(w)?)
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On the other hand, from the fact that v, yp € Z ,, we get

¢ (W) +y(w)e' ()|
(1= lp(w)[)"”

AP
S<§) supv(w) |2y (w

zeD

w)[2y’ (w)

sup
lpw)|<12

) () + y(w)e" (w)|

<sup (Jlyglly, +2llly, ) <co.
zeD

From (26) and (27), we see that P is finite. Using similar
arguments, we see that Q is also finite.

(ii) © (iii). From [19], we see that the inequality in is
equivalent to the operator (2y'¢' +yg'’ )C, t HY

Vup
H is bounded. By [20], the boundedness of (2y'¢" +y¢'
')C, is equivalent to

sup — L < 00. (28)
21 1277 o

From [21], we get lim;__ . j'/?[|z/~ 1|| = {/2/pe, which
together with (28) imply that
e —
j= v
70 (2v"9" + v )o || (29)
= sup - - z
T e

Similarly, the inequality in is equivalent to

. (1/p)+1 W‘Plz‘Pj_l -
supj/P) ~su H
O I P o
Mgy
30
s
=sup — Hy
o 7
(L/p)+1
The proof is complete. O

Next, we consider the essential norm of yC, : §Z°§_1

—> Z,. Recall that the essential norm of T : X — Y is
its distance to the set of compact operators K : X — Y, that
is,

Tl =inf {||T - K||y_., : Kisacompact operator }.

(31)

eX—Y

Here, X, Y are Banach spaces, and T is a bounded linear
operator.
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Theorem 7. Let v be a radial, nonincreasing weight tending
to zero at the boundary of D. Let 1 <p < oo, v € H(D), and

¢ €S(D). Suppose that yC, : $§—1 — Z, is bounded.
Then,
HIIIC‘PHE,Z;]—»SZ“V ~max {E,G} ~max {M,T}.  (32)
Here,
2 / / + I
B timsap "V O (0)+ ¥(2)g" )]
woi— (1= [p@)P)
! 2
ety A
p@l—1 (1-|p(z)*)""
M :=lim supj”PH (21//’(/)' + 1//(p">g0j_1 H , T
j—00 By
N2 (33)
:=lim supj<1/p>+1 1//<(p ) ¢!
j— HY
Proof. First we show that HV/C(P”e,zg,leV > max {E, G}.

Let {zj}jeN

— 1 as j — 00. Define

be a sequence in the unit disk such that |¢(z;)|

_(1+2p)(1+3p) - (1+p) <1 - |e(z) |2>2
2O (1 g(z)e) "

4 }21/
(1 - (p(zj)z) !
1 ()

Up)+2’
1+2p (17(/)(2} Z)( p)+

k;(z) =

o) (1-le@))’
(1-0G)e)" (1-0)e) """
 (-lG)P)
(=)

After a calculation, we get all k; and m; belong to :Z“g_l
and

mi(z) =

(34)

Ry
—
S
—
~.
~
~—
|
L
a2
~. =
—
S
—
~.
~
~—
11
S

P lo(z;

] 1
1+2p (1 B }(P(zj) |2)1/P

m'(9(z)|

m;(9(z))) = 0.m';(9(z;)) =0,
2[p(z))|’

(-lete)P) ™

(35)

Moreover, k; and m; converge to 0 uniformly on D as j
— 00. Hence, for any compact operator K : zg_l — Z,
, by Lemma 5, we get

HwaKIIz;l_.zvZli;njogp)lwc¢(kj)llz ~lim su SuPHK(k-)Hz

v(@) |29 (2)9' () + v (2)9" (@) [le(z) |

(1-lots)F) "

2 lim sup

Jj—00

HWQP*K”:;L];@ >11]m sup||yC, (m H:z —ll;n sup||K (m;

)z,

e)lE)le Gl (36)

(1 el 2) (Up)+1

> lim sup
Jj—00

Hence,

:i%fHWCVJ_KH:ZLHz

v(z)[2¢' (2) 9" () + v (2)9" () o (2) ]
AP
(1 - le(z)] )
(2))2v' (2)9 (2) + ¥(2)9"' (2)]

A —

2 lim sup

j—00

I T L

v@)w@)e' @)

||‘/’C¢Hez~ —Z, >‘1;f“)fiﬁ (1 — r(zﬂzq))(l/p)ﬂ =G (37)
as desired.
Next, we show that

W Coll, 22—, s max {E, G}. (38)

Let r € [0, 1). Define K, : H(D) — H(D) by
(Kif)(2) =f,(2) = f(r2). f € H(D). (39)

It is clear that K,
||Kr||Z£71—>Z£71 <1. Moreover, f,—f—0 uniformly on

is compact on 526;1 and

compact subsets of D as r — 1. Let {r;} ¢ (0,1) such that

rj— 1 as j— oco. Then, 1//C¢Krj : 25,1 — Z, is com-

pact for each j € IN. Hence,

HV/C‘PHeZ'P —Z, <hmsupH1//C V/C‘P Ty *}z
P

(40)

Thus, we only need to prove that

lim sup Hl//C -yC,K

J—»OO

<max {E,G}. (41)

v

zﬁ,laz



6
For any f € Z}_, with ||f] 1 <1, by the facts that
Jim_[(0)f ((0)) ~y(0)f (r;(0))| = 0.
Jdim [y (0)(f - £,) (0(0) +w(O) (£ -1, ) (909 (0)| =0,
(42)
we have

K, )f||, =tmswpv@)|(v- (£-£,) = 0)"(2)

im s (v, - v, me
¢'(2)+v(2)9" (@)

<limsup sup v(z)‘(f—f,]) (9(2))]|2v' (2)

j—00 |g(2)|sr,

+limsup sup v(2)| (£~ £, ) '(9(2))[2v" (2

J00 le(2)>r,

)9 (2) +v(2)e"'(2)|
+lim sup supv(z )‘(f fr ) H‘V )

j—oo zeD

+lim sup sup v(z)’(f-f,y)”(‘P(Z))H‘P,(Z)‘ZW(Z)

J—00 lo(2)|<r,

+lim sup sup v(z))(f—fy/)”(‘P(Z))H‘PI(Z)‘Z|‘V(Z)

J00 e(z)>r,
=P +P,+P;+P, +Ps,
(43)

where ¢ € N is large enough such that r;>1/2 for all j>1.
Since f, —f —0, rj',j ~f"—0, and rjz.f:j’ ~f""—0
uniformly on compact subsets of D as j — 00, by Lemma
3, we obtain

P, =lim sup supv(z)’(f f) N|lv" (2 ’

j—00 zeD (44)
<[]l lim sup sup |f(w) = f(r;w)| =0,
j—00 weD

P, =lim sup sup v(z)‘ (f—frj)'((p

J00 Jg(z)|<r,

(Hmuz +Ht//||z)hmsup sup f' (w) - r f (r;w)| =0,

@)]2v' @)’ (2) + (29" (2)|

|w|<r,
(45)
py=timsup swp ()| (£, )"(@@)]le' @) 1y
J—00 o(z)|<r,
< (199l * vl + vl )i sup sup7”w) =" 1) =0
(46)

Using Lemma 1 and ||f||5» <1, we obtain
b

P,=limsup sup v(2)|(f -1, ) (o

J—00 [p(z)[>r,

)2y’ @' @) +v()e"(2)]

V@2 (@)¢'(2) +¥ (29" ()|
(1-lez)) "

<lim supr f,

Jj—00

o
Zp1lo(@)>r,

(47)
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Taking the limit as t — o0, we get
P, <E. (48)

Similarly,

py=timsup sup v(2)| (-1, )" (92) ¢’ )] Iv(2)

J00 Jo(2)|>r,

v(2)|o' (2)] v (2)

su .
j—eo Zhalp@lr (1 |g(z)?) P
(49)
Taking the limit as t — co, we get
Py <G. (50)

Hence, by (43), (44), (45), (46), (48), and (50), we get

lim sup HI/IC -yC,K

]—)OO

<max {E, G}, 51
52“571—>§Z“V { } ( )

which with (40) implies the desired result.
Finally, we prove that

Wyl gy oy =max 4T ()

On one hand, by the proof of Theorem 6, we see that the
boundedness of yC, : Z? | — Z, is equivalent to the
o0 o0 2
boundedness of (2y'¢" + 1;/(/)")(,’(/) PHy — H) and o'
C, tH® — HY. From [19, 20], we have

Yup)+

[N i
H(le ¢ Ve ,>C‘PHeHm N
> p v Y(1/p)+1

Hence,

1oy < | (20" +w0")C
Yiip v
<M+T

e,HY® —HY®
Y(1p)+1 v

o,

<max {M, T}.
(54)

On the other hand, from [19, 21], we have

1¥Coll or .z 2E=|| (200" +u9")C,

) )
E’Hvl/p —H;

v o),
=lim sup v~ M,

v EEIP
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2
HWC(PHe,Ig_I—>IV 2 G= HW(P C‘P e’H:/X(]l/p)‘*l*)H?O
H‘l"l’,z‘l’H‘ (55)
=lim sup L
j—oo (1277 | o
(1/p)+1
Therefore,
[0y, zmax ity (56)
The proof is complete. |

From Theorem 7 and the well-known result that
I T||,x_.y=0 if and only if T:X—Y is compact, we
get the following corollary.

Corollary 8. Let v be a radial, nonincreasing weight tending
to zero at the boundary of D. Let 1 <p < oo, v € H(D), and

¢ €S(D). Suppose that yC, : zg,l — £, is bounded.
Then, the following statements are equivalent:

(i) The operator yC, : 5‘5’2_, — Z, is compact
.. . / 1/p)+
(ii) Tim sup (v(2)[y(2) ||’ (2)*1(1 - |p(2) )P = 0

lo(2)|—1
and lim sup (v(2) |2y (2)¢" (2) + y(2)9"' (2)I/

|¢1(Z)\—>1
(1-lp(2)") ") =0

(i) lim sup; "7 |[y/(¢")’ /||y =lim supj'?

J—00 J—00

12" 0" + 9" )/ |y = 0

Similarly to the above proof, we can get the characteriza-
tions of the boundedness, compactness, and essential norm of

the weighted composition operator yC, : L’Z"g,l — B, as
follows. The details are left to the interested readers.

Theorem 9. Let v be a radial, nonincreasing weight tending
to zero at the boundary of D. Let 1 <p < oo, v € H(D), and
¢ € S(D). Then, the following statements are equivalent.

(i) yC, : Z’g_] — B, is bounded
(ii)) y € B, and

o AP 2]

- (57)
b (1-|o(z)P)"

(iii) v € B, and supj"? ||y’ /! || you < 0O
=1 !

Theorem 10. Let v be a radial, nonincreasing weight tending
to zero at the boundary of D. Let 1 <p < 0o, y € H(D), and
¢ €S(D). Suppose that yC, : Z’f;_l —> B, is bounded.
Then,

v(@)|¥(2)9' ()|

lim sup s lim supj”pHy/go’goj'l ||Hm.
j—00 v

l//C ® >
H 4’“9,2‘?,1—“& |p(z)|—1 (1 - |(P(Z)|2)

(58)

Corollary 11. Let v be a radial, nonincreasing weight tending
to zero at the boundary of D. Let 1 <p < 0o, v € H(D), and
¢ €S(D). Suppose that yC, : 2’5_1 — B, is bounded.
Then, the following statements are equivalent:

(i) The operator yC, : fZ’g,I — RB,, is compact

() lim sup W) [y(2)e @)1~ pz)2) ") =0
9(z)|—1

(iii) lim sup"? ||y’ /™!y = 0

j—00
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