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This article aims to research iterative schemes for searching a solution of a quasimonotone variational inequality in a Hilbert
space. For solving this quasimonotone variational inequality, we propose an iterative procedure which combines a self-adaptive
rule and the extragradient algorithm. We demonstrate that the procedure weakly converges to the solution of the investigated
quasimonotone variational inequality provided the considered operator satisfies several additional conditions.

1. Introduction

Variational inequality emerged in 1964 arising from the
study of mechanics has many applications in engineering,
economics, operations research, etc. ([1–4]). Variational
inequality theory acts as a tool for solving many prob-
lems, such as equilibrium problems ([5, 6]), optimization
problems ([7–9]), fixed point problems ([10–12]), and
split problems ([13–17]). There are numerous iterative
schemes for solving variational inequalities in the existing
results; see [18–25]. Next, we briefly review several valu-
able iterative methods.

Throughout, suppose that H is a Hilbert space. The
symbols h⋅ , ⋅i and k⋅k are the inner and norm of H , respec-
tively. Let ∅≠D ⊂H be a convex and closed set. For an
operator ϕ : D⟶H , the variational inequality aims to
seek a point v ∈D satisfying

ϕ vð Þ, v − v̂h i ≤ 0,∀v̂ ∈D: ð1Þ

We use Sðϕ,DÞ to indicate the set of solutions of (1).

A valuable algorithm for solving (1) is the projection
algorithm ([26, 27]) which generates a procedure as follows:

s0 ∈D, sn+1 = projD sn − ρϕ snð Þð Þ, for all n ≥ 0, ð2Þ

where projD : H ⟶D stands for the orthogonal projection
and ρ > 0 means the step-size.

When ϕ is strongly monotone, strongly pseudomono-
tone, or inverse strongly monotone, iterative scheme (2) is
convergent ([28, 29]).

Another powerful method is extragradient method stud-
ied by Korpelevich [30] which generates a procedure starting
from an initial point s0 ∈D:

tn = projD sn − ρnϕ snð Þð Þ,
sn+1 = projD sn − ρnϕ tnð Þð Þ, for all n ≥ 0:

 
ð3Þ

Thereafter, (3) has been discussed extensively for solving
(1); see, e.g., [30–34]. The main reason why the extragradi-
ent method attracts so much attention is that extragradient
method can be used to find a solution of plain monotone
operators. In fact, extragradient algorithm can be used to
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solve (1) if ϕ is pseudomonotone and sequentially weakly
continuous ([35–37]).

Very recently, iterative methods for solving quasimono-
tone variational inequality have been investigated in the lit-
erature [24, 38, 39]. Especially, Salahuddin [40] utilized (3)
for solving a Lipschitz quasimonotone variational inequality
and achieve the following result.

Conclusion 1 ([40]). Assume that the operator ϕ satisfies (i)
quasimonotone on H ; (ii) sequentially weakly continuous
on D; and (iii) Lipschitz continuous on D. Suppose that
Sðϕ,DÞ ≠∅ and ρn ∈ ½a, b� ⊂ ð0, ð1/LÞÞ, ∀n ≥ 0. Then, fsng
obtained from (3) weakly converges to ẑ ∈ Sðϕ,DÞ.

In this article, we further utilize extragradient method
(3) for solving quasimonotone variational inequality (1).
For this task, we will make use of an auxiliary tool regard-
ing the following dual variational inequality which is to
find v ∈D satisfying:

ϕ v̂ð Þ, v − v̂h i ≤ 0,∀v̂ ∈D: ð4Þ

We use Sdðϕ,DÞ to indicate the set of solutions of (4).
Notice that Sdðϕ,DÞ is closed convex. At the same

time, we have Sdðϕ,DÞ ⊂ Sðϕ,DÞ when ϕ is continuous
and D is convex. However, to acquire the convergence
of the constructed sequence, one has to add the following
extra condition

S ϕ,Dð Þ ⊂ Sd ϕ,Dð Þ, ð5Þ

which implies that

ϕ zð Þ, z − z†
� �

≥ 0,∀z† ∈ S ϕ,Dð Þ and z ∈D: ð6Þ

Note that the above condition (5) holds if ϕ is pseudo-
monotone. However, this condition (5) is not satisfied
when ϕ is quasimonotone. Further, self-adaptive rule was
applied for solving variational inequality problems, see
[41–45]. In this paper, for solving quasimonotone varia-
tional inequality (1), we propose an iterative procedure
which combines a self-adaptive method and extragradient
method (3) without using condition (5). We show that
the suggested iterative procedure is weakly convergent.
Our result extends the above theorem (1) at two aspects:
on the one hand “sequential weak continuity” imposed
on ϕ can be replaced by a more general restriction and
on the other hand a self-adaptive technique is used to
relax Lipschitz condition of ϕ.

2. Notions and Lemmas

Throughout, suppose that H is a Hilbert space and ∅≠D

⊂H is convex and closed. A map ϕ : D⟶H is called

(1) Monotone if

ϕ qð Þ − ϕ q̂ð Þ, q − q̂h i ≥ 0, ∀q, q̂ ∈D: ð7Þ

(2) Pseudomonotone if

ϕ q̂ð Þ, q − q̂h i ≥ 0⟹ ϕ qð Þ, q − q̂h i ≥ 0, ∀q, q̂ ∈D: ð8Þ

(3) Quasimonotone if

ϕ q̂ð Þ, q − v̂h i > 0⟹ ϕ qð Þ, q − q̂h i ≥ 0, ∀q, q̂ ∈D: ð9Þ

By the above definition, we can deduce that if ϕ is pseu-
domonotone, then ϕ must be quasimonotone. However, the
reverse conclusion may fail.

A map ϕ : D⟶H is called Lipschitz continuous if

ϕ qð Þ − ϕ q̂ð Þk k ≤ τ q − q̂k k,∀q, q̂ ∈D, ð10Þ

where τ is some positive constant. In this case, we call ϕτ-
Lipschitz. ϕ is called nonexpansive provided τ = 1.

An orthogonal projection from H onto D, denoted by
projD fulfills

v ∈H , v − projD vð Þk k ≤ v̂ − vk k,∀v̂ ∈D: ð11Þ

projD possesses the following characteristic inequality:

v ∈H , v − projD vð Þ, v̂ − projD vð Þh i ≤ 0,∀v̂ ∈D: ð12Þ

3. Algorithms and Convergence Results

First, we declare several related conditions. Suppose that H
is a Hilbert space and ∅≠D ⊂H is convex and closed. Sup-
pose that the involved operator ϕ satisfies three restrictions:

(t1) ϕ : H ⟶H is a quasimonotone operator
(t2) ϕ is μ-Lipschitz on D

(t3) If limn⟶+∞kϕðsnÞk = 0 with fsng being a sequence
in H and sn ⇀ s‡, then ϕðs‡Þ = 0

In the sequel, assume that Sdðϕ,DÞ ≠∅ and the set ft†
∈D : ϕðt†Þ = 0g \ Sdðϕ,DÞ is finite.

Suppose that ϖ, ζ and bς are three constants in the open
interval ð0, 1Þ. Suppose that fτng is a sequence in ð0, 2Þ
satisfying 0 < limn⟶∞τn ≤ limn⟶∞τn < 2.

Next, we state our scheme for solving (1).

Algorithm 2. Select a fixed point u0 in D. Set n = 0.
Step 1. Assume un is presented. Compute

wn = projD un − ϖζnϕ unð Þ½ �, ð13Þ

where ζn =max f1, ζ, ζ2,⋯g fulfills

ζn ϕ wnð Þ − ϕ unð Þk k ≤ 1 − bς
ϖ

wn − unk k: ð14Þ
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Step 2. Compute ŵn = projD½un − ϕðunÞ�. (2a) If ŵn = un,
then stop. (2b) If ŵn ≠ un, then calculate

vn =
v̂n
v̂nk k2 wn − unk k2, ð15Þ

where v̂n = un −wn + ϖζnϕðwnÞ and compute

un+1 = projD un − bςτnvnð Þ: ð16Þ

Let n≔ n + 1 and return to Step 1.

Conclusion 3. Inequality (14) is well-defined. Moreover, 0
< ð1 − bςÞζ/ϖμ < ζn ≤ 1 − bς/ϖμ or ζn = 1.

Proof. Since ϕ is μ-Lipschitz, we obtain

ϕ projD un − ϖζnϕ unð Þ½ �ð Þ − ϕ unð Þk k ≤ μ projD un − ϖζnϕ unð Þ½ � − unk k,
ð17Þ

which equals to

1 − bς
μϖ

ϕ projD un − ϖζnϕ unð Þ½ �ð Þ − ϕ unð Þk k

≤
1 − bς
ϖ

projD un − ϖζnϕ unð Þ½ � − unk k:
ð18Þ

This implies that (14) holds for all ζn ≤ 1 − bς/μϖ:
It is obviously that

ϖ
ζn
ζ
μ wn − unk k ≥ ϖ

ζn
ζ

ϕ wnð Þ − ϕ unð Þk k > 1 − bςð Þ wn − unk k,
ð19Þ

which implies that ζn > ð1 − bςÞζ/ϖμ > 0:

Conclusion 4. ðiÞ If ŵn = un, then un ∈ Sðϕ,DÞ. (ii) If ŵn ≠ un,
then kv̂nk > 0 and (15) is well-defined.

Proof.

(i) If ŵn = un, that is un = projD½un − ϕðunÞ�, by virtue of
(12), we acquire

un − un − ϕ unð Þ½ �, v − unh i ≥ 0,∀v ∈D, ð20Þ

which results in that un ∈ Sðϕ,DÞ.

(ii) Take x∗ ∈ Sdðϕ,DÞ. Notice that

v̂n, un − x∗h i = un −wn + ϖζnϕ wnð Þ, un − x∗h i
= un −wn − ϖζnϕ unð Þ, un − x∗h i

+ ϖζn ϕ unð Þ, un − x∗h i
+ ϖζn ϕ wnð Þ, un −wnh i
+ ϖζn ϕ wnð Þ,wn − x∗h i:

ð21Þ

As a result of x∗ ∈ Sdðϕ,DÞ and un ∈D, we have

ϕ unð Þ, un − x∗h i ≥ 0: ð22Þ

As the same as (22), we obtain

ϕ wnð Þ,wn − x∗h i ≥ 0, ð23Þ

due to wn ∈D.
In view of (21)-(23), we receive

v̂n, un − x∗h i ≥ un −wn − ϖζnϕ unð Þ, un − x∗h i
− ϖζn ϕ wnð Þ,wn − unh i

= wn − un + ϖζn ϕ unð Þ − ϕ wnð Þð Þ,wn − unh i
+ wn − un + ϖζnϕ unð Þ, x∗ −wnh i

= wn − unk k2 − ϖζn ϕ wnð Þ − ϕ unð Þ,wn − unh i
+ wn − un + ϖζnϕ unð Þ, x∗ −wnh i:

ð24Þ

Owing to ζn > ð1 − bςÞζ/ϖμ > 0, from (14), we get

ϕ wnð Þ − ϕ unð Þ,wn − unh i ≤ ϕ wnð Þ − ϕ unð Þk k wn − unk k
≤
1 − bς
ϖζn

un −wnk k2:

ð25Þ

Using (12) of projD and (14), we acquire

un −wn − ϖζnϕ unð Þ,wn − x∗h i ≥ 0: ð26Þ

In the light of (24), (25) and (26), we achieve

v̂n, un − x∗h i ≥ bς wn − unk k2: ð27Þ

If ŵn ≠ un, then wn ≠ un. Otherwise, by virtue of (12),
hun − ½un − ϖζnϕðunÞ�, v − uni ≥ 0, ∀v ∈D which results in
that un ∈ Sðϕ,DÞ and hence ŵn = un. This leads to a
contradiction. So, kwn − unk > 0. It follows from (27) that
hv̂n, un − x∗i > 0 which yields that kv̂nk > 0. Therefore,
(15) is well-defined.

In this position, we prove a main theorem.

Theorem 5. fung defined by Algorithm 2 weakly converges to
an element in Sðϕ,DÞ.
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Proof. Let x∗ ∈ Sdðϕ,DÞ. Since projD is nonexpansive and
x∗ ∈D, from (16) and (21), we have

un+1 − x∗k k2 = projD un − bςτnvnð Þ − projD x∗ð Þk k2≤ un−x∗−bςτnvn�� ��2

= bςτnð Þ2 vnk k2 − 2bςτn vn, un − x∗h i + un − x∗k k2

= un − x∗k k2 − 2bςτn wn − unk k2
v̂nk k2 v̂n, un − x∗h i

+ bςτnð Þ2 wn − unk k4
v̂nk k2 :

ð28Þ

Substituting (27) into (28) to derive

un+1 − x∗k k2 ≤ un − x∗k k2 − bς2 2 − τnð Þτn
wn − unk k4

v̂nk k2 :

ð29Þ

Noting that 0 < limn⟶∞τn ≤ limn⟶∞τn < 2, by (29),
we acquire

un+1 − x∗k k ≤ un − x∗k k, ð30Þ

which leads to that limn⟶∞kun − x∗k exists. Then, fung is
bounded and so is fϕðunÞg. From (13), we have

wn − unk k = projD un − ϖζnϕ unð Þ½ � − projD un½ �k k ≤ ϖζn ϕ unð Þk k:
ð31Þ

Hence, fwng and fϕðwnÞg are bounded.

Taking into account (29), we gain

bς2 2 − τnð Þτn
wn − unk k4

v̂nk k2 ≤− un+1 − x∗k k2 + un − x∗k k2:

ð32Þ

This leads to

wn − unk k2
v̂nk k ⟶ 0: ð33Þ

Thanks to the boundedness of v̂n = un −wn + ϖζnϕðwnÞ,
by (33), we have

lim
n⟶∞

wn − unk k = 0: ð34Þ

With the help of the Lipschitz continuity of ϕ, from (34),
we deduce

lim
n⟶∞

ϕ wnð Þ − ϕ unð Þk k = 0: ð35Þ

Based on (15) and (16), we derive

un+1 − unk k = projD un − bςτnvnð Þ − projD unð Þk k ≤ bςτn vnk k

= bςτn wn − unk k2
v̂nk k :

ð36Þ

In the light of (33) and (36), we achieve

lim
n⟶∞

un+1 − unk k = 0: ð37Þ

By (12) and (13), we deduce

un − ϖζnϕ unð Þ −wn, z −wnh i ≤ 0,∀z ∈D: ð38Þ

So,

1
ϖζn

un −wn, z −wnh i + ϕ unð Þ,wn − unh i ≤ ϕ unð Þ, z − unh i,∀z ∈D:

ð39Þ

Observe that fung, fwng, and fϕðunÞg are bounded.
According to (34) and (39), we have

limn⟶+∞ ϕ unð Þ, z − unh i ≥ 0,∀z ∈D: ð40Þ

Owing to fung is bounded, there is funig ⊂ fung fulfill-

ing uni ⇀ b† ∈D as i⟶ +∞. Taking into account (40),
we attain

limi⟶+∞ ϕ uni
� �

, z − uni
� �

≥ 0,∀z ∈D: ð41Þ

If limi⟶+∞kϕðuniÞk = 0, by uni ⇀ b† and ϕ verifying

(t1), we get that ϕðb†Þ = 0. Then, b† ∈ Sðϕ,DÞ.
Now, we assume that limi⟶+∞kϕðuniÞk > 0. Then, there

is an integer m > 0 fulfilling kϕðuniÞk > 0 for all i ≥m. By
virtue of (41), we attain

limi⟶+∞
ϕ uni
� �

ϕ uni
� ��� �� , z − uni

* +
≥ 0,∀z ∈D: ð42Þ

Let fεkg be a real number sequence fulfilling εk > 0, εk+1
< εk and εk ⟶ 0 as k⟶ +∞. Based on (42), there is fnikg
of fnig fulfilling nik ≥mðk ≥ 0Þ and

ϕ unik

� �
ϕ unik

� ���� ��� , z − unik

* +
+ εk > 0,∀k ≥ 0,∀z ∈D, ð43Þ

which results in that

ϕ unik

� �
, z − unik

D E
+ εk ϕ unik

� ���� ��� > 0,∀k ≥ 0,∀z ∈D: ð44Þ

Put bk = ϕðunik Þ/kϕðunik Þk
2 for all k ≥ 0. It is easily seen
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that hϕðunik Þ, bki = 1 for all k ≥ 0. With the help of (44),

we achieve

ϕ unik

� �
, εkbk ϕ unik

� ���� ��� + z − unik

D E
> 0,∀k ≥ 0,∀z ∈D:

ð45Þ

Owing to (45) and using the quasimonotonicity of ϕ,
we acquire

ϕ z + εkbk ϕ unik

� ���� ���� �
, εkbk ϕ unik

� ���� ��� + z − unik

D E
≥ 0,∀k ≥ 0,∀z ∈D:

ð46Þ

As a result of Lipschitz continuity of ϕ and
limk⟶+∞εkkbkkkϕðunik Þk = limk⟶+∞εk = 0, we deduce ϕ

ðz + εkbkkϕðunik ÞkÞ⟶ ϕðzÞ as k⟶ +∞. In (46), letting

k⟶ +∞, we receive

ϕ zð Þ, z − b†
D E

≥ 0, ∀z ∈D: ð47Þ

Thus, b† ∈ Sdðϕ,DÞ. Therefore, ωwðunÞ ⊂ ðft† ∈D : ϕðt†Þ
= 0g ∪ Sdðϕ,DÞÞ ⊂ Sðϕ,DÞ. Next, we prove fung has nomore
than one weak cluster point in Sdðϕ,DÞ. Suppose that b† ∈ Sd
ðϕ,DÞ and c‡ ∈ Sdðϕ,DÞ are two weak cluster points of fung.
Then, there exist two subsequences funig ⊂ fung and funj

g ⊂
fung such that uni ⇀ b† and unj

⇀ c‡.

It is obviously that

2 un, b† − c‡
D E

= un − c‡
�� ��2 − un − b†

�� ��2 + b†
�� ��2 − c‡

�� ��2,∀n ≥ 0:

ð48Þ

Letting n⟶∞ on both sides of (48), we have that
limn⟶+∞hun, b† − c‡i exists, denoted by â. Therefore,

lim
i⟶+∞

uni , b
† − c‡

D E
= â = lim

j⟶+∞
unj

, b† − c‡
D E

ð49Þ

Note that uni ⇀ b† and unj
⇀ c‡. By (45), we obtain

b†, b† − c‡
D E

= â = b† − c‡, c‡
D E

, ð50Þ

which yields that c‡ = b†. So, fung has no more than one
weak cluster point in Sdðϕ,DÞ. Since the set ft† ∈D : ϕðt†Þ
= 0g \ Sdðϕ,DÞ is finite, we deduce that fung has only finite
weak cluster points in Sðϕ,DÞ. Let w1,w2,⋯,wp be p
unequal weak cluster points of fung in Sðϕ,DÞ. Let Γ = f1,
2,⋯,pg and

α =min wr −wsk k/4, r, s ∈ Γ, r ≠ sf g: ð51Þ

For wr , r ∈ Γ, there is furnig of fung fulfilling urni ⇀wr

when i⟶ +∞. Hence,

lim
i⟶+∞

urni ,
wr −ws

wr −wsk k
	 


= wr ,
wr −ws

wr −wsk k
	 


,∀s ∈ Γ: ð52Þ

For ∀s ≠ r, we have

wr , wr −wsð Þ/ wr −wsk kh i = wrk k2 − wsk k2� �
/ 2 wr −wsk kð Þ

+ wr −wsk k/2 > α + wrk k2 − wsk k2� �
/ 2 wr −wsk kð Þ:

ð53Þ

Thanks to (52) and (53), there exists an integer Nr
i > 0

satisfying for all i ≥Nr
i ,

urni ∈ û : û, wr −ws

wr −wsk k
	 


> α + wrk k2 − wsk k2
2 wr −wsk k

� �
, s ∈ Γ, s ≠ r:

ð54Þ

Let

Ωr = ∩
p

s=1,s≠r
û : û, wr −ws

wr −wsk k
	 


> α + wrk k2 − wsk k2
2 wr −wsk k

� �
:

ð55Þ

Combining (54) with (55), we obtain urni ∈Ωr , ∀i ≥max
fNr

i , r ∈ Γg:
Next we demonstrate that if n is large enough, un ∈

∪p
r=1Ωr . Suppose that there is funj

g of fung such that unj
∉

∪p
r=1Ωr . According to the boundedness of funj

g, there exists
a subsequence of funj

g, without loss of generality, still

denoted by funj
g, which converges weakly to v̂. Hence unj

∉Ωr for any r ∈ Γ. Then, there is a subsequence funjs
g of

funj
g such that ∀s ≥ 0:

unjs
∉ û : û, wr −wsð Þ/ wr −wsk kh if
> wrk k2 − wsk k2� �

/ 2 wr −wsk kð Þ + αg, s ∈ Γ, s ≠ r:
ð56Þ

So,

v̂ ∉ û : û, wr −wsð Þ/ wr −wsk kh if
> wrk k2 − wsk k2� �

/ 2 wr −wsk kð Þ + αg, s ∈ Γ, s ≠ r,
ð57Þ

which results in that v̂ ≠wrð∀r ∈ ΓÞ. It leads to a contradic-
tion. Thus, there is a large enough integer ~N such that un
∈ ∪p

r=1Ωr for all n ≥ ~N .
Finally, we show that ωwðunÞ is singleton in Sðϕ,DÞ.

Suppose that p ≥ 2. Taking into account (37), there is N̂ ≥
~N fulfilling kun+1 − unk < α when n ≥ N̂ . Hence, there is m
≥ N̂ fulfilling um ∈Ωr and um+1 ∈Ωs, where r, s ∈ Γ and p
≥ 2, that is
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um ∈Ωr = ∩
p

s=1,s≠r
û : û, wr −wsð Þ/ wr −wsk kh if

> α + wrk k2 − wsk k2� �
/ 2 wr −wsk kð Þg

um+1 ∈Ωs = ∩
p

r=1,r≠s
û : û, ws −wrð Þ/ ws −wrk kh if

> α + wsk k2 − wrk k2� �
/ 2 ws −wrk kð Þg:

ð58Þ

Thus, we have

um, wr −wsð Þ/ wr −wsk kh i > α + wrk k2 − wsk k2� �
/ 2 wr −wsk kð Þ

ð59Þ

um+1, ws −wrð Þ/ ws −wrk kh i > α + wsk k2 − wrk k2� �
/ 2 ws −wrk kð Þ:

ð60Þ
Thanks to (59) and (60), we acquire

um − um+1,
wr −ws

wr −wsk k
	 


> 2α: ð61Þ

Note that

um+1 − unk k < α: ð62Þ

By virtue of (61) and (62), we receive

2α < um − um+1,
wr −ws

wr −wsk k
	 


≤ un − um+1k k < α, ð63Þ

which is impossible. Then, ωwðunÞ is singleton in Sðϕ,DÞ.
So, fung weakly converges to an element in Sðϕ,DÞ.

Remark 6. A map ϕ : H ⟶H is called weakly sequentially
continuous, if zn ⇀ ~z⇒ ϕðznÞ⇀ ϕð~zÞ, where fzng is any
sequence in H .

To solve (1), many existing results have imposed the
above “sequential weak-to-weak continuity” condition on ϕ;
see, [35, 36, 40]. We can check if ϕ satisfies sequential weak
continuity and then ϕ satisfies condition (t3).

4. Conclusions

The main purpose of this paper is to investigate iterative
algorithms for solving variational inequality (1). A powerful
method to solve (1) is extragradient method (3) introduced
by Korpelevich [30] where the involved operator ϕ is pseu-
domonotone monotone. Based on the corresponding result
of Salahuddin [40], we further apply extragradient method
(3) to solve quasimonotone variational inequality (1).

We propose an iterative algorithm (Algorithm 2) which
combines a self-adaptive rule and the extragradient algo-
rithm. In general, in order to show ωðunÞ belongs to the
solution set, ϕ should be sequentially weakly continuous.
In this paper, we replace these conditions by a weaker condi-
tion (t3). We demonstrate that the procedure weakly

converges to the solution of the investigated quasimonotone
variational inequality under several additional conditions.
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