
Research Article
Existence and H-U Stability of Solution for Coupled System of
Fractional-Order with Integral Conditions Involving Caputo-
Hadamard Derivatives, Hadamard Integrals

Muath Awadalla ,1 Muthaian Subramanian ,2 Murugesan Manigandan ,3

and Kinda Abuasbeh 1

1Department of Mathematics and Statistics, College of Science, King Faisal University, Hafuf, Al Ahsa, 31982, Saudi Arabia
2Department of Mathematics, KPR Institute of Engineering and Technology, Coimbatore, Tamilnadu, India
3Department of Mathematics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, Tamilnadu, India

Correspondence should be addressed to Muath Awadalla; mawadalla@kfu.edu.sa

Received 7 June 2022; Revised 22 July 2022; Accepted 24 August 2022; Published 5 September 2022

Academic Editor: Umair Ali

Copyright © 2022 Muath Awadalla et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In this article, the primary focus of our study is to investigate the existence, uniqueness, and Ulam-Hyers stability results for
coupled fractional differential equations of the Caputo-Hadamard type that are supplemented with Hadamard integral
boundary conditions. We employ adequate conditions to achieve existence and uniqueness results for the presented problems
by utilizing the Banach contraction principle and the Leray-Schauder fixed point theorem. We also show Ulam-Hyers stability
using the standard functional analysis technique. Finally, examples are used to validate the results.

1. Introduction

In the past two decades, scientists and researchers have pub-
lished results on fractional calculus analysis and concluded
that integer-order derivatives are not always reliable. The
study of turbulent fluid flows, control theory, blood flow
through biological tissues, porous media, and signal and
image processing, among other fields, have all benefited
greatly from the use of fractional calculus. The recent study
on fractional calculus, including theory and applications, can
be found in [1–13]. Their research is especially pertinent
since coupled systems with fractional differential equations
are used to address a wide range of real-world problems.
Over the past few decades, FDEs have also been the topic
of substantial research in the field of stability analysis. Differ-
ent types of stability, such as Mittag-Leffler and Lyapunov,
have been researched in the literature. Very few researches
have investigated the Ulam-Hyers stability of a linked sys-
tem of FDEs. Ulam and Hyers [14, 15] identified the novel
type of stability known as Ulam-Hyers stability. Under-

standing biological processes, fluid motion, semiconductors,
population dynamics, heat conduction, and elasticity can
all be helped by this kind of research. Meanwhile, the
researchers have focused on the differences and results of
mathematical models created by these operators and have
used a variety of fractional derivation operators in their
studies as a result of the diversity of fractional operators
described by mathematicians. Different forms of fractional
mathematical models, in which the effects of the order of
fractional derivatives on the dynamic behavior of the solu-
tions of the assumed systems are rigorously simulated, are
some of the well-known works on this topic. The follow-
ing is just one illustration: Caputo derivatives are used in
[16, 17], Caputo-conformable derivatives in [18, 19], gen-
eralized derivatives in [20, 21], quantum Caputo deriva-
tives in [22], nonsingular Caputo-Fabrizio derivatives in
[23], and nonsingular Mittag-Leffler kernel-type derivatives
in [24, 25]. The features of the Caputo and Hadamard
operations are combined to define the Caputo-Hadamard
fractional derivative, one of the fractional derivatives. By
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using this operator, very few fractional models and prob-
lems were produced. Examples can be seen in [26–29].
However, the Hadamard fractional derivative (HFD) is
the most frequently used [30]. Butzer et al. [31] investi-
gated a variety of properties of HFD, which are more gen-
eral than HFDs. In [32], the authors investigated a hybrid
fractional Caputo-Hadamard boundary value problem with
hybrid Hadamard integral boundary value conditions. The
authors in [33] studied topological degree theory and
Caputo-Hadamard fractional boundary value problems.
In [34], Etemad et al. investigated a fractional Caputo-
Hadamard inclusion problem with sum boundary value
conditions by using approximate endpoint property. In
2020, Etemad et al. [35] discussed a fractional Caputo-
Hadamard problem with boundary value conditions via
different orders of the Hadamard fractional operators:

κCHD
ϱ
1+u tð Þ + 1 − κð ÞCHDϖ

1+w tð Þ = αψ t,w tð Þð Þ + βHI
μ
1+φ t,w tð Þð Þ

w 1ð Þ = 0, CHDδ
1+w eð Þ = 0, CHDδ

1+w 1ð Þ = 0,
HIϑ

1+w eð Þ = 0,

8>><>>:
ð1Þ

where t ∈ ½1, e�, ρ, ϖ ∈ ð3, 4�, δ ∈ ð1, 2�, κ ∈ ð0, 1�, and μ, ϑ
> 0 with δ + ϑ ≠ 0 and also α, β ∈ℝ. In 2021, Rezapour
et al. [36] investigated Caputo-Hadamard fractional bound-
ary value problem via mixed multi-order integro-derivative
conditions:

λCHD
ς
1+u tð Þ+CHDθ∗

1+u tð Þ = Â t, u tð Þð Þ,
u 1ð Þ = 0, μ∗1

CH
D

γ∗1
1+u Mð Þ+∗CH

D
γ∗2
1+u ηð Þ = δ1,

μ∗2
H
I

q∗1
1+u Mð Þ+∗HI

q∗2
1+u ηð Þ = δ2,

8>>><>>>: ð2Þ

so that λ, μ∗1 , μ∗2 ∈ ð0, 1�, γ∗1 , γ∗2 ∈ ð0, ς − θ∗ with 2 < θ∗ < ς < 3
, q∗1 , q∗2 ∈ℝ+, δ1, δ2 ∈ℝ, and t ∈ ½1,M�. Recently, in [37], the
authors derived existence and uniqueness results for a non-
linear coupled system of Caputo-type FDEs equipped with
new coupled boundary conditions given by

CDαu tð Þ = f t, u tð Þ, v tð Þð Þ, t ∈ J ≔ 0, T½ �, T > 0
CDβv tð Þ = g t, u tð Þ, v tð Þð Þ, t ∈ J ≔ 0, T½ �,

u + vð Þ 0ð Þ = − u + vð Þ Tð Þ,
ðξ
η

u + vð Þ sð Þds =A , 0 < η < ξ < T ,

8>>>>><>>>>>:
ð3Þ

where CD
ð·Þ
0+ denote the CFDs of order ð·Þ, α, β ∈ ð0, 1�, f , g

: ½0, T� ×R2
e ⟶Re are continuous functions and A is real

constant. In 2022, Belbali et.al [38] existence theory and gen-
eralized Mittag-Leffler stability for a nonlinear Caputo-
Hadamard fractional initial value problem using the Lyapunov
method. By using main ideas of the aforementioned articles,
we investigate the Caputo-Hadamard coupled system of FDEs
with the Hadamard fractional integral conditions and present
its existence, uniqueness, andUlam-Hyers stability results.We
study the following system:

where Y1,Y2 : S ×R2 ⟶R are continuous functions;
HI ρ is the HFI of order ρ defined by

HI ρP
� �

ϑð Þ = 1
Γ ρð Þ

ðϑ
1

log ϑ

ν

� �ρ−1
P νð Þ dν

ν
, ρ > 0, ð5Þ

and HDς denotes HFD of order ς and is defined by

HDςP
� �

ϑð Þ = 1
Γ n − ςð Þ ϑ

d
dϑ

� �nðϑ
1

log ϑ

ν

� �n−ς−1

� P νð Þ dν
ν
, n − 1 < ς < n, n = ς½ � + 1,

ð6Þ

see [39, 40], where CDð·Þ denote the Caputo-Hadamard frac-
tional derivatives (CHFDs) of order ð·Þ, 0 < ς, ρ ≤ 1, and ϕ is
real constant. In this article, authors have extend the afore-

mentioned articles [35–37] to nonlinear coupled system of
Caputo-Hadamard fractional differential equations having
the value of the sum of unknown functions P and U at
the interval endpoints ½1, T� being zero, whereas the value
of the sum of the unknown functions on an arbitrary
domain ð1, φÞ of the given interval ½1, T� remains constant.
The remainder of the paper is as follows: Section 2 intro-
duces some fundamental definitions, lemmas, and theorems
that support our results. In Section 3, we prove the existence
and uniqueness of solutions to the given system (4) using
various conditions and some regular fixed-point theorems.
Finally, examples are given to explain the main results.

2. Preliminaries

In this section, we discuss some relevant definitions and
lemmas that will be needed later in our proof [11, 39, 40].

CDςP ϑð Þ =Y1 ϑ,P ϑð Þ,U ϑð Þð Þ, ϑϵS 1,T½ �,
CDϱU ϑð Þ =Y2 ϑ,P ϑð Þ,U ϑð Þð Þ, ϑϵS 1,T½ �,

P +Uð Þ 1ð Þ = − P +Uð Þ Tð Þ, 1
Γ ρð Þ

ðφ
1

log φ

ν

� �ρ−1
P +Uð Þ νð Þ dν

ν
= ϕ, 1 < φ < T ,

8>>>><>>>>:
ð4Þ
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Lemma 1. If b, ς, ρ > 0 then

HI
ς
b log ϑ

b

� �ρ−1
 !

Pð Þ = Γ ρð Þ
Γ ρ + ςð Þ log p

b

� �ρ+ς−1
: ð7Þ

Definition 2. Let 0 < b < c <∞, ReðςÞ ≥ 0, n = ½ReðςÞ + 1�.
The left and right CHFDs of order ς are, respectively,
defined by

CD
ς
b+P

� �
ϑð Þ =D

ς
b+ P νð Þ − 〠

n−1

k=0

δkP bð Þ
k!

log ν

b

� �k" #
ϑð Þ,

CDς
c−P

� �
ϑð Þ =Dς

c− h νð Þ − 〠
n−1

k=0

−1ð ÞkδkP cð Þ
k!

log c
ν

� �k" #
ϑð Þ:

ð8Þ

Definition 3. LetReðςÞ > 0, n = ½ReðςÞ� + 1 and p ∈C ½b, c�. If
ReðςÞ ≠ 0 or ς ∈ℕ, then

CD
ς
b+ I

ς
b+Pð Þ ϑð Þ =P ϑð Þ, CDς

c− I ς
c−Pð Þ ϑð Þ =P ϑð Þ: ð9Þ

Definition 4. Let p ∈ACn
δ½b, c� or Cn

δ½b, c� and ς ∈ℂ, then

I
ς
b+

CD
ς
b+P

� �
ϑð Þ =P ϑð Þ − 〠

n−1

k=0

δkP bð Þ
k!

log ϑ

b

� �k

,

I ς
c−

CDς
c−P

� �
ϑð Þ =P ϑð Þ − 〠

n−1

k=0

δkP cð Þ
k!

log c
ϑ

� �k
:

ð10Þ

Definition 5. Let K ,L ∈C ½1, e� and P ,U ∈ACðSÞ. Then,
the solution of the following linear coupled system:

where

η = log φ
Γ ρ + 1ð Þ ≠ 0: ð14Þ

Proof. Using Lemma 2.3 and the operators HI ς and HI ρ

on both sides of FDEs in (11), we obtain

P ϑð Þ= HI ςK ϑð Þ + a0, ð15Þ

U ϑð Þ= HI ρL ϑð Þ + b0, ð16Þ

where a0, b0 ∈Re, are arbitrary constants. Using the bound-

ary Condition (11) in (15) and (16), we obtain

a0 + b0 =
−1
2

� 1
Γ ςð Þ

ðe
1
log e

ν

� �ς−1
K νð Þ dν

ν

+ 1
Γ ρð Þ

ðe
1
log e

ν

� �ρ−1
L νð Þ dν

ν

	
,

ð17Þ

a0 − b0 =
1
η

�
φ −

1
Γ ςð Þ

ðe
1
log e

ν

� �ς−1
K νð Þ dν

ν

+ 1
Γ ρð Þ

ðe
1
log e

ν

� �ρ−1
L νð Þ dν

ν

	
:

ð18Þ

CDςP ϑð Þ =K ϑð Þ, 0 < ς < 1, ϑϵS ,
CDϱU ϑð Þ =L ϑð Þ, 0 < ϱ < 1, ϑϵS ,

P +Uð Þ 1ð Þ = − P +Uð Þ eð Þ, 1
Γ ρð Þ

ðφ
1

log φ

ν

� �ρ−1
P +Uð Þ νð Þ dν

ν
= ϕ, 1 < φ < T ,

8>>>><>>>>:
ð11Þ

P ϑð Þ = 1
Γ ςð Þ

ðϑ
1

log ϑ

ν

� �ς−1
K νð Þ dν

ν
+ 1
2



ϕ

η
−
1
2

� 1
Γ ςð Þ

ðe
1
log e

ν

� �ς−1
K νð Þ dν

ν
+ 1
Γ ρð Þ

ðe
1
log e

ν

� �ρ−1
L νð Þ dν

ν

	
−
1
η

� 1
Γ ς + ρð Þ

ðφ
1

log φ

ν

� �ς+ρ−1
K νð Þ dν

ν
−

1
Γ ρ + ρð Þ

ðφ
1

log φ

ν

� �ρ+ρ−1
L νð Þ dν

ν

	�
,

ð12Þ

U ϑð Þ = 1
Γ ρð Þ

ðϑ
1

log ϑ

ν

� �ρ−1
L νð Þ dν

ν
+ 1
2


 1
η

� 1
Γ ς + ρð Þ

ðφ
1

log φ

ν

� �ς+ρ−1
K νð Þ dν

ν
−

1
Γ ρ + ρð Þ

ðφ
1

log φ

ν

� �ρ+ρ−1
L νð Þ dν

ν

	
−
ϕ

η
−
1
2

� 1
Γ ςð Þ

ðe
1
log e

ν

� �ς−1
K νð Þ dν

ν
+ 1
Γ ρð Þ

ðe
1
log e

ν

� �ρ−1
L νð Þ dν

ν

	�
,

ð13Þ
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Solving the system (17)-(18) for a0, b0, we get

a0 =
1
2



ϕ

η
−
1
2

� 1
Γ ςð Þ

ðe
1
log e

ν

� �ς−1
K νð Þ dν

ν

+ 1
Γ ρð Þ

ðe
1
log e

ν

� �ρ−1
L νð Þ dν

ν

	
−
1
η

� 1
Γ ς + ρð Þ

ðφ
1

log φ

ν

� �ς+ρ−1
K νð Þ dν

ν

−
1

Γ ρ + ρð Þ
ðφ
1

log φ

ν

� �ρ+ρ−1
L νð Þ dν

ν

	�
,

b0 =
1
2


 1
η

� 1
Γ ς + ρð Þ

ðφ
1

log φ

ν

� �ς+ρ−1
K νð Þ dν

ν

−
1

Γ ρ + ρð Þ
ðφ
1

log φ

ν

� �ρ+ρ−1
L νð Þ dν

ν

	
−
ϕ

η
−
1
2

� 1
Γ ςð Þ

ðe
1
log e

ν

� �ς−1
K νð Þ dν

ν

+ 1
Γ ρð Þ

ðe
1
log e

ν

� �ρ−1
L νð Þ dν

ν

	�
,

ð19Þ

where η is given by (14). Substituting the values of a0 and b0
yields the result (12) and (13).

3. Existence Results for the Problem (4)

Defined by Ω =CðS ,ReÞ ×CðS ,ReÞ the Banach space
endowed with the norm kP ,Uk = supϑ∈S jP ðϑÞj + supϑ∈S j
UðϑÞj, for ðP ,UÞ ∈Ω. In spite of Lemma 2.4, the following
operator Ξ : Ω⟶Ω is associated with the problem (4):

Ξ P ,Uð Þ ϑð Þ = Ξ1 P ,Uð Þ ϑð Þ, Ξ2 P ,Uð Þ ϑð Þð Þ, ð20Þ

Ξ1 P ,Uð Þ ϑð Þ = 1
Γ ςð Þ

ðϑ
1

log ϑ

ν

� �ς−1
Y1 ν,P νð Þ,U νð Þð Þ dν

ν

+ 1
2



ϕ

η
−
1
2

� 1
Γ ςð Þ

ðe
1
log e

ν

� �ς−1
�Y1 ν,P νð Þ,U νð Þð Þ dν

ν
+ 1
Γ ρð Þ

�
ðe
1
log e

ν

� �ρ−1
Y2 ν,P νð Þ,U νð Þð Þ dν

ν

	
−
1
η

� 1
Γ ς + ρð Þ

ðφ
1

log φ

ν

� �ς+ρ−1
�Y1 ν,P νð Þ,U νð Þð Þ dν

ν
−

1
Γ ρ + ρð Þ

�
ðφ
1

log φ

ν

� �ρ+ρ−1
Y2 ν,P νð Þ,U νð Þð Þ dν

ν

	�
ð21Þ

Ξ2 P ,Uð Þ ϑð Þ = 1
Γ ρð Þ

ðϑ
1

log ϑ

ν

� �ρ−1
Y2 ν,P νð Þ,U νð Þð Þ dν

ν

+ 1
2
1
η

� 1
Γ ς + ρð Þ

ðφ
1

log φ

ν

� �ς+ρ−1
�Y1 ν,P νð Þ,U νð Þð Þ dν

ν
−

1
Γ ρ + ρð Þ

�
ðφ
1

log φ

ν

� �ρ+ρ−1
Y2 ν,P νð Þ,U νð Þð Þ dν

ν

	
−
ϕ

η
−
1
2

� 1
Γ ςð Þ

ðe
1
log e

ν

� �ς−1
�Y1 ν,P νð Þ,U νð Þð Þ dν

ν
+ 1
Γ ρð Þ

�
ðe
1
log e

ν

� �ρ−1
Y2 ν,P νð Þ,U νð Þð Þ dν

ν

	�
:

ð22Þ
Following that, we introduce the assumptions necessary

to construct the paper’s primary results.
Let Y1,Y2 : S ×R2

e ⟶Re functions be continuous.
ðF1Þ∃ continuous positive functions ωi, bω i ∈CðS ,R+

e Þ
, ði = 1, 2, 3Þ, such that

Y1 ϑ,P ,Uð Þj j ≤ ω1 ϑð Þ + ω2 ϑð Þ Pj j + ω3 ϑð Þ Uj j,∀ ϑ,P ,Uð Þ
∈ S ×R2

e ,

Y2 ϑ,P ,Uð Þj j ≤ bω1 ϑð Þ + bω2 ϑð Þ Pj j + bω3 ϑð Þ Uj j,∀ ϑ,P ,Uð Þ
∈ S ×R2

e :

ð23Þ

ðF2Þ∃ positive constants ϖi, bϖ i ði = 1, 2Þ such that

Y1 ϑ,P 1,U1ð Þ −Y1 ϑ,P 2,U2ð Þj j
≤ ϖ1 P 1 −P 2j j + ϖ2 U1 −U2j j,

Y2 ϑ,P 1,U1ð Þ −Y2 ϑ,P 2,U2ð Þj j
≤ bϖ1 P 1 −P 2j j + bϖ2 U1 −U2j j,

∀ϑ ∈ S ,P i,Ui ∈Re, i = 1, 2:

ð24Þ

We use the notation: For computational ease.

Y1 =
1

4Γ ς + 1ð Þ + 1
2η

log φð Þς+ρ
Γ ς + ρ + 1ð Þ , ð25Þ

Y2 =
1

4Γ ρ + 1ð Þ + 1
2η

log φð Þρ+ρ
Γ ρ + ρ + 1ð Þ , ð26Þ

Δ =min


1 −
�

2Y1 +
log Tð Þς
Γ ς + 1ð Þ

� �
ω2k k

+ 2Y2 +
log Tð Þρ
Γ ρ + 1ð Þ

� � bω2k k�
	
,

ð27Þ
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1 − 2Y1 +
log Tð Þς
Γ ς + 1ð Þ

� �
ω3k k + 2Y2 +

log Tð Þρ
Γ ρ + 1ð Þ

� � bω3k k
� 	�

:

ð28Þ
Our first existence result for the problem (4) is based on

the following fixed point theorem ([41, 42]).

Lemma 6. Let G : H ⟶H be a completely continuous
operator in the Banach space H , and the set Π = fP ∈H j
P = λGP , 0 < λ < 1g is bounded. Then, G has a fixed point
in H .

Theorem 7. Suppose that (F1) hold. Then, the problem (4)
has at least one solution on S provided that

2Y1 +
log Tð Þς
Γ ς + 1ð Þ

� �
ω2k k + 2Y2 +

log Tð Þρ
Γ ρ + 1ð Þ

� � bω2k k < 1,

ð29Þ

2Y1 +
log Tð Þς
Γ ς + 1ð Þ

� �
ω3k k + 2Y2 +

log Tð Þρ
Γ ρ + 1ð Þ

� � bω3k k < 1:

ð30Þ
where Y jðj = 1, 2Þ are defined by (25)-(26).

Proof. We begin by demonstrating that the operator Ξ : Ω
⟶Ω defined by (20) is completely continuous, i.e., that
Ξ is continuous and maps any bounded subset of Ω to a rel-
atively compact subset of Ω. Since the functions Y1 and Y2
are continuous, the operator Ξ : Ω⟶Ω is also continuous.
Now, let Ψr̂ ⊂Ω be bounded. Then, ∃ positive constants
T Y1

and T Y2
such that

Y1 ϑ,P ϑð Þ,U ϑð Þð Þj j ≤T Y1
, Y1 ϑ,P ϑð Þ,U ϑð Þð Þj j

≤T Y2
,∀ P ,Uð Þ ∈Ψr̂:

ð31Þ

So, for any ðP ,UÞ ∈Ψr̂ , ϑ ∈ S , we get

Ξ1 P ,Uð Þ ϑð Þj j ≤T Y1

log Tð Þς
Γ ς + 1ð Þ + Y1

� �
+ Y2T Y2

+ ϕ

η
,

Ξ2 P ,Uð Þ ϑð Þj j ≤ Y1T Y1
+T Y2

log Tð Þρ
Γ ρ + 1ð Þ + Y2

� �
+ ϕ

η
:

ð32Þ

Thus,

Ξ P ,Uð Þk k = Ξ1 P ,Uð Þk k + Ξ2 P ,Uð Þk k
≤

log Tð Þς
Γ ς + 1ð Þ + 2Y1

� �
T Y1

+ log Tð Þρ
Γ ρ + 1ð Þ + 2Y2

� �
� T Y2

+ 2ϕ
η
:

ð33Þ

Thus, the operator Ξ is uniformly bounded as a result of
the preceding inequality. Let Ξ prove that it determines
bounded sets into equicontinuous sets of Ω, let ϑ1, ϑ2 ∈ S ,
ϑ1 < ϑ2, and ðP ,UÞ ∈Ψr̂ . Then,

Ξ1 P ,Uð Þ ϑ2ð Þ − Ξ2 P ,Uð Þ ϑ2ð Þj j

≤
1

Γ ςð Þ
ðϑ1
1

log ϑ2
ν

� �ς−1
− log ϑ1

θ

� �ς−1
" #�����

�����
�Y1 ν,P νð Þ,U νð Þð Þ dν

ν
+
ðϑ2
ϑ1

log ϑ2
ν

� �ς−1
�����

�����
�Y1 ν,P νð Þ,U νð Þð Þ dν

ν

���� ����
≤T Y1

2 log ϑ2 − log ϑ1ð Þς + log ϑς2 − log ϑς1ð Þ
Γ ς + 1ð Þ

� �
:

ð34Þ

Take note that in the limit ϑ1 ⟶ ϑ2, the RHS of the pre-
ceding inequalities tends to zero independently of ðP ,UÞ
∈Ψr̂ . Then, The Arzela-Ascoli theorem implies that the
operator Ξ : Ω⟶Ω is completely continuous. Following
that, we consider the set Λ = fðP ,UÞ ∈ΩjðP ,UÞ = κΞðP ,
UÞ, 0 < κ < 1g and demonstrate that it is bounded. Let ðP ,
UÞ ∈Λ, then ðP ,UÞ = κΞðP ,UÞ, 0 < κ < 1. For any ϑ ∈ S ,
we have

P ϑð Þ = κΞ1 P ,Uð Þ ϑð Þ, U ϑð Þ = κΞ2 P ,Uð Þ ϑð Þ: ð35Þ

Using Yiði = 1, 2Þ given by (25)-(26), we find that

P ϑð Þj j = κ Ξ1 P ,Uð Þ ϑð Þj j ≤ ω1k k + ω2k k Pk k + ω3k k Uk kð Þ
� log Tð Þς

Γ ς + 1ð Þ + Y1

� �
+ bω1k k + bω2k k Pk kð

+ bω3k k Uk kÞY2 +
ϕ

η
,

U ϑð Þj j = κ Ξ2 P ,Uð Þ ϑð Þj j ≤ ω1k k + ω2k k Pk k + ω3k k Uk kð ÞY1
+ bω1k k + bω2k k Pk k + bω3k k Uk kð Þ
� log Tð Þρ

Γ ρ + 1ð Þ + Y2

� �
+ ϕ

η
:

ð36Þ

In consequence, we get

Pk k + Uk k
≤ ω1k k 2Y1 + log Tð Þς

Γ ς + 1ð Þ
� �

+ bω1k k 2Y2 + log Tð Þρ
Γ ρ + 1ð Þ

� �
+ 2ϕ

η
+
�

ω2k k 2Y1 + log Tð Þς
Γ ς + 1ð Þ

� �
+ bω2k k

� 2Y2 + log Tð Þρ
Γ ρ + 1ð Þ

� �	
Pk k +

�
ω3k k 2Y1 + log Tð Þς

Γ ς + 1ð Þ
� �

+ bω3k k 2Y2 + log Tð Þρ
Γ ρ + 1ð Þ

� �	
Uk k,

ð37Þ
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Thus, in Conditions (29)-(30), we obtain

T demonstrates that jP ,Uj is constrained for ϑ ∈ S . As a
result, the set Λ is bounded. As a result, the inference of
Lemma 6 applies, and the operator Ξ has at least one fixed
point, corresponding to a solution of the problem (4).

The existence of a unique solution to the problem (4) is
demonstrated using Banach’s contraction mapping theorem
in the following result.

Theorem 8. Suppose that ðF2Þ hold. Then, the problem (4)
has a unique solution on S if

ϖ
log Tð Þς
Γ ς + 1ð Þ + 2Y1

� �
+ bϖ log Tð Þρ

Γ ρ + 1ð Þ + 2Y2

� �
< 1, ð39Þ

where ϖ =max fϖ1, ϖ2g, bϖ =max fbϖ1, bϖ2g, and Yi, i = 1, 2
are defined by (25)-(26).

Proof. Consider the operator Ξ : Ω⟶Ω denoted by (20)
and fix

where W 1 = supϑ∈S jY1ðϑ, 0, 0Þj and W 2 = supϑ∈S jY2ðϑ, 0,
0Þj. Then, we show that ΞBπ ⊂Bπ, where Bπ = fðP ,UÞ
∈Ω : kðP ,UÞk ≤ πg. For ðP ,UÞ ∈Bπ, we have

Ξ1 P ,Uð Þ ϑð Þj j

≤
1

Γ ςð Þ
ðϑ
1

log ϑ

ν

� �ς−1
Y1 ν,P νð Þ,U νð Þð Þ −Y1 ν, 0, 0ð Þj j

+ Y1 ν, 0, 0ð Þj j dν
ν

+ 1
2



ϕ

η
−
1
2

� 1
Γ ςð Þ

ðe
1
log e

ν

� �ς−1
� Y1 ν,P νð Þ,U νð Þð Þ −Y1 ν, 0, 0ð Þj j + Y1 ν, 0, 0ð Þj j dν

ν

+ 1
Γ ρð Þ

ðe
1
log e

ν

� �ρ−1
Y2 ν,P νð Þ,U νð Þð Þ −Y2 ν, 0, 0ð Þj j

+ Y2 ν, 0, 0ð Þj j dν
ν

	
−
1
η

� 1
Γ ς + ρð Þ

ðφ
1

log φ

ν

� �ς+ρ−1
� Y1 ν,P νð Þ,U νð Þð Þ −Y1 ν, 0, 0ð Þj j + Y1 ν, 0, 0ð Þj j dν

ν

−
1

Γ ρ + ρð Þ
ðφ
1

log φ

ν

� �ρ+ρ−1
Y2 ν,P νð Þ,U νð Þð Þj

−Y2 ν, 0, 0ð Þj + Y2 ν, 0, 0ð Þj j dν
ν

	�
≤ ϖ

log Tð Þς
Γ ς + 1ð Þ + Y1

� �
+ bϖY2

� �
Pk k + Uk kð Þ

+W 1
log Tð Þς
Γ ς + 1ð Þ + Y1

� �
+W 2Y2,

ð41Þ

which leads to

Ξ1 P ,Uð Þk k ≤ ϖ
log Tð Þς
Γ ς + 1ð Þ + Y1

� �
+ bϖY2

� �
Pk k + Uk kð Þ

+W 1
log Tð Þς
Γ ς + 1ð Þ + Y1

� �
+W 2Y2,

ð42Þ

when the norm for ϑ ∈ S . Equivalently, for ðP ,UÞ ∈Bπ,
one can obtain

Ξ2 P ,Uð Þk k ≤ ϖY1 + bϖ log Tð Þρ
Γ ρ + 1ð Þ + Y2

� �� �
Pk k + Uk kð Þ

+W 1Y1 +W 2
log Tð Þρ
Γ ρ + 1ð Þ + Y2

� �
:

ð43Þ

Therefore, for any ðP ,UÞ ∈Bπ, we have

Ξ P ,Uð Þk k = Ξ1 P ,Uð Þk k + Ξ2 P ,Uð Þk k
≤ ϖ

log Tð Þς
Γ ς + 1ð Þ + 2Y1

� �
+ bϖ log Tð Þρ

Γ ρ + 1ð Þ + 2Y2

� �� �
� Pk k + Uk kð Þ,

W 1
log Tð Þς
Γ ς + 1ð Þ + 2Y1

� �
+W 2

log Tð Þρ
Γ ρ + 1ð Þ + 2Y2

� �
:

ð44Þ

P ,Uk k ≤ ω1k k 2Y1 + log Tð Þςð Þ/ Γ ς + 1ð Þð Þð Þ + bω1k k 2Y2 + log Tð Þρð Þ/ Γ ρ + 1ð Þð Þð Þ + 2ϕ/ηð Þ
Δ

ð38Þ

π > W 1 log Tð Þςð Þ/ Γ ς + 1ð Þð Þð Þ + 2Y1ð Þ +W 2 log Tð Þρð Þ/ Γ ρ + 1ð Þð Þð Þ + 2Y2ð Þ
1 − ϖ log Tð Þςð Þ/ Γ ς + 1ð Þð Þð Þ + 2Y1ð Þ + bϖ log Tð Þρð Þ/ Γ ρ + 1ð Þð Þð Þ + 2Y2ð Þ

, ð40Þ
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which demonstrates that ΞmapsBπ into itself. To dem-
onstrate that the operator Ξ is a contraction, let ðP 1,U1Þ,
ðP 2,U2Þ ∈Ω, ϑ ∈ S . Then, in view of F2, we obtain

Ξ1 P 1,U1ð Þ ϑð Þ − Ξ1 P 1,U1ð Þ ϑð Þk k

≤
1

Γ ςð Þ
ðϑ
1

log ϑ

ν

� �ς−1
Y1 ν,P 1 νð Þ,U1 νð Þð Þj

−Y1 ν,P 2 νð Þ,U2 νð Þð Þj dν
ν

+ 1
2



ϕ

η

−
1
2

� 1
Γ ςð Þ

ðe
1
log e

ν

� �ς−1
Y1 ν,P 1 νð Þ,U1 νð Þð Þj

−Y1 ν,P 2 νð Þ,U2 νð Þð Þj dν
ν

+ 1
Γ ρð Þ

ðe
1
log e

ν

� �ρ−1
� Y2 ν,P 1 νð Þ,U1 νð Þð Þ −Y2 ν,P 2 νð Þ,U2 νð Þð Þj j dν

ν

	
+ 1
η

� 1
Γ ς + ρð Þ

ðφ
1

log φ

ν

� �ς+ρ−1
Y1 ν,P 1 νð Þ,U1 νð Þð Þj

−Y1 ν,P 2 νð Þ,U2 νð Þð Þj dν
ν

+ 1
Γ ρ + ρð Þ

ðφ
1

log φ

ν

� �ρ+ρ−1
� Y2 ν,P 1 νð Þ,U1 νð Þð Þ −Y2 ν,P 2 νð Þ,U2 νð Þð Þj j dν

ν

	�
≤ ϖ

log Tð Þς
Γ ς + 1ð Þ + Y1

� �
+ bϖY2


 �
Pk k + Uk kð Þ,

Ξ2 P 1,U1ð Þ ϑð Þ − Ξ2 P 1,U1ð Þ ϑð Þk k

≤
1

Γ ρð Þ
ðϑ
1

log ϑ

ν

� �ρ−1
Y2 ν,P 1 νð Þ,U1 νð Þð Þj

−Y2 ν,P 2 νð Þ,U2 νð Þð Þj dν
ν

+ 1
2


 1
η

� 1
Γ ς + ρð Þ

�
ðφ
1

log φ

ν

� �ς+ρ−1
Y1 ν,P 1 νð Þ,U1 νð Þð Þj

−Y1 ν,P 2 νð Þ,U2 νð Þð Þj dν
ν

−
1

Γ ρ + ρð Þ
�
ðφ
1

log φ

ν

� �ρ+ρ−1
Y2 ν,P 1 νð Þ,U1 νð Þð Þj

−Y2 ν,P 2 νð Þ,U2 νð Þð Þj dν
ν

	
−
ϕ

η
−
1
2

� 1
Γ ςð Þ

�
ðe
1
log e

ν

� �ς−1
Y1 ν,P 1 νð Þ,U1 νð Þð Þj

−Y1 ν,P 2 νð Þ,U2 νð Þð Þj dν
ν

+ 1
Γ ρð Þ

ðe
1
log e

ν

� �ρ−1
� Y2 ν,P 1 νð Þ,U1 νð Þð Þ −Y2 ν,P 2 νð Þ,U2 νð Þð Þj j dν

ν

	�
≤ ϖY1 + bϖ log Tð Þρ

Γ ρ + 1ð Þ + Y2

� �
 �
Pk k + Uk kð Þ:

ð45Þ

Clearly, the preceding inequalities imply that

Ξ P 1,U1ð Þ − Ξ P 2,U2ð Þk k
= Ξ1 P 1,U1ð Þ − Ξ1 P 2,U2ð Þk k

+ Ξ2 P 1,U1ð Þ − Ξ2 P 2,U2ð Þk k
≤ ϖ

log Tð Þς
Γ ς + 1ð Þ + 2Y1

� �
+ bϖ log Tð Þρ

Γ ρ + 1ð Þ + 2Y2

� �
 �
� P 1 −P 2,U1 −U2ð Þk k,

ð46Þ

which, in view of (40) means that Ξ is a contraction map-
ping. As a result of Banach’s contraction mapping theorem,
Π has a unique fixed point. This demonstrates that the prob-
lem (4) has a unique solution on S .

4. Ulam-Hyers Stability Results (4)

The U-H stability of the solutions to the BVPs (4) will be
discussed in this section using the integral representation
of their solutions defined by

P ϑð Þ = Ξ1 P ,Uð Þ ϑð Þ,U ϑð Þ = Ξ2 P ,Uð Þ ϑð Þ, ð47Þ

where ϑ1 and ϑ2 are given by (21) and (22). Consider the fol-
lowing definitions of nonlinear operators

Q1,Q2 ∈C S ,Reð Þ ×C S ,Reð Þ⟶C S ,Reð Þ,
CDςP ϑð Þ −Y1 ϑ,P ϑð Þ,U ϑð Þð Þ =Q2 P ,Uð Þ ϑð Þ, ϑϵS ,
CDϱP ϑð Þ −Y2 ϑ,P ϑð Þ,U ϑð Þð Þ =Q2 P ,Uð Þ ϑð Þ, ϑϵS:

(
ð48Þ

It considered the following inequalities for some bλ1, bλ2 :

Q1 P ,Uð Þk k ≤ bλ1, Q2 P ,Uð Þk k ≤ bλ2: ð49Þ

Definition 9. The coupled system (4) is said to be U-H stable
if V 1,V 2 > 0, and there exists a unique solution ðP ,UÞ ∈
CðE,ReÞ of a problem (4) with

P ,Uð Þ − P ∗,U∗ð Þk k ≤V 1
bλ1 +V 2

bλ2, ð50Þ

∀ðP ,UÞ ∈CðS ,ReÞ of inequality (49).

Theorem 10. Assume that ðF2Þ holds. Then, the problem (4)
is U-H stable.

Proof. Let CðS ,ReÞ ×CðS ,ReÞ be the solution to (4) that
satisfies (21) and (22). Let ðP ,UÞ be any solution that meets
Condition (49):

CDςP ϑð Þ −Y1 ϑ,P ϑð Þ,U ϑð Þð Þ +Q1 P ,Uð Þ ϑð Þ, ϑϵS ,
CDϱP ϑð Þ −Y2 ϑ,P ϑð Þ,U ϑð Þð Þ +Q2 P ,Uð Þ ϑð Þ, ϑϵS ,

(
ð51Þ

so,
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P ∗ ϑð Þ = Ξ1 P ∗,U ∗ð Þ ϑð Þ + 1
Γ ςð Þ

ðϑ
1

log ϑ

ν

� �ς−1

� Q1 P ∗,U ∗ð Þ νð Þ dν
ν

+ 1
2



ϕ

η
−
1
2

� 1
Γ ςð Þ

�
ðe
1
log e

ν

� �ς−1
Q1 P ∗,U ∗ð Þ νð Þ dν

ν

+ 1
Γ ρð Þ

ðe
1
log e

ν

� �ρ−1
Q2 P ∗,U ∗ð Þ νð Þ dν

ν

	
−
1
η

� 1
Γ ς + ρð Þ

ðφ
1

log φ

ν

� �ς+ρ−1
Q1 P ∗,U ∗ð Þ

� νð Þ dν
ν

−
1

Γ ρ + ρð Þ
ðφ
1

log φ

ν

� �ρ+ρ−1
� Q2 P ∗,U ∗ð Þ νð Þ dν

ν

	�
:

ð52Þ

It follows that

Ξ1 P ∗,U ∗ð Þ ϑð Þ −P ∗ ϑð Þj j

≤
1

Γ ςð Þ
ðϑ
1

log ϑ

ν

� �ς−1bλ1
dν
ν

+ 1
2



ϕ

η
−
1
2

� 1
Γ ςð Þ

�
ðe
1
log e

ν

� �ς−1bλ1
dν
ν

+ 1
Γ ρð Þ

ðe
1
log e

ν

� �ρ−1bλ2
dν
ν

	
+ 1
η

� 1
Γ ς + ρð Þ

ðφ
1

log φ

ν

� �ς+ρ−1bλ1
dν
ν

+ 1
Γ ρ + ρð Þ

ðφ
1

log φ

ν

� �ρ+ρ−1bλ2
dν
ν

	�
≤

1
4Γ ς + 1ð Þ + 1

2η
log φð Þς+ρ

Γ ς + ρ + 1ð Þ
� �bλ1 +

� 1
4Γ ρ + 1ð Þ

+ 1
2η

log φð Þρ+ρ
Γ ρ + ρ + 1ð Þ

�bλ2 ≤ Y1
bλ1 + Y2

bλ2:

Ξ2 P ∗,U ∗ð Þ ϑð Þ −U ∗ ϑð Þj j

≤
1

Γ ρð Þ
ðϑ
1

log ϑ

ν

� �ρ−1bλ2
dν
ν

+ 1
2


 1
η

� 1
Γ ς + ρð Þ

�
ðφ
1

log φ

ν

� �ς+ρ−1bλ1
dν
ν

+ 1
Γ ρ + ρð Þ

�
ðφ
1

log φ

ν

� �ρ+ρ−1bλ2
dν
ν

	
+ ϕ

η
−
1
2

� 1
Γ ςð Þ

�
ðe
1
log e

ν

� �ς−1bλ1
dν
ν

+ 1
Γ ρð Þ

ðe
1
log e

ν

� �ρ−1bλ2
dν
ν

	�
,

≤
1

4Γ ς + 1ð Þ + 1
2η

log φð Þς+ρ
Γ ς + ρ + 1ð Þ

� �bλ1 +
� 1
4Γ ρ + 1ð Þ

+ 1
2η

log φð Þρ+ρ
Γ ρ + ρ + 1ð Þ

�bλ2 ≤ Y1bλ1 + Y2bλ2:

ð53Þ

where Y1 and Y2 are defined in (25)-(26), respectively. As an
outcome, we deduce from operator Ξ’s fixed-point property,

which is defined by (21) and (22)

P ϑð Þ −P ∗ ϑð Þj j
= P ϑð Þ − Ξ1 P ∗,U ∗ð Þ ϑð Þ + Ξ1 P ∗,U ∗ð Þ ϑð Þ −P ∗ ϑð Þj j
≤ Ξ1 P ,Uð Þ ϑð Þ − Ξ1 P ∗,U ∗ð Þ ϑð Þj j

+ Ξ1 P ∗,U ∗ð Þ ϑð Þ −P ∗ ϑð Þj j
≤ Y1ϕ1 + Y1bϕ1

� �
+ Y1ϕ2 + Y1bϕ2

� �� �
� P ,Uð Þ − P ∗,U ∗ð Þk k + Y1

bλ1 + Y1
bλ2,

ð54Þ

U ϑð Þ −U ∗ ϑð Þj j
= U ϑð Þ − Ξ2 P ∗,U ∗ð Þ ϑð Þ + Ξ2 P ∗,U ∗ð Þ ϑð Þ −U ∗ ϑð Þj j
≤ Ξ2 P ,Uð Þ ϑð Þ − Ξ2 P ∗,U ∗ð Þ ϑð Þj j

+ Ξ2 P ∗,U ∗ð Þ ϑð Þ −U ∗ ϑð Þj j
≤ Y2ϕ1 + Y2bϕ1

� �
+ Y2ϕ2 + Y2bϕ2

� �� �
� P ,Uð Þ − P ∗,U ∗ð Þk k + Y2

bλ1 + Y2
bλ2:

ð55Þ
From the above Equations (54) and (55), it follows that

P ,Uð Þ − P ∗,U ∗ð Þk k

≤
Y1 + Y2ð Þbλ1 + Y1 + Y2ð Þbλ2

1 − Y1 + Y2ð Þ ϕ1 + ϕ2ð Þ + Y1 + Y2ð Þ bϕ1 + bϕ2

� �� �
≤V 1

bλ1 +V 2
bλ2,

ð56Þ

with

V 1 =
Y1 + Y2ð Þ

1 − Y1 + Y2ð Þ ϕ1 + ϕ2ð Þ + Y1 + Y2ð Þ bϕ1 + bϕ2

� �� �
V 2 =

Y1 + Y2ð Þ
1 − Y1 + Y2ð Þ ϕ1 + ϕ2ð Þ + Y1 + Y2ð Þ bϕ1 + bϕ2

� �� � :
ð57Þ

Hence, the problem (4) is U-H stable.

5. Examples

Example 11. Consider the following problem:

CD
21
50P ϑð Þ =Y1 ϑ,P ϑð Þ,U ϑð Þð Þ, ϑϵ 1, 2½ �,

CD
16
25U ϑð Þ =Y2 ϑ,P ϑð Þ,U ϑð Þð Þ, ϑϵ 1, 2½ �,

P +Uð Þ 1ð Þ = − P +Uð Þ 2ð Þ, HI
9
25 P +Uð Þ 79

50

� �
= 4,

8>>>>>>><>>>>>>>:
ð58Þ
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where ς = 21/50, ς = 16/25, ρ = 9/25, φ = 79/50, ϕ = 4, T = 2,
Y1ðϑ,P ,UÞ, and Y2ðϑ,P ,UÞ are set later. Using the pro-
vided data, we determine that Y1 = 0:852825 and Y2 =
0:72329, where Y1 and Y2 are denoted by (25) and (26),
respectively. We will use

Y1 ϑ,P ,Uð Þ = 1
log ϑ + 5ð Þ2 ϑ + 2 cos p + q

4
� �

and

Y2 ϑ,P ,Uð Þ = 1
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log ϑð Þ2 + 400

q p
4 + 2 sin q + ϑ
� �

,
ð59Þ

to illustrate Theorem 7. Y1 and Y2 are continuous and ful-
fill the condition ðF1Þ with ω1ðϑÞ = ϑ/ððlog ϑ + 5Þ2Þ, ω2ðϑÞ
= 2/ððlog ϑ + 5Þ2Þ, ω3ðϑÞ = 1/ð4ðlog ϑ + 5Þ2Þ, bω1ðϑÞ = ϑ/ð4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlog ϑÞ2 + 400

q
Þ, bω2ðϑÞ = 1/ð16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlog ϑÞ2 + 400

q
Þ, and bω3ð

ϑÞ = 1/ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlog ϑÞ2 + 400

q
Þ. Also ð2Y1 + ððlog TÞς/ðΓðς + 1ÞÞ

ÞÞkω2k + ð2Y2 + ððlog TÞρ/ðΓðρ + 1ÞÞÞÞkbω2k ≈
0:9527249493 and ð2Y1 + ððlog TÞς/ðΓðς + 1ÞÞÞÞkω3k + ð2
Y2 + ððlog TÞρ/ðΓðρ + 1ÞÞÞÞkbω3k ≈ 0:9042700804. As a
result, all of Theorem 10 conditions hold, and there exists
at least one solution to the problem (60) involving the equa-
tions Y1ðϑ,P ,UÞ and Y2ðϑ,P ,UÞ specified in (59).

Example 12. Consider the following problem:

CD
21
50P ϑð Þ =Y1 ϑ,P ϑð Þ,U ϑð Þð Þ, ϑϵ 1, 2½ �,

CD
16
25U ϑð Þ =Y2 ϑ,P ϑð Þ,U ϑð Þð Þ, ϑϵ 1, 2½ �,

P +Uð Þ 1ð Þ = − P +Uð Þ 2ð Þ, HI
9
25 P +Uð Þ 79

50

� �
= 4,

8>>>>>>><>>>>>>>:
ð60Þ

where ς = 21/50, ρ = 16/25, ρ = 9/25, φ = 79/50, ϕ = 4, T = 2,
Y1ðϑ,P ,UÞ, and Y2ðϑ,P ,UÞ are set later. Using the pro-
vided data, we determine that Y1 = 0:852825 and Y2 =
0:72329, where Y1 and Y2 are denoted by (25) and (26),
respectively. We chose

Y1 ϑ,P ,Uð Þ = 1
30 log ϑ + 2ð Þ2 tan−1u + Uj j

1 + Uj j
� �

, ð61Þ

Y2 ϑ,P ,Uð Þ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log ϑð Þ2 + 400

q 2 cos P + tan−1U
� �

,

ð62Þ
to illustrate the implementation of Theorem 8. Remember
the fact that Y1 and Y2 are continuous and satisfy the con-
dition ðF2Þ with ϖ1 = ϖ2 = 1/120 = ϖ and bϖ1 = bϖ2 = 1/20 =bϖ . Also ϖððððlog TÞςÞ/ðΓðς + 1ÞÞÞ + 2Y1Þ + bϖððððlog TÞρÞ/ð
Γðρ + 1ÞÞÞ + 2Y2Þ ≈ 0:9246609812. As a result, all of Theo-
rem 3.2 conditions are met, and its inference applies to the

problem (60) with Y1ðϑ,P ,UÞ and Y2ðϑ,P ,UÞ given by
(61).

Example 13. Consider the following problem:

CD
21
50P ϑð Þ =

ffiffiffi
ϑ

p

2 + 1
5 ϑ + 25ð Þ

P ϑð Þj j
1 + P ϑð Þj j +

3
80 cos U ϑð Þð Þ, ϑϵ 1, 2½ �,

CD
16
25U ϑð Þ = ϑ

5 + 17
300 cos P ϑð Þð Þ + 1

70
U ϑð Þj j

1 + U ϑð Þj j , ϑϵ 1, 2½ �,

P +Uð Þ 1ð Þ = − P +Uð Þ 2ð Þ, HI
9
25 P +Uð Þ 79

50

� �
= 4,

8>>>>>>>>><>>>>>>>>>:
ð63Þ

We choose

f ϑ,P 1 ϑð Þ,U1 ϑð Þð Þ − f ϑ,P 2 ϑð Þ,U2 ϑð Þð Þj j
= 1
125 P 1 ϑð Þ −P 2 ϑð Þj j + 3

80 U1 ϑð Þ −U2 ϑð Þj j,
ð64Þ

g ϑ,P 1 ϑð Þ,U1 ϑð Þð Þ − g ϑ,P 2 ϑð Þ,U2 ϑð Þð Þj j
= 17
300 P 1 ϑð Þ −P 2 ϑð Þj j + 1

70 U1 ϑð Þ −U2 ϑð Þj j:
ð65Þ

With ϕ1 = 1/125, ϕ2 = 3/80, bϕ1 = 17/300, and bϕ2 = 1/70,
the functions P and U clearly satisfy the ðF2Þ condition.
Next, we find that Y1 = 0:852825 and Y2 = 0:72329, where
Y1 and Y2 are, respectively, given by (25) and (26), based
on the data available. Thus, ððY1 + Y2Þðϕ1 + ϕ2Þ + ðY1 + Y2
Þðbϕ1 + bϕ2ÞÞ ≊ 0:183542 < 1, all the conditions of Theorem
10 are satisfied, and there is a unique solution for problem
(3) on ½0, 1�, which is stable for Ulam-Hyers, with P and
U given by (4) and (5), respectively.

Example 14. Consider the following problem:

CD
19
45P ϑð Þ =Y1 ϑ,P ϑð Þ,U ϑð Þð Þ, ϑϵ 1, 2½ �,

CD
13
20U ϑð Þ =Y2 ϑ,P ϑð Þ,U ϑð Þð Þ, ϑϵ 1, 2½ �,

P +Uð Þ 1ð Þ = − P +Uð Þ 2ð Þ, HI
23
50 P +Uð Þ 8

5

� �
= 5,

8>>>>>>><>>>>>>>:
ð66Þ

where ς = 19/45, ρ = 13/20, ρ = 23/50, φ = 8/5, ϕ = 5, T = 2,
Y1ðϑ,P ,UÞ, and Y2ðϑ,P ,UÞ are set later. Using the pro-
vided data, we determine that Y1 = 0:5870324536104914
and Y2 = 0:492344074388438, where Y1 and Y2 are denoted
by (25) and (26), respectively. We will use

Y1 ϑ,P ,Uð Þ = ϑ + sin p + q/3ð Þ
4 + log ϑð Þ2 ,

Y2 ϑ,P ,Uð Þ = cos q + p/2ð Þ + ϑ

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
625 + log ϑð Þ2

q ,
ð67Þ
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to illustrate Theorem 7. Y1 and Y2 are continuous and
fulfill the condition ðF1Þ with ω1ðϑÞ = ϑ/ðð4 + log ϑÞ2Þ,
ω2ðϑÞ = 1/ðð4 + log ϑÞ2Þ, ω3ðϑÞ = 1/ð3ð4 + log ϑÞ2Þ, bω1ðϑÞ =
ϑ/ð5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
625 + ðlog ϑÞ2

q
Þ, bω2ðϑÞ = 1/ð2ð5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
625 + ðlog ϑÞ2

q
ÞÞ,

and bω3ðϑÞ = 1/ð5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
625 + ðlog ϑÞ2

q
Þ. Also ð2Y1 + ððlog TÞς/

Γðς + 1ÞÞÞkω3k + ð2Y2 + ððlog TÞρ/Γðρ + 1ÞÞÞkbω2k ≈
0:13130829302659 and ð2Y1 + ððlog TÞς/Γðς + 1ÞÞÞkω3k +
ð2Y2 + ððlog TÞρ/Γðρ + 1ÞÞÞkbω3k ≈ 0:05486795746034246.
As a result, all of Theorem 3.1 conditions hold, and there exists
at least one solution to the problem (66) involving the equa-
tions Y1ðϑ,P ,UÞ and Y2ðϑ,P ,UÞ specified in (67).

6. Conclusion

This article established and discussed the existence, unique-
ness, and Ulam-Hyers stability of solutions for a coupled
system of fractional-order nonlinear Caputo-Hadamard
fractional differential equations with boundary conditions
involving Hadamard fractional integrals. In addition, three
examples are provided to demonstrate the applicability of
the acquired results. This paper’s approach is novel and adds
to the field of theory on boundary value problems for non-
linear fractional differential equations. Future research can
expand the given fractional boundary value problem to
include more complex structures, such as the boundary
value requirements for finitely point multi-strip integrals
provided by recently developed generalized fractional opera-
tors with non-singular kernels.
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