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This work devotes to solving a class of delay fractional partial differential equations that arises in physical, biological, medical, and
climate models. For this, a numerical scheme is implemented that applies operational matrices to convert the main problem into a
system of algebraic equations; then, solving the resultant system leads to an approximate solution. The two-variable Chebyshev
polynomials of the sixth kind, as basis functions in the proposed method, are constructed by the one-variable ones, and their
operational matrices are derived. Error bounds of approximate solutions and their fractional and classical derivatives are
computed. With the aid of these bounds, a bound for the residual function is estimated. Three illustrative examples
demonstrate the simplicity and efficiency of the proposed method.

1. Introduction

Mathematical modeling of some physical and biological
phenomena leads to delay fractional differential equations
(DFDEs) [1–3]. The independent variables t and x represent
time and position in space or size of cells, and so on. The
solutions can stand for temperature densities of cells, chemi-
cals, etc. Hardly obtaining exact solutions to these equations
necessitates mathematicians to construct some vigorous
numerical and semianalytical schemes to handle solving
these problems. Nevertheless, few methods exist for solving
delay partial differential equations. The interest of scientists
and mathematicians in DFDEs has resulted in the presenta-
tion of efficient schemes to solve this category of equations.
For example, Pimenov and Hendy presented a difference
scheme for a class of fractional diffusion equations with fixed
time delay [4]. A compact difference scheme was
constructed in [5] for the numerical solution of one-
dimensional fractional parabolic differential equations with

delay. Hendy et al. [6] introduced a Crank–Nicolson differ-
ence approximation for solving multiterm time-fractional
diffusion equations with delay. Nandal and Pandey con-
structed a linearized compact difference scheme for fourth-
order nonlinear fractional subdiffusion with time delay [7].

One of the most popular methods for solving diverse
functional equations is the spectral method. The nature of
the spectral methods has been joined with the orthogonal
polynomials and functions. Orthogonal polynomials are uti-
lized as basis functions in many numerical methods; hence,
addressing the properties of orthogonal polynomials is
important. For example, some properties of the generalized
Gegenbauer polynomials were studied in [8, 9]. Bracciali
et al. dealt with a class of Sobolev orthogonal polynomials
and Hahn polynomials on the unit circle in [10]. Asymptotic
approximations of Jacobi polynomials and their zeros were
given in [11]. The shifted Chebyshev polynomials of the
third kind were proposed in [12] to solve multiterm
variable-order fractional differential equations. The
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Chebyshev polynomials of the first kind were used by Vlasic
et al. [13] as basis functions to introduce a spline-like para-
metric model for compressive imaging. Nemati et al. [14]
applied the second-kind Chebyshev polynomials for
fractional integrodifferential equations with weakly singular
kernels. Dahmen and Glorieux applied an extension of the
Legendre polynomial method to model coupled Lamb wave
parameters for defect detection in anisotropic composite
three-layer with Kelvin–Voigt viscoelasticity [15]. A Legen-
dre orthogonal polynomial method was proposed to calcu-
late the reflection and transmission coefficients of plane
wave at the liquid interface of a liquid-loaded functionally
gradient material plate [16]. Masjed–Jamei [17] presented
two new classes of orthogonal polynomials which are called
Chebyshev polynomials of fifth and sixth kinds. Abd-
Elhameed and Youssri presented a new numerical algorithm
based on the sixth-kind Chebyshev polynomials for solving
some linear and nonlinear fractional-order differential equa-
tions [18]. In [19], a new orthogonal wavelet based on the
sixth-kind Chebyshev polynomials was constructed to
obtain the solution of fractional optimal control problems.
Abd-Elhameed used the sixth-kind Chebyshev polynomials
for obtaining a numerical solution of nonlinear one-
dimensional Burgers’ equations [20]. Atta et al. [21]
employed shifted fifth-kind Chebyshev polynomials for the
numerical solution of one-dimensional linear hyperbolic
partial differential equations. A sixth-kind Chebyshev collo-
cation method was considered in [22] for solving a class of
variable-order fractional nonlinear quadratic integrodiffer-
ential equations. Bivariate Chebyshev polynomials of the
fifth kind were utilized in [23] for variable-order time-
fractional partial integrodifferential equations with the
weakly singular kernel. Sadri and Aminikhah [24] employed
fifth-kind Chebyshev polynomials for solving multiterm
variable-order time-fractional diffusion-wave equations.

Recently, spectral methods coupled with operational
matrices have attracted the attention of many mathemati-
cians and researchers. The advantage of applying opera-
tional matrices is to express the derivatives of the
orthogonal polynomials as basis functions in terms of the
linear combinations of original polynomials and rewrite
these combinations as a sparse matrix form which decreases
the computational costs [14, 20, 21, 24, 25]. In the current
work, a class of time-fractional partial differential equations
with the proportional delay as the following form is consid-
ered [26, 27]:

C
0D

σ

t u x, tð Þ +L u x, tð Þ½ � +N u q1x, q2tð Þ½ � =Q x, tð Þ, x, tð Þ ∈Ω,
ð1Þ

with the conditions

u x, 0ð Þ = h xð Þ,
u 0, tð Þ = g1 tð Þ,
ux x, tð Þ = g2 tð Þ,

ð2Þ

where C
0D

σ
t , 0 < σ ≤ 1 is the Caputo operator, Ω = ½0, 1�

× ½0, 1�, 0 < qi ≤ 1, i = 1, 2, and L and N are linear and
nonlinear differential operators, respectively. In [26, 27],
the homotopy perturbation and natural decomposition
methods have been applied for solving problems (1) and
(2). The two above-mentioned methods provided approxi-
mate solutions based on the Taylor expansions of time parts
of the solutions which have only good accuracy for the clas-
sical case σ = 1 [26, 27]. The goal of the present paper is to
construct a scheme using the sixth-kind Chebyshev polyno-
mials; hence, integral operational matrices of integer and
fractional orders are derived. Moreover, an operational
matrix is constructed to show the relation between the orig-
inal basis and its delay form. Then, obtained matrices are
utilized to obtain corresponding operational matrices for
the two-variable basis. Resultant matrices accompanying
the collocation method convert the main problem (1) and
(2) into a system of algebraic equations, the solving of which
leads to an approximate solution. It is worth noting that the
obtained nonlinear algebraic system can be solved using
Newton’s iteration method.

The rest of the paper is structured as follows: Section 2
recalls some basic definitions of fractional calculus and its
properties. The one- and two-variable Chebyshev polyno-
mials of the sixth kind are introduced, and their operational
matrices are constructed in Section 3. The idea of the
proposed method is described and the error analysis is
presented in Section 4. The accuracy and efficiency of the
scheme are successfully demonstrated by implementing the
algorithm on three examples in Section 5. Finally, a conclu-
sion is given in Section 6.

2. Preliminaries

In this section, some definitions that are useful throughout
the paper are presented.

Definition 1. A real function f ðtÞ, t > 0 belongs to the space
Cq, q ∈ℝ if a real number p > q exists such that f ðtÞ = tp

f1ðtÞ where f1ðtÞ ∈ ½0,∞Þ, and it belongs to the space Cn
q ,

n ∈ℕ if and only if f ðnÞðtÞ ∈ Cq [28].

Definition 2. Suppose that f ðtÞ ∈ Cq, t > 0 and q > −1: The
Riemann-Liouville fractional integral of the order σ > 0 is
defined as [28]

RL
0 I

σ
t f tð Þ =

1
Γ σð Þ

ðt
0
t − sð Þσ−1 f sð Þds, σ > 0,

f tð Þ, σ = 0:

8><
>: ð3Þ

Definition 3. The Caputo fractional derivative of the order
σ > 0 of the funcion f ðtÞ ∈ Cq, t > 0 and q > −1 is given by
the following expression [28]:
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C
0D

σ

t f tð Þ =
1

Γ m − σð Þ
ðt
0
t − sð Þm−σ−1 d

mf sð Þ
dsm

ds, m − 1 < σ ≤m,

f tð Þ, σ = 0:

8><
>:

ð4Þ

The following properties of these operators hold:

C
0D

σ
t t

m =
Γ m + 1ð Þ tm−σ

Γ m − σ + 1ð Þ , m ≥ σ,

0, m < σ,

8><
>:

RL
0 I σ

t t
m = Γ m + 1ð Þ tm+σ

Γ m + σ + 1ð Þ ,

C
0D

σ1
t

C
0D

σ2
t f tð Þ= C

0D
σ1+σ2
t f tð Þ,

C
0D

σ
t
RL
0 I σ

t f tð Þ = f tð Þ,
RL
0 I σ

t
C
0D

σ
t f tð Þ = f tð Þ − f 0ð Þ, 0 < σ < 1:

ð5Þ

3. Sixth-Kind Chebyshev Polynomials and
Their Operational Matrices

The family of Chebyshev polynomials has found popularity
in different spectral and pseudospectral methods [12–14,
18, 19, 21]. A class of the Chebyshev polynomials, called
sixth-kind Chebyshev polynomials, was proposed for the
first time in [18] to solve fractional ordinary differential
equations. In this section, first, the shifted form of these
polynomials is introduced over ½0, 1�; then, two-variable
Chebyshev polynomials of the sixth kind are constructed
using them.

3.1. One-Variable Chebyshev Polynomials of the Sixth Kind.
The following recurrence relation holds for the sixth-kind
Chebyshev polynomials

�Y j zð Þ = z �Y j−1 zð Þ − θj+1 �Y j−2 zð Þ, j ≥ 2, z ∈ −1, 1½ �,
�Y0 zð Þ = 1, �Y1 zð Þ = z,

ð6Þ

where

θj =
j j + 1ð Þ + −1ð Þj 2j + 1ð Þ + 1

4j j + 1ð Þ : ð7Þ

These polynomials are orthogonal with respect to the
weight function �wðzÞ = z2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
, that is,

ð1
−1

�Y i zð Þ �Y j zð Þz2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
dz = ℏiδij, ð8Þ

where

ℏi =

π

22i+3 , i even,

π i + 3ð Þ
22i+3 i + 1ð Þ , i odd:

8>><
>>: ð9Þ

By the change of variable z = 2t − 1, the shifted Cheby-
shev polynomials Y iðtÞ = �Y ið2t − 1Þ are orthogonal regard-
ing the weight function wðtÞ = ð2t − 1Þ2 ffiffiffiffiffiffiffiffiffiffi

t − t2
p

on the
interval ½0, 1�,

ð1
0
Y i tð ÞY j tð Þ 2t − 1ð Þ2

ffiffiffiffiffiffiffiffiffiffi
t − t2

p
dt = ℏiδij, ð10Þ

and

ℏi =

π

22i+5 ,  i even,

π i + 3ð Þ
22i+5 i + 1ð Þ , i odd:

0
BB@ ð11Þ

The series form of the shifted Chebyshev polynomials of
the sixth kind is as follows:

Y j tð Þ = 〠
j

r=0
ςr,jt

r , ð12Þ

where

ςr,j =
22r−j
2r + 1ð Þ!

〠
j/2

l= r+1ð Þ/2b c

−1ð Þ j/2ð Þ+l+r 2l + r + 1ð Þ!
2l − r + 1ð Þ! , j even,

2
j + 1 〠

j−1ð Þ/2

l= r/2b c

−1ð Þ j+1ð Þ/2ð Þ+l+r l + 1ð Þ 2l + r + 2ð Þ!
2l − r + 1ð Þ! , j odd:

8>>>>>><
>>>>>>:

ð13Þ

Every square-integrable function vðtÞ ∈ L2wðIÞ, I = ½0, 1�
can be expanded in the shifted sixth-kind Chebyshev
polynomials as

v tð Þ = 〠
∞

j=0
V j Y j tð Þ, t ∈ I, ð14Þ

where the coefficients V j are computed as

V j =
1
ℏj

ð1
0
v tð ÞY j tð Þw tð Þdt: ð15Þ

The first few coefficients in (14) practically keep
information of function vðtÞ. In other words, a finite
series can present an approximation to vðtÞ as
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v tð Þ ≈ vN tð Þ = 〠
N

j=0
V jY j tð Þ = YT tð ÞV =VTY tð Þ, ð16Þ

where V and YðtÞ are the ðN + 1Þ × 1 vectors as follows:

V = V0V1 ⋯ VN½ �T ,
Y tð Þ = Y0 tð ÞY1 tð Þ⋯YN tð Þ½ �T :

ð17Þ

3.2. Operational Matrices of One-Variable Basis. In this sub-
section, integral operational matrices of integral and fractional
orders are obtained for the one-variable basis. Furthermore,
the relation between the main basis and its delay form is given
as a matrix. For this, some useful lemma and theorems are
stated and proved.

Lemma 4. If ν ∈ℝ+, then

ð1
0
tνYk tð Þw tð Þdt = 〠

k

m=0
ςm,kΓ

3
2

� �
4Γ ν +m + 7/2ð Þð Þ

Γ ν +m + 5ð Þ
�

−
4Γ ν +m + 5/2ð Þð Þ

Γ ν +m + 4ð Þ + Γ ν +m + 3/2ð Þð Þ
Γ ν +m + 3ð Þ

�
:

ð18Þ

Proof. By the series form of the shifted sixth-kind Chebyshev
polynomials in (12) and the weight function wðtÞ, one has

ð1
0
tνYk tð Þw tð Þdt =

ð1
0
tν 〠

k

m=0
ςm,kt

m

 !
2t − 1ð Þ2

ffiffiffiffiffiffiffiffiffiffi
t − t2

p
dt

= 〠
k

m=0
ςm,k

ð1
0
4tν+m+ 5/2ð Þ − 4tν+m+ 3/2ð Þ + xν+m+ 1/2ð Þ
� �

1 − tð Þ 1/2ð Þdt

= 〠
k

m=0
ςm,k 4B ν +m + 7

2 ,
3
2

� ��

− 4B ν +m + 5
2 ,

3
2

� �
+ B ν +m + 3

2 ,
3
2

� ��
,

ð19Þ

where Bðr, sÞ is the well-known beta function, so, the
desired result is achieved.

Theorem 5. If YðtÞ is the basis vector in (17), the integral of
YðtÞ can be computed as

ðt
0
Y sð Þds ≈ PY tð Þ, t ∈ I, ð20Þ

where P is the ðN + 1Þ × ðN + 1Þ integral operational
matrix of the integer-order in the following form:

P =

π 0, 0ð Þ π 0, 1ð Þ ⋯ π 0,Nð Þ
π 1, 0ð Þ π 1, 1ð Þ ⋯ π 1,Nð Þ
⋮ ⋮ ⋱ ⋮

π j, 0ð Þ π j, 1ð Þ ⋯ π j,Nð Þ
⋮ ⋮ ⋱ ⋮

π N , 0ð Þ π N , 1ð Þ ⋯ π N ,Nð Þ

2
666666666664

3
777777777775
, ð21Þ

where the entries πðj, kÞ are computed as

π j, kð Þ = 〠
j

r=0

ςr,jΓ 3/2ð Þ
r + 1ð Þℏk

〠
k

m=0
ςm,k

� 4Γ r +m + 9/2ð Þð Þ
Γ r +m + 6ð Þ −

4Γ r +m + 7/2ð Þð Þ
Γ r +m + 5ð Þ + Γ r +m + 5/2ð Þð Þ

Γ r +m + 4ð Þ
� �

,

j = 0, 1,⋯,N , k = 0, 1,⋯,N: ð22Þ

Proof. Integrating the elements of the vector YðtÞ yields
ðt
0
Y j sð Þds = 〠

j

r=0
ςr,j

ðt
0
srds = 〠

j

r=0
ςr,j

tr+1

r + 1 , j = 0, 1,⋯,N:

ð23Þ

Now, tr+1 is approximated in terms of the shifted sixth-
kind Chebyshev polynomials

tr+1 ≈ 〠
N

k=0
ρk,r+1Yk tð Þ, ð24Þ

where

ρk,r+1 =
1
ℏk

ð1
0
tr+1Yk tð Þw tð Þdt: ð25Þ

Using Lemma 4, the integral part of (25) is computed
as follows:

ð1
0
tr+1Yk tð Þw tð Þdt = 〠

k

m=0
ςm,kΓ

3
2

� � 4Γ r +m + 9/2ð Þð Þ
Γ r +m + 6ð Þ

�

−
4Γ r +m + 7/2ð Þð Þ

Γ r +m + 5ð Þ + Γ r +m + 5/2ð Þð Þ
Γ r +m + 4ð Þ

�
:

ð26Þ

Therefore, (23) is written as

ðt
0
Y j sð Þds ≈ 〠

N

k=0
〠
j

r=0

ςr,jΓ 3/2ð Þ
r + 1ð Þℏk

〠
k

m=0
ςm,k

4Γ r +m + 9/2ð Þð Þ
Γ r +m + 6ð Þ

�(

−
4Γ r +m + 7/2ð Þð Þ

Γ r +m + 5ð Þ + Γ r +m + 5/2ð Þð Þ
Γ r +m + 4ð Þ Þ

)
Yk tð Þ:

ð27Þ
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By rewriting the last series as a matrix form, the
desired result is achieved.

Theorem 6. Assume that YðtÞ is the basis vector in (17) and
RL
0 I

σ
t is the Riemann-Liouville integral operator of the order

σ, 0 < σ < 1. Then, one has

RL
0 I

σ
t Y tð Þ ≈ P σð ÞY tð Þ, ð28Þ

where PðσÞ is the ðN + 1Þ × ðN + 1Þ fractional operational
matrix of the order σ as follows:

P σð Þ =

π σð Þ 0, 0ð Þ π σð Þ 0, 1ð Þ ⋯ π σð Þ 0,Nð Þ
π σð Þ 1, 0ð Þ π σð Þ 1, 1ð Þ ⋯ π σð Þ 1,Nð Þ

⋮ ⋮ ⋱ ⋮

π σð Þ i, 0ð Þ π σð Þ i, 1ð Þ ⋯ π σð Þ i,Nð Þ
⋮ ⋮ ⋱ ⋮

π σð Þ N , 0ð Þ π σð Þ N , 1ð Þ ⋯ π σð Þ N ,Nð Þ

2
666666666664

3
777777777775
,

ð29Þ

where the entries πðσÞði, kÞ are computed as

π σð Þ i, kð Þ = 〠
i

r=0

ςr,iΓ r + σ + 1ð ÞΓ 3/2ð Þ
Γ r + σ + 2ð Þℏk

〠
k

m=0
ςm,k

� 4Γ r +m + 7/2ð Þð Þ
Γ r +m + 5ð Þ −

4Γ r +m + 5/2ð Þð Þ
Γ r +m + 4ð Þ + Γ r +m + 3/2ð Þð Þ

Γ r +m + 3ð Þ
� �

,

i = 0, 1,⋯,N , k = 0, 1,⋯,N: ð30Þ

Proof. The proof process is similar to Theorem 5. Noting the
definition of RL

0 I σ
t and its properties in (5), the fractional

integral of Y iðtÞ is computed as

RL
0 I

σ
t Y i tð Þ = 〠

i

r=0

ςr,iΓ r + σ + 1ð Þtr+σ
Γ r + σ + 2ð Þ , i = 0, 1,⋯,N: ð31Þ

Now, tr+σ is approximated by the Chebyshev polyno-
mials of the sixth kind as

tr+σ ≈ 〠
N

k=0
ρk,rYk tð Þ, s:t:ρk,r =

1
ℏk

ð1
0
tr+σYk tð Þw tð Þdt: ð32Þ

By Lemma 4 and pursuing the proof process in Theorem
5, Equation (31) is written as

RL
0 I

σ
t Y i tð Þ ≈ 〠

N

k=0
〠
i

r=0

ςr,iΓ r + σ + 1ð ÞΓ 3/2ð Þ
Γ r + σ + 2ð Þℏk

× 〠
k

m=0
ςm,k

(

� 4Γ r + σ +m + 7/2ð Þð Þ
Γ r + σ +m + 5ð Þ −

4Γ r + σ +m + 5/2ð Þð Þ
Γ r + σ +m + 4ð Þ

�

+ Γ r + σ +m + 3/2ð Þð Þ
Γ r + σ +m + 3ð Þ

�)
Yk tð Þ,i = 0, 1,⋯,N:

ð33Þ

Theorem 7. Assume that YðtÞ is the basis vector and YðqtÞ,
0 < q < 1 is its delay form. YðqtÞ can be approximated in
YðtÞ as

Y qtð Þ ≈ LY tð Þ, ð34Þ

where L is a ðN + 1Þ × ðN + 1Þ matrix as follows:

L =

1 0 0 ⋯ 0

l 1ð Þ
0 q 0 ⋯ 0

l 2ð Þ
0 l 2ð Þ

1 q ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮

l Nð Þ
0 l Nð Þ

1 l Nð Þ
2 ⋯ qN

2
666666664

3
777777775
, ð35Þ

and lðjÞk is computed from the following recurrence formulas:

l j+1ð Þ
0 = q − 1ð Þl jð Þ

0 + qθ2l
jð Þ
1 − θjl

j−1ð Þ
0 , j = 1, 2,⋯,N − 1,

l j+1ð Þ
k = ql jð Þ

k−1 + q − 1ð Þl jð Þ
k + qθk+1l

jð Þ
k+1 − θjl

j−1ð Þ
k , k = 1, 2,⋯, j − 1,

l j+1ð Þ
j = ql jð Þ

j−1 + q − 1ð Þqj, j = 1, 2,⋯,N − 1,

8>>>><
>>>>:

ð36Þ

with the starting values lðjÞj = qj, j = 0, 1,⋯,N , and lð1Þ0

= q − 1.

Proof. Consider the following recurrence formula obtained
from Equation (6)

Y j+1 qtð Þ = 2qt − 1ð ÞY j qtð Þ − θj+1Y j−1 qtð Þ, j ≥ 1: ð37Þ

Also, the following auxiliary relation is obtained from
formula (6):

2tY j tð Þ =Y j+1 tð Þ +Y j tð Þ + θj+1Y j−1 tð Þ, j ≥ 1: ð38Þ

Now,Y jðqtÞ can be expanded in terms of the Chebyshev
polynomials of the sixth kind as follows:
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Y j qtð Þ = 〠
j

k=0
l jð Þ
k Yk tð Þ, j = 0, 1,⋯,N: ð39Þ

From the first few polynomials in Equation (39), it is

easily obtained lð1Þ0 = q − 1, lðjÞj = qj, j = 0, 1,⋯,N . Using
auxiliary relation (38) and substituting Equation (39) into
Equation (37), one gets

〠
j+1

k=0
l j+1ð Þ
k Yk tð Þ = q〠

j

k=0
l jð Þ
k Yk+1 tð Þ +Yk tð Þ + θk+1Yk−1 tð Þð Þ

− θj+1 〠
j−1

k=0
l j−1ð Þ
k Yk tð Þ − 〠

j

k=0
l jð Þ
k Yk tð Þ

= 〠
j

k=0
l jð Þ
k qYk+1 tð Þ + q − 1ð ÞYk tð Þð

+ qθk+1Yk−1 tð ÞÞ − θj+1 〠
j−1

k=0
l j−1ð Þ
k Yk tð Þ:

ð40Þ

Equating coefficients of YkðtÞ on both sides of the last
equality leads to recurrence formula (36).

3.3. Two-Variable Chebyshev Polynomials of the Sixth Kind.
Two-variable Chebyshev polynomials are constructed by
one-variable ones on the domain Ω = ½0, 1� × ½0, 1� as

W ij x, tð Þ =Y i xð ÞY j tð Þ, i, j = 0, 1,⋯,  x, tð Þ ∈Ω: ð41Þ

These polynomials are orthogonal regarding the weight
function ωðx, tÞ =wðxÞwðtÞ on Ω,

ð1
0

ð1
0
W ij x, tð ÞW kl x, tð Þω x, tð Þ dx dt = ℏiℏjδikδjl, ð42Þ

where ℏi and ℏj are calculated by (11). The function V
ðx, tÞ ∈ L2ωðΩÞ is expanded as

V x, tð Þ = 〠
∞

i=0
〠
∞

j=0
VijW ij x, tð Þ,  x, tð Þ ∈Ω, ð43Þ

and a truncated series of (43) is considered as an approx-
imation to the function Vðx, tÞ,

V x, tð Þ ≈VN x, tð Þ = 〠
N

i=0
〠
N

j=0
VijW ij x, tð Þ

= 〠
N+1ð Þ2−1

i=0
V∗

i W
∗
i x, tð Þ =VT W x, tð Þ =WT x, tð ÞV,

ð44Þ

where V∗
i = Vrs,W ∗

i ðx, tÞ =W rsðx, tÞ such that r = bi/
ðN + 1Þc, s = i − rðN + 1Þ, and V,Wðx, tÞ are the ðN + 1Þ2
× 1 vectors as

V = V00V01 ⋯ V0NV10V11 ⋯ V1N ⋯ VN0VN1 ⋯ VNN½ �T ,

W x, tð Þ = W 00 x, tð ÞW 01 x, tð Þ⋯W 0N x, tð ÞW 10W 11 x, tð Þ½
⋯W 1N x, tð Þ⋯W N0 x, tð ÞW N1 x, tð Þ⋯W NN x, tð Þ�

T :

ð45Þ

3.4. Operational Matrices of Two-Variable Basis. Con-
sider the two-variable basis Wðx, tÞ in (45). The integral
operational matrices of Wðx, tÞ with respect to variables
x and t are obtained, respectively, as

ðx
0
W s, tð Þds ≈ℙ 1ð Þ

xð ÞW x, tð Þ = P ⊗ Ið ÞW x, tð Þ,
ðt
0
W x, τð Þdτ ≈ℙ 1ð Þ

tð ÞW x, tð Þ = I ⊗ Pð ÞW x, tð Þ,
ð46Þ

where ℙð1Þ
ðxÞ and ℙð1Þ

ðtÞ are the ðN + 1Þ2 × ðN + 1Þ2 integral

operational matrices related to x and t, respectively, P is the
operational matrix in Theorem 5, and I is the ðN + 1Þ × ðN +
1Þ identity matrix. Similarly, the fractional integral ofWðx, tÞ
of the order σ with respect to t can be computed as

RL
0 I

σ
t W x, tð Þ ≈ℙ σð Þ

tð ÞW x, tð Þ = I ⊗ P σð Þ
� �

W x, tð Þ, ð47Þ

where ℙðσÞ
ðtÞ is the ðN + 1Þ2 × ðN + 1Þ2 fractional integral

operational matrix of the order σ related to t, PðσÞ is the opera-
tional matrix in Theorem 6, and I is the ðN + 1Þ × ðN + 1Þ
identity matrix. Now, the relationship of the vectorsWðx, qtÞ,
Wðqx, tÞ, andWðqx, qtÞ to the basis vectorWðx, tÞ is specified.

By setting t = qt inWðx, tÞ, the vectorWðx, qtÞ is rewrit-
ten as follows:

W x, qtð Þ = Y0 xð ÞY0 qtð Þ,Y0 xð ÞY1 qtð Þ,⋯,Y0½
� xð ÞYN qtð Þ,Y1 xð ÞY0 qtð Þ,Y1 xð ÞY1 qtð Þ,⋯,Y1
� xð ÞYN qtð Þ,⋯,YN

� xð ÞY0 qtð Þ,YN xð ÞY1 qtð Þ,⋯,YN xð ÞYN qtð Þ�

T

= Y0 xð Þ Y0 qtð Þ,Y1 qtð Þ,⋯,YN qtð Þ½ �,Y1 xð Þ½

· Y0 qtð Þ,Y1 qtð Þ,⋯,YN qtð Þ½ �,⋯,YN xð Þ

· Y0 qtð Þ,Y1 qtð Þ,⋯,YN qtð Þ½ ��T

= Y0 xð ÞY qtð Þ,Y1 xð ÞY qtð Þ,⋯,YN xð ÞY qtð Þ½ �T

≈ Y0 xð ÞLY tð Þ,Y1 xð ÞLY tð Þ,⋯,YN xð ÞLY tð Þ½ �T

=

L ON+1 ⋯ ON+1

ON+1 L ⋯ ON+1

⋮ ⋮ ⋱ ⋮

ON+1 ON+1 ⋯ L

2
666664

3
777775

Y0 xð ÞY0 tð Þ
⋮

YN xð ÞY0 tð Þ
⋮

YN xð ÞYN tð Þ

2
666666664

3
777777775

= I ⊗ Lð ÞW x, tð Þ = L∗∗W x, tð Þ, ð48Þ
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where L is the matrix in Theorem 7, ON+1 is the ðN + 1Þ
× ðN + 1Þ zero matrix, and L∗∗ is the ðN + 1Þ2 × ðN + 1Þ2
delay matrix. Similarly, it is found that

W qx, tð Þ ≈ L ⊗ Ið ÞW x, tð Þ =L∗W x, tð Þ,
W qx, qtð Þ≈L∗L∗∗W x, tð Þ =LW x, tð Þ, L =L∗L∗∗,

ð49Þ

where L∗ and L are ðN + 1Þ2 × ðN + 1Þ2 matrices.

3.5. Solution Method. To describe the methodology, three
forms of Equations (1) and (2) are considered [26, 27]:

Form I:

C
0D

σ
t u x, tð Þ − ∂2u x, tð Þ

∂x2
−
∂u x, t/2ð Þð Þ

∂x
u x

2 ,
t
2

� �
−
1
2 u x, tð Þ

= 0, 0 < σ ⩽ 1,  x, tð Þ ∈Ω,

u x, 0ð Þ = x, u 0, tð Þ = 0, ux 0, tð Þ = exp tð Þ: ð50Þ

According to the highest orders of derivatives regarding
x and t, the following approximation is considered:

∂3u x, tð Þ
∂x2∂t

≈WT x, tð ÞC: ð51Þ

Integrating (51) concerning t and x, respectively, leads to
the following approximations:

∂2u x, tð Þ
∂x2

≈WT x, tð Þℙ 1ð Þ
tð Þ
T
C + ∂2u x, 0ð Þ

∂x2
≈WT x, tð Þℙ 1ð Þ

tð Þ
T
C,

ð52Þ

∂u x, tð Þ
∂x

≈WT x, tð Þℙ 1ð Þ
xð Þ
T
ℙ 1ð Þ

tð Þ
T
C + ∂u 0, tð Þ

∂x

≈WT x, tð Þℙ 1ð Þ
xð Þ
T
ℙ 1ð Þ

tð Þ
T
C +WT x, tð ÞF,

ð53Þ

u x, tð Þ ≈WT x, tð Þ ℙ 1ð Þ
xð Þ
T

� �2
ℙ 1ð Þ

tð Þ
T
C +WT x, tð Þℙ 1ð Þ

xð Þ
T
F + u 0, tð Þ

≈WT x, tð Þ ℙ 1ð Þ
xð Þ
T

� �2
ℙ 1ð Þ

tð Þ
T
C +WT x, tð Þℙ 1ð Þ

xð Þ
T
F:

ð54Þ
Now, twice integrating approximation (51) with respect

to x leads to an approximation for ð∂uðx, tÞÞ/∂t:

∂2u x, tð Þ
∂x∂t

≈WT x, tð Þℙ 1ð Þ
xð Þ
T
C +WT x, tð ÞF,

∂u x, tð Þ
∂t

≈WT x, tð Þ ℙ 1ð Þ
xð Þ
T

� �2
C +WT x, tð Þℙ 1ð Þ

xð Þ
T
F:

ð55Þ

To obtain an approximation to C
0D

σ
t uðx, tÞ, approxima-

tion (55) is rewritten as follows:

∂u x, tð Þ
∂t

= ∂1−σ∂σu x, tð Þ
∂t1−σ∂tσ

≈WT x, tð Þ ℙ 1ð Þ
xð Þ
T

� �2
C +WT x, tð Þℙ 1ð Þ

xð Þ
T
F:

ð56Þ

By applying the Riemann-Liouville operator of the order
1 − σ to both sides of (56), one gets

C
0D

σ
t u x, tð Þ ≈WT x, tð Þℙ 1−σð Þ

tð Þ
T

ℙ 1ð Þ
xð Þ
T

� �2
C

+WT x, tð Þℙ 1−σð Þ
tð Þ

T
ℙ 1ð Þ

xð Þ
T
F+C

0D
σ
t u x, 0ð Þ:

ð57Þ

Fractionally differentiating approximation (54) and
setting t = 0 lead to

C
0D

σ
t u x, 0ð Þ≈C

0D
σ
t WT x, tð Þ ℙ 1ð Þ

xð Þ
T

� �2
ℙ 1ð Þ

tð Þ
T
C+C

0D
σ
t WT x, tð Þℙ 1ð Þ

xð Þ
T
Fjt=0 = 0:

ð58Þ

Approximation (58) equals zero because after fraction-
ally differentiating Wðx, tÞ related to t, all components of
the basis vector involve terms as tμ, 1 − σ < μ <N − σ or
are zero.

The terms with delays can be approximated as

∂u x, t/2ð Þ
∂x

≈WT x, t2

� �
ℙ 1ð Þ

xð Þ
T
ℙ 1ð Þ

tð Þ
T
C +WT x, t2

� �
F

≈WT x,tð ÞL∗∗Tℙ 1ð Þ
xð Þ
T
ℙ 1ð Þ

tð Þ
T
C +WT x,tð ÞL∗∗T F,

ð59Þ

u x
2 ,

t
2

� �
≈WT x

2 ,
t
2

� �
ℙ 1ð Þ

xð Þ
T

� �2
ℙ 1ð Þ

tð Þ
T
C +WT x

2 ,
t
2

� �
ℙ 1ð Þ

xð Þ
T
F

≈WT x, tð ÞLT ℙ 1ð Þ
xð Þ
T

� �2
ℙ 1ð Þ

tð Þ
T
C +WT x, tð ÞLTℙ 1ð Þ

xð Þ
T
F:

ð60Þ

Substituting approximations (52)–(60) into Equation
(50) results in the following residual function:

RN x, tð Þ =WT x, tð Þℙ 1−σð Þ
tð Þ

T
ℙ 1ð Þ

xð Þ
T

� �2
C

+WT x, tð Þℙ 1−σð Þ
tð Þ

T
ℙ 1ð Þ

xð Þ
T
F −WT x, tð Þℙ 1ð Þ

tð Þ
T
C

− WT x,tð ÞL∗∗Tℙ 1ð Þ
xð Þ
T
ℙ 1ð Þ

tð Þ
T
C +WT x,tð ÞL∗∗T F

� �

� WT x, tð ÞLT ℙ 1ð Þ
xð Þ
T

� �2
ℙ 1ð Þ

tð Þ
T
C +WT x, tð ÞLTℙ 1ð Þ

xð Þ
T
F

 !

−
1
2 WT x, tð Þ ℙ 1ð Þ

xð Þ
T

� �2
C +WT x, tð Þℙ 1ð Þ

xð Þ
T
F

 !
≈ 0:

ð61Þ
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Form II:

C
0D

σ

t u x, tð Þ − ∂2u x, t/2ð Þ
∂x2

u x, t2

� �
+ u x, tð Þ = 0, 0 < σ ⩽ 1,  x, tð Þ ∈Ω,

u x, 0ð Þ = x2, u 0, tð Þ = 0, ux 0, tð Þ = 0:
ð62Þ

The functions in Equation (62) are approximated based
on what was done for Equation (50):

∂3u x, tð Þ
∂x2 ∂t

≈WT x, tð ÞC,

∂2u x, tð Þ
∂x2

≈WT x, tð Þℙ 1ð ÞT
tð Þ C + ∂2u x, 0ð Þ

∂x2
≈WT x, tð Þℙ 1ð ÞT

tð Þ C +WT x, tð Þ F,

u x, tð Þ ≈WT x, tð Þ ℙ 1ð ÞT
xð Þ

� �2
ℙ 1ð ÞT

tð Þ C +WT x, tð Þ ℙ 1ð ÞT
xð Þ

� �2
F,

C
0D

σ

t u x, tð Þ ≈WT x, tð Þℙ 1−σð ÞT
tð Þ ℙ 1ð Þ

xð Þ
T

� �2
C,

∂2u x, t/2ð Þ
∂x2

≈WT x,tð ÞL∗∗Tℙ 1ð ÞT
tð Þ C +WT x,tð ÞL∗∗T F,

u x, t2

� �
≈WT x,tð ÞL∗∗T ℙ 1ð Þ

xð Þ
T

� �2
ℙ 1ð ÞT

tð Þ C +WT x,tð ÞL∗∗Tℙ 1ð ÞT
xð Þ F:

ð63Þ

Substituting approximations (63) into Equation (62)
leads to the following residual function:

RN x, tð Þ =WT x, tð Þℙ 1−σð Þ
tð Þ

T
ℙ 1ð Þ

xð Þ
T

� �2
C

− WT x,tð ÞL∗∗Tℙ 1ð Þ
tð Þ
T
C +WT x,tð ÞL∗∗T F

� �

× WT x,tð ÞL∗∗T ℙ 1ð Þ
xð Þ
T

� �2
ℙ 1ð Þ

tð Þ
T
C +WT x,tð ÞL∗∗Tℙ 1ð Þ

xð Þ
T
F

 !

+WT x, tð Þ ℙ 1ð Þ
xð Þ
T

� �2
ℙ 1ð Þ

tð Þ
T
C +WT x, tð Þ ℙ 1ð Þ

xð Þ
T

� �2
F ≈ 0:

ð64Þ

Form III:

C
0D

σ

t u x, tð Þ − ∂2u x/2, t/2ð Þ
∂x2

∂u x/2, t/2ð Þ
∂x

+ ∂u x, tð Þ
∂x

+ u x, tð Þ
= 0, 0 < σ ⩽ 1,  x, tð Þ ∈Ω,

u x, 0ð Þ = x2, u 0, tð Þ = 0, ux 0, tð Þ = 0: ð65Þ

The following approximations can be obtained for the
functions in Equation (65):

∂3u x, tð Þ
∂x2 ∂t

≈WT x, tð ÞC,

∂2u x, tð Þ
∂x2

≈WT x, tð Þℙ 1ð ÞT
tð Þ C + ∂2u x, 0ð Þ

∂x2
≈WT x, tð Þℙ 1ð ÞT

tð Þ C +WT x, tð Þ F,
∂u x, tð Þ

∂x
≈WT x, tð Þℙ 1ð Þ

xð Þ
T
ℙ 1ð ÞT

tð Þ C +WT x, tð Þℙ 1ð ÞT
xð Þ F,

u x, tð Þ ≈WT x, tð Þ ℙ 1ð ÞT
xð Þ

� �2
ℙ 1ð ÞT

tð Þ C +WT x, tð Þ ℙ 1ð ÞT
xð Þ

� �2
F,

C
0D

σ

t u x, tð Þ ≈WT x, tð Þℙ 1−σð ÞT
tð Þ ℙ 1ð ÞT

xð Þ
� �2

C,

∂2u x/2, t/2ð Þ
∂x2

≈WT x, tð ÞLTℙ 1ð ÞT
tð Þ C +WT x, tð ÞLT F,

∂u x/2, t/2ð Þ
∂x

≈WT x, tð ÞLTℙ 1ð ÞT
xð Þ ℙ 1ð ÞT

tð Þ C +WT x, tð ÞLTℙ 1ð ÞT
xð Þ F:

ð66Þ

By substituting approximations (66) into Equation (65),
one gets the following residual function:

RN x, tð Þ =WT x, tð Þℙ 1−σð Þ
tð Þ

T
ℙ 1ð Þ

xð Þ
T

� �2
C

− WT x, tð ÞLTℙ 1ð Þ
tð Þ
T
C +WT x, tð ÞLT F

� �

× WT x, tð ÞLTℙ 1ð Þ
xð Þ
T
ℙ 1ð Þ

tð Þ
T
C +WT x, tð ÞLTℙ 1ð Þ

xð Þ
T
F

� �

+WT x, tð Þℙ 1ð Þ
xð Þ
T
ℙ 1ð Þ

tð Þ
T
C +WT x, tð Þℙ 1ð Þ

xð Þ
T
F

+WT x, tð Þ ℙ 1ð Þ
xð Þ
T

� �2
ℙ 1ð Þ

tð Þ
T
C +WT x, tð Þ ℙ 1ð Þ

xð Þ
T

� �2
F ≈ 0:

ð67Þ

The residual functions in Equations (61), (64), and (65)
are collocated at collocation nodes fðxi, t jÞg∞i,j=0, which xi
and t j are roots of YN+1ðxÞ and YN+1ðtÞ, respectively.

Hence, a nonlinear system involving ðN + 1Þ2 algebraic
equations is achieved that can be solved by the Newton’s
iteration method. Therefore, the coefficient vector C is deter-
mined approximately; then, an approximate solution, uðx, tÞ,
is achieved. To better describe the solution method, pursuing
Algorithm 1 for Equation (50) is suggested.

4. Error Analysis

It is found that the value of the error function ENðx, tÞ
decreases when values of N increase. First, some error
bounds are obtained for the unknown function uðx, tÞ and
its derivatives.

Theorem 8. Assume that ∂i+juðx, tÞ/∂xi∂t j ∈ CðΩÞ, i, j = 0,
1,⋯,N + 1,ΘN = spanfW ijðx, tÞ, i, j = 0, 1,⋯,Ng, and uN
ðx, tÞ is the approximate solution obtained from the
method belonging to ΘN , and

τN = sup
x,tð Þ∈Ω

∂2 N+1ð Þu x, tð Þ
∂xN+1∂tN+1

					
					: ð68Þ
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Then, the error bound of the uNðx, tÞ can be
obtained as

u x, tð Þ − uN x, tð Þk kL2ω Ωð Þ ≤
A0τN

ffiffiffi
π

p

25/2N3/2Γ N + 2ð Þ2 : ð69Þ

Proof. Define the bivariate Taylor expansion of uNðx, tÞ as

T N x, tð Þ = 〠
N

i=0
〠
N−i

j=0

∂i+ju x, tð Þ
∂xi∂t j

" #
0,0ð Þ

xit j

Γ i + 1ð ÞΓ j + 1ð Þ , ð70Þ

and

u x, tð Þ −T N x, tð Þ = xN+1tN+1

Γ N + 2ð Þ2
∂2 N+1ð Þu ξ, ηð Þ
∂xN+1∂tN+1 , ξ, ηð Þ ∈Ω:

ð71Þ

Since uNðx, tÞ is the best approximate solution of uðx, tÞ
from ΘN and according to Equation (71), one gets

u x, tð Þ − uN x, tð Þk k2L2ω Ωð Þ ≤ u x, tð Þ −T N x, tð Þk k2L2ω Ωð Þ

≤
ð1
0

ð1
0

τ2Nx
2 N+1ð Þt2 N+1ð Þ

Γ N + 2ð Þ4 ω x, tð Þdxdt

= τ2N
Γ N + 2ð Þ4

ð1
0
4x2N+9/2 1 − xð Þ1/2 − 4x2N+7/2 1 − xð Þ1/2 + 4x2N+5/2 1 − xð Þ1/2
 �

dx

×
ð1
0
4t2N+9/2 1 − tð Þ1/2 − 4t2N+7/2 1 − tð Þ1/2 + 4t2N+5/2 1 − tð Þ1/2
 �

dt

= τ2Nπ

4Γ N + 2ð Þ4
4Γ 2N + 11/2ð Þð Þ

Γ 2N + 7ð Þ −
4Γ 2N + 9/2ð Þð Þ

Γ 2N + 6ð Þ + Γ 2N + 7/2ð Þð Þ
Γ 2N + 5ð Þ

� �2
:

ð72Þ

By the Stirling formula [29], some bounds are computed
for the last equality:

u x, tð Þ − uN x, tð Þk kL2ω Ωð Þ ≤
τN

ffiffiffi
π

p

2Γ N + 2ð Þ2
· 4α1 2Nð Þ−3/2 − 4α2 2Nð Þ−3/2 + α3 2Nð Þ−3/2
 �

≤
A0τN

ffiffiffi
π

p

25/2N3/2Γ N + 2ð Þ2 ,

ð73Þ

whereA0 = 4α1 − 4α2 + α3: Therefore, the desired result is
achieved.

Theorem 9. Assume that uðx, tÞ, uNðx, tÞ, and ∂i+juðx, tÞ/∂
xi∂t j, i, j = 0, 1,⋯,N satisfy the condition of Theorem 8,
and set

θN ,k = sup
x,tð Þ∈Ω

∂2N−k+2u x, tð Þ
∂x2N−k+1∂tN+1

					
					, k = 1, 2: ð74Þ

Then,

∂ku x, tð Þ
∂xk

−
∂kuN x, tð Þ

∂xk

�����
�����
L2ω Ωð Þ

≤
A1,kθN ,k

ffiffiffi
π

p

25/2 N N − kð Þð Þ3/4Γ N − k + 2ð ÞΓ N + 2ð Þ
, k = 1, 2:

ð75Þ

Proof. The bivariate Taylor expansion of ∂kuðx, tÞ/∂xk
leads to

∂ku x, tð Þ
∂xk

−
∂kuN x, tð Þ

∂xk

= xN−k+1tN+1

Γ N − k + 2ð ÞΓ N + 2ð Þ
∂2N−k+2u ξ′, η′

� �
∂xN−k+1∂tN+1 ,  ξ′, η′

� �
∈Ω, k = 1, 2:

ð76Þ

Input: σ,N
Step 1. Derive operational matrices P, PðσÞ, and L from (21), (29), and (36).

Step 2. Construct the operational matrices ℙð1Þ
ðxÞ, ℙ

ð1Þ
ðtÞ , ℙ

ðσÞ
ðtÞ , L, L

∗, L∗∗ from (46)-(49).

Step 3. Consider the approximation ∂3uðx, tÞ/∂x2∂t ≈WTðx, tÞC in (51).
Step 4. Find approximations to ∂2uðx, tÞ/∂x2, ∂uðx, tÞ/∂x, uðx, tÞ, and ∂uðx, tÞ/∂t from (52)-(55).
Step 5. Find an approximation to C

0D
σ
t uðx, tÞ from (57).

Step 6. Determine the residual function from (61).
Step 7. Obtain roots of YN+1ðxÞ and YN+1ðtÞ (xi, t j, i, j = 0, 1,⋯,N) using fsolve command in Maple.
Step 8. Collocate the residual function at tensor points ðxi, t jÞ, i, j = 0, 1,⋯,N .
Step 9. Solve the resultant non-linear system in Step 8 by Newton’s iteration method and obtain the unknown vector C.
Step 10. Find uNðx, tÞ from (54).
Output: uNðx, tÞ

Algorithm 1: Solution method
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Therefore, by taking L2-norm and using Equation (74)
and Stirling formula, one has

∂ku x, tð Þ
∂xk

−
∂kuN x, tð Þ

∂xk

�����
�����
2

L2ω Ωð Þ

≤
ð1
0

ð1
0

θ2N ,kx
2 N−k+1ð Þt2 N+1ð Þ

Γ N − k + 2ð Þ2Γ N + 2ð Þ2 ω x, tð Þdxdt

= θ2N ,kπ

4Γ N − k + 2ð Þ2Γ N + 2ð Þ2

× 4Γ 2 N − kð Þ + 11/2ð Þð Þ
Γ 2 N − kð Þ + 7ð Þ −

4Γ 2 N − kð Þ + 9/2ð Þð Þ
Γ 2 N − kð Þ + 6ð Þ

�

+ Γ 2 N − kð Þ + 7/2ð Þð Þ
Γ 2 N − kð Þ + 5ð Þ

�
× 4Γ 2N + 11/2ð Þð Þ

Γ 2N + 7ð Þ
�

−
4Γ 2N + 9/2ð Þð Þ

Γ 2N + 6ð Þ + Γ 2N + 7/2ð Þð Þ
Γ 2N + 5ð Þ

�

≤
θ2N ,kπ

4Γ N − k + 2ð ÞΓ N + 2ð Þ

· 4β1 N − kð Þ−3/2 − 4β2 N − kð Þ−3/2 + β3 N − kð Þ−3/2
� �

× 4γ1N−3/2 − 4γ2N−3/2 + γ3N
−3/2
 �

≤
A2

1,kθ
2
N ,kπ

4Γ N − k + 2ð Þ2Γ N + 2ð Þ2 2 N − kð Þð Þ−3/2 2Nð Þ−3/2, ð77Þ

where A2
1,k = ð4β1 − 4β2 + β3Þð4γ1 − 4γ2 + γ3Þ:

Theorem 10. Assume that C0D
σ
t uðx, tÞ ∈ CðΩÞ and the condi-

tions of Theorem 8 hold. Then,

C
0D

σ
t u x, tð Þ – C

0D
σ
t uN x, tð Þ

��� ���
L2ω Ωð Þ

≤
A2τN

ffiffiffi
π

p

25/2Γ N + 2ð ÞΓ N − σ + 2ð Þ N N − σð Þð Þ3/4 :
ð78Þ

Proof. According to Equation (71) and properties of the
Caputo operator in (5), one can write

C
0D

σ
t u x, tð Þ − uN x, tð Þ

			 			 ≤ τNx
N+1tN−σ+1

Γ N − σ + 1ð ÞΓ N + 2ð Þ : ð79Þ

Taking L2-norm yields

C
0D

σ
t u x, tð Þ − C

0D
σ
t uN x, tð Þ

��� ���
L2ω Ωð Þ

≤
ð1
0

ð1
0

τ2Nx
2 N+1ð Þt2 N−σ+1ð Þ

Γ N − σ + 2ð Þ2Γ N + 2ð Þ2 ω x, tð Þdxdt

= τ2Nπ

4Γ N − σ + 2ð Þ2Γ N + 2ð Þ2

× 4Γ 2N + 11/2ð Þð Þ
Γ 2N + 7ð Þ −

4Γ 2N + 9/2ð Þð Þ
Γ 2N + 6ð Þ + Γ 2N + 7/2ð Þð Þ

Γ 2N + 5ð Þ
� �

× 4Γ 2 N − σð Þ + 11/2ð Þð Þ
Γ 2 N − σð Þ + 7ð Þ −

4Γ 2 N − σð Þ + 9/2ð Þð Þ
Γ 2 N − σð Þ + 6ð Þ

�

+ Γ 2 N − σð Þ + 7/2ð Þð Þ
Γ 2 N − σð Þ + 5ð Þ

�

≤
A2τ

2
Nπ

4Γ N − σ + 2ð Þ2Γ N + 2ð Þ2 2Nð Þ−3/2 2 N − σð Þð Þ−3/2:

ð80Þ

Corollary 11. Some error bounds for functions with propor-
tional delays can be obtained using the resultant bounds in
Theorems 8, 9, and 10.

u x, t
2

� �
− uN x, t

2

� �����
����
L2ω Ωð Þ

≤
A0τN

ffiffiffi
π

p

2N+ 7/2ð ÞN3/2Γ N + 2ð Þ2 ,

u x
2
, t
2

� �
− uN

x
2
, t
2

� �����
����
L2ω Ωð Þ

≤
A0τN

ffiffiffi
π

p

22N+ 9/2ð ÞN3/2Γ N + 2ð Þ2 ,

∂u x, t/2ð Þ
∂x

−
∂uN x, t/2ð Þ

∂x

����
����
L2ω Ωð Þ

≤
A1,1θN ,1

ffiffiffi
π

p

2N+ 7/2ð Þ N N − 1ð Þð Þ3/4Γ N + 1ð ÞΓ N + 2ð Þ ,

∂2u x, t/2ð Þ
∂x2

−
∂2uN x, t/2ð Þ

∂x2

�����
�����
L2ω Ωð Þ

≤
A1,2θN ,2

ffiffiffi
π

p

2N+ 7/2ð Þ N N − 2ð Þð Þ3/4Γ Nð ÞΓ N + 2ð Þ ,

∂u x/2, t/2ð Þ
∂x

−
∂uN x/2, t/2ð Þ

∂x

����
����
L2ω Ωð Þ

≤
A1,1θN ,1

ffiffiffi
π

p

22N+ 9/2ð Þ N N − 1ð Þð Þ3/4Γ N + 1ð ÞΓ N + 2ð Þ ,

∂2u x/2, t/2ð Þ
∂x2

−
∂2uN x/2, t/2ð Þ

∂x2

�����
�����
L2ω Ωð Þ

≤
A1,2θN ,2

ffiffiffi
π

p

22N+ 9/2ð Þ N N − 2ð Þð Þ3/4Γ Nð ÞΓ N + 2ð Þ :

ð81Þ

Now, Theorems 8, 9, and 10 and Corollary 11 are
applied to show that the error of the method becomes suffi-
ciently small when N is sufficiently large. For this, three
equations (50), (62), and (65) in Section 4 are called again.
Moreover, consider the following bounds:

uN
x
2 ,

t
2

� �����
����
L2ω Ωð Þ

≤U1,
∂uN x, t/2ð Þ

∂x

����
����
L2ω Ωð Þ

≤U2,
∂2uN x, t/2ð Þ

∂x2

�����
�����
L2ω Ωð Þ

≤U3,

uN x, t2

� �����
����
L2ω Ωð Þ

≤U4,
∂uN x/2, t/2ð Þ

∂x

����
����
L2ω Ωð Þ

≤U5,
∂2uN x/2, t/2ð Þ

∂x2

�����
�����
L2ω Ωð Þ

≤U6:

ð82Þ

Form I. Suppose uNðx, tÞ is the best approximate solu-
tion from ΘN which is obtained from the proposed scheme.
Therefore, it satisfies the following equation:
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C
0D

σ

t uN x, tð Þ − ∂2uN x, tð Þ
∂x2

−
∂uN x, t/2ð Þ

∂x
uN

x
2 ,

t
2

� �
−
1
2 uN x, tð Þ =EN x, tð Þ,

ð83Þ

where ENðx, tÞ is the error term. Subtracting Equation
(83) from Equation (50) leads to the following equation:

EN x, tð Þ = C
0D

σ

t u x, tð Þ − C
0D

σ

t uN x, tð Þ
� �

−
∂2u x, tð Þ

∂x2
−
∂2uN x, tð Þ

∂x2

 !

−
∂u x, t/2ð Þ

∂x
u x

2 ,
t
2

� �
−
∂uN x, t/2ð Þ

∂x
uN

x
2 ,

t
2

� �� �

−
1
2 u x, tð Þ − uN x, tð Þð Þ

= C
0D

σ

t u x, tð Þ − C
0D

σ

t uN x, tð Þ
� �

−
∂2u x, tð Þ

∂x2
−
∂2uN x, tð Þ

∂x2

 !

−
∂u x, t/2ð Þ

∂x
−
∂uN x, t/2ð Þ

∂x

� �
u x

2 ,
t
2

� �
− uN

x
2 ,

t
2

� ��

+ uN
x
2 ,

t
2

� ��
−
∂uN x, t/2ð Þ

∂x
u x

2 ,
t
2

� �
− uN

x
2 ,

t
2

� �� �
−
1
2 u x, tð Þ − uN x, tð Þ

�
:

�
ð84Þ

So, one has

EN x, tð Þk kL2ω Ωð Þ
A2τN

ffiffiffi
π

p

25/2Γ N + 2ð ÞΓ N − σ + 2ð Þ N N − σð Þð Þ3/4

+ A1,2θN ,2
ffiffiffi
π

p

25/2Γ Nð ÞΓ N + 2ð Þ N N − 2ð Þð Þ3/4

+ A1,1θN ,1
ffiffiffi
π

p

2N+7/2Γ N + 1ð ÞΓ N + 2ð Þ N N − 1ð Þð Þ3/4

� A0τN
ffiffiffi
π

p

22N+9/2Γ N + 1ð Þ2N3/2 +U1

 !
+U2

A0τN
ffiffiffi
π

p

22N+9/2Γ N + 1ð Þ2N3/2

+ 1
2

A0τN
ffiffiffi
π

p

25/2Γ N + 1ð Þ2N3/2 :

ð85Þ

Form II. If uNðx, tÞ is the solution obtained from the
proposed algorithm for Equation (62), then it satisfies the
following equation:

EN x, tð Þ = C
0D

σ

t uN x, tð Þ − ∂2uN x, t/2ð Þ
∂x2

uN x, t2

� �
+ uN x, tð Þ:

ð86Þ

Subtracting Equation (86) from Equation (62) leads to

EN x, tð Þ = C
0D

σ

t u x, tð Þ − C
0D

σ

t uN x, tð Þ
� �

−
∂2u x, t/2ð Þ

∂x2
u x, t2

� �
−
∂2uN x, t/2ð Þ

∂x2
uN x, t2

� � !

+ u x, tð Þ − uN x, tð Þð Þ
= C

0D
σ

t u x, tð Þ − C
0D

σ

t uN x, tð Þ
� �

−
∂2u x, t/2ð Þ

∂x2
−
∂2uN x, t/2ð Þ

∂x2

 !
u x, t2

� �
− uN x, t2

� ��

+ uN x, t2

� ��
−
∂2uN x, t/2ð Þ

∂x2
u x, t2

� �
− uN x, t2

� �� �
+ u x, tð Þ − uN x, tð Þð Þ:

ð87Þ

Then, one has

EN x, tð Þk kL2ω Ωð Þ ≤
A2τN

ffiffiffi
π

p

25/2Γ N + 2ð ÞΓ N − σ + 2ð Þ N N − σð Þð Þ3/4

+ A1,2θN ,2
ffiffiffi
π

p

2N+ 7/2ð ÞΓ Nð ÞΓ N + 2ð Þ N N − 2ð Þð Þ3/4

� A0τN
ffiffiffi
π

p

2N+ 7/2ð ÞΓ N + 2ð Þ2N3/2 +U4

 !

+U3
A0τN

ffiffiffi
π

p

2N+ 7/2ð ÞΓ N + 2ð Þ2N3/2

+ A0τN
ffiffiffi
π

p

25/2Γ N + 2ð Þ2N3/2 :

ð88Þ

Form III. If uNðx, tÞ is an approximate solution obtained
from the suggested algorithm for Equation (65), then one has

EN x, tð Þ = C
0D

σ

t uN x, tð Þ − ∂2uN x/2, t/2ð Þ
∂x2

∂uN x/2, t/2ð Þ
∂x

+ ∂uN x, tð Þ
∂x

+ uN x, tð Þ:
ð89Þ

Subtracting (89) from Equation (65) leads to

EN x, tð Þ = C
0D

σ

t uN x, tð Þ − C
0D

σ

t uN x, tð Þ
� �

−
∂2u x/2, t/2ð Þ

∂x2
∂u x/2, t/2ð Þ

∂x
−
∂2uN x/2, t/2ð Þ

∂x2
∂uN x/2, t/2ð Þ

∂x

 !

+ ∂u x, tð Þ
∂x

−
∂uN x, tð Þ

∂x

� �
+ u x, tð Þ − uN x, tð Þð Þ

= C
0D

σ

t uN x, tð Þ − C
0D

σ

t uN x, tð Þ
� �

−
∂2u x/2, t/2ð Þ

∂x2
−
∂2uN x/2, t/2ð Þ

∂x2

 !

· ∂u x/2, t/2ð Þ
∂x

−
∂uN x/2, t/2ð Þ

∂x
+ ∂uN x/2, t/2ð Þ

∂x

� �
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−
∂2uN x/2, t/2ð Þ

∂x2
∂u x/2, t/2ð Þ

∂x
−
∂uN x/2, t/2ð Þ

∂x

� �

+ ∂u x, tð Þ
∂x

−
∂uN x, tð Þ

∂x

� �
+ u x, tð Þ − uN x, tð Þð Þ: ð90Þ

By taking L2-norm, one gets

EN x, tð Þk kL2ω Ωð Þ
A2τN

ffiffiffi
π

p

25/2Γ N + 2ð ÞΓ N − σ + 2ð Þ N N − σð Þð Þ3/4

+ A1,2θN ,2
ffiffiffi
π

p

22N+ 9/2ð ÞΓ Nð ÞΓ N + 2ð Þ N N − 2ð Þð Þ3/4

� U5 +
A1,1θN ,1

ffiffiffi
π

p

22N+ 9/2ð ÞΓ N + 1ð ÞΓ N + 2ð Þ N N − 1ð Þð Þ3/4
 !

+U6
A1,1θN ,1

ffiffiffi
π

p

22N+ 9/2ð ÞΓ N + 1ð ÞΓ N + 2ð Þ N N − 1ð Þð Þ3/4

+ A1,1θN ,1
ffiffiffi
π

p

25/2Γ N + 1ð ÞΓ N + 2ð Þ N N − 1ð Þð Þ3/4

+ A0τN
ffiffiffi
π

p

25/2Γ N + 2ð Þ2N3/2 : ð91Þ

As seen from the right-hand sides of inequalities (85), (88),
and (91), ENðx, tÞ will decrease by choosing appropriate
values of N, i.e., the error bound will be sufficiently small for
the sufficiently large values of N .

5. Numerical Examples

To demonstrate the accuracy and validity of the proposed
method, three given examples in Refs. [26, 27] are solved
in this section. These equations have been solved using the
homotopy perturbation and natural transformation decom-
position methods in [26, 27], respectively. The approximate
solutions are compared to the exact ones and those reported
by [26, 27], maximum absolute errors are calculated, and
results are reported in tables and figures.

Example 1. Consider Equation (50) with the exact solution
uðx, tÞ = x exp ðtÞ for σ = 1 and its corresponding residual
function Equation (61) that is collocated at roots of the
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Figure 1: Surface behavior of solutions of Example 1 for N = 6 and various values of σ.
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Chebyshev polynomials of the sixth kind. Therefore, an
approximate solution is obtained. The surface plots of
approximate solutions are depicted in Figure 1, and the
absolute error function is seen in Figure 2(a) for N = 6 and
σ = 0:7,0:8,0:9,1. Also, the figures of approximate solutions
at t = 1 are seen in Figure 2(b) for N = 6 and σ =
0:7,0:8,0:9,1. The values of the approximate solution at the
selected points are listed in Table 1 which compared to the
values of the exact one for N = 6 and various values of σ.
The results are compared to those reported in [26, 27] in

Table 2. As seen, the proposed method presents better accu-
racy. Besides, the maximum absolute errors of approximate
solutions are computed for different values of N and σ = 1,
and results are observed in Table 3. Increasing N leads to
the decrease of the values of the errors.

Example 2. Consider the nonlinear fractional partial differ-
ential equation with the proportional delay in (62) and its
corresponding residual function in Equation (64). The
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Figure 2: (a) Absolute error function for Example 1 for N = 6, σ = 1. (b) Plots of solutions for different values of σ, N = 6,t = 1.

Table 1: Numerical results of Example 1 for N = 6 and various values of σ.

xi t j σ = 0:7 σ = 0:8 σ = 0:9 σ = 1 Exact Error

0.25

0:25 0:3199866 0:3203102 0:3206518 0:3210064 0:3210064 1:3966 × 10−9

0:50 0:4114050 0:4116834 0:4119457 0:4121803 0:4121803 8:0055 × 10−10

0:75 0:5285656 0:5288107 0:5290395 0:5292500 0:5292500 9:2143 × 10−10

1:00 0:6788737 0:6790652 0:6792634 0:6795704 0:6795705 2:5998 × 10−8

0.50

0:25 0:6337580 0:6362631 0:6389749 0:6420127 0:6420127 2:5203 × 10−9

0:50 0:8187531 0:8209753 0:8229275 0:8243606 0:8243606 1:4904 × 10−9

0:75 1:0528606 1:0547361 1:0565811 1:0585000 1:0585000 8:8651 × 10−10

1:00 1:3512839 1:3521827 1:3540014 1:3591409 1:3591409 5:3534 × 10−8

0.75

0:25 0:9340411 0:9417454 0:9507790 0:9630191 0:9630191 1:9619 × 10−9

0:50 1:2215925 1:2293426 1:2350774 1:2365410 1:2365410 7:2547 × 10−10

0:75 1:5672652 1:5729640 1:5793773 1:5877500 1:5877500 5:3519 × 10−10

1:00 1:9936484 1:9888627 1:9937973 2:0387113 2:0387114 9:5450 × 10−8

1.0

0:25 1:2085347 1:2227737 1:2437234 1:2840254 1:2840254 4:6333 × 10−9

0:50 1:6298471 1:6506066 1:6612803 1:6487213 1:6487213 6:2784 × 10−9

0:75 2:0608936 2:0714857 2:0878337 2:1170000 2:1170000 2:3318 × 10−9

1:00 2:5193819 2:4585462 2:4518089 2:7182816 2:7182818 2:1185 × 10−7
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Table 2: Numerical results of Example 1 for N = 6, σ = 1.

xi t j Method in [26] Method in [27] Chebyshev method Exact

0.25

0:25 0:3210042 0:3210042 0:3210064 0:3210064
0:50 0:4121094 0:4121094 0:4121803 0:4121803
0:75 0:5286865 0:5286865 0:5292500 0:5292500
1:00 0:6770833 0:6770833 0:6795704 0:6795705

0.50

0:25 0:6420085 0:6420085 0:6420127 0:6420127
0:50 0:8242188 0:8242187 0:8243606 0:8243606
0:75 1:0573730 1:0573730 1:0585000 1:0585000
1:00 1:3541667 1:3541667 1:3591409 1:3591409

0.75

0:25 0:9630127 0:9630127 0:9630191 0:9630191
0:50 1:236328 1:2363281 1:2365410 1:2365410
0:75 1:586060 1:5860596 1:5877500 1:5877500
1:00 2:0312500 2:0312490 2:0387113 2:0387114

Table 3: Maximum absolute errors of Example 1 for σ = 1 and various values of N .

N 4 5 6 7 8

Error 7:5579 × 10−5 4:5135 × 10−6 2:1185 × 10−7 7:7009 × 10−9 3:6459 × 10−10
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Figure 3: (a) Surface solutions for N = 6 and σ = 1 (blue), σ = 0:9 (green), σ = 0:8 (gray), and σ = 0:7 (red). (b) Absolute error function of
Example 2 for N = 6, σ = 1.
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Figure 4: Left: approximate solutions depicted in [26]. Right: obtained solutions from the proposed method for different values of σ, N = 6,
t = 1 for Example 2.

Table 4: Numerical results of Example 2 for various values of σ, N = 6.

xi t j σ = 0:7 σ = 0:8 σ = 0:9 σ = 1 Exact Error

0.25

0:25 0:1013235 0:0914426 0:0849036 0:0802516 0:0802516 8:0280 × 10−10

0:50 0:1493151 0:1266051 0:1125784 0:1030451 0:1030451 1:5944 × 10−9

0:75 0:2164930 0:1734092 0:1485001 0:1323125 0:1323125 1:9099 × 10−10

1:00 0:3137011 0:2372436 0:1956991 0:1698926 0:1698926 6:6257 × 10−9

0.50

0:25 0:4052941 0:3657705 0:3396142 0:3210064 0:3210064 3:2112 × 10−9

0:50 0:5972605 0:5064204 0:4503138 0:4121803 0:4121803 6:3777 × 10−9

0:75 0:8659720 0:6936368 0:5940005 0:5292500 0:5292500 7:6358 × 10−10

1:00 1:2548043 0:9489743 0:7827965 0:6795704 0:6795705 2:6504 × 10−8

0.75

0:25 0:9119117 0:8229837 0:7641321 0:7222643 0:7222643 7:2249 × 10−9

0:50 1:3438362 1:1394460 1:0132059 0:9274057 0:9274057 1:4348 × 10−8

0:75 1:9484370 1:5606829 1:3365010 1:1908125 1:1908125 1:7060 × 10−9

1:00 2:8233096 2:1351921 1:7612922 1:5290335 1:5290335 5:9679 × 10−8

1.0

0:25 0:3371509 1:4630821 1:3584570 1:2840254 1:2840254 1:2842 × 10−8

0:50 2:3890421 2:0256818 1:8012550 1:6487214 1:6487213 2:5483 × 10−8

0:75 3:4638880 2:7745474 2:3760019 2:1170000 2:117000 2:9197 × 10−9

1:00 5:0192169 3:7958971 3:1311862 2:7182817 2:7182818 1:0649 × 10−7
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Table 5: Numerical results of Example 2 for N = 6, σ = 1.

xi t j Method in [26] Method in [27] Chebyshev Method Exact

0.25

0:25 0:0802511 0:0802516 0:0802516 0:0802516
0:50 0:1030273 0:1030451 0:1030451 0:1030451
0:75 0:1321716 0:1323123 0:1323125 0:1323125
1:00 0:1692708 0:1698909 0:1698926 0:1698926

0.50

0:25 0:3210042 0:3210064 0:3210064 0:3210064
0:50 0:4121094 0:4121803 0:4121803 0:4121803
0:75 0:5286865 0:5292493 0:5292500 0:5292500
1:00 0:6770833 0:6795635 0:6795704 0:6795705

0.75

0:25 0:7222595 − 0:7222643 0:7222643
0:50 0:9272461 − 0:9274057 0:9274057
0:75 1:1895447 − 1:1908125 1:1908125
1:00 1:5234375 − 1:5290335 1:5290335

1.00

0:25 − 1:2840254 1:2840254 1:2840254
0:50 − 1:6487212 1:6487213 1:6487213
0:75 − 2:1169973 2:1170000 2:1170000
1:00 − 2:7182540 2:7182817 2:7182818

Table 6: Maximum absolute errors of Example 2 for σ = 1 and various values of N .

N 4 5 6 7 8

Error 2:3903 × 10−5 2:3083 × 10−6 1:0149 × 10−7 1:6453 × 10−8 2:8933 × 10−9
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exact solution is uðx, tÞ = x2 exp ðtÞ if σ = 1. The 3D fig-
ures of the approximate solutions are depicted in
Figure 3(a) for N = 6 and σ = 0:7,0:8,0:9,1. The plot of

the absolute error function is seen in Figure 3(b). The
approximate solutions are plotted at t = 1 and compared
to those presented by [26] in Figure 4 for N = 6 and σ =
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Figure 5: (a)–(d) Surface solutions for N = 8 and σ = 1,0:9,0:8,0:7: (e) Absolute error function of Example 3 for N = 8, σ = 1.
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Figure 6: Left: approximate solutions depicted in [26]. Right: obtained solutions from the proposed method for different values of σ, N = 8,
x = 1 for Example 3.
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0:7,0:8,0:9,1. As seen, our obtained solutions converge faster
to the exact one. The values of the resultant solution at the
selected points are listed in Table 4 which compared to
the values of the exact solution for N = 6 and various values

of σ. The obtained results are compared to those reported in
[26, 27] in Table 5. As seen, the proposed method presents
better accuracy. The maximum absolute errors are seen in
Table 6 for σ = 1 and N = 4, 5, 6, 7, 8.

Table 7: Numerical results of Example 3 for various values of σ, N = 8.

xi t j σ = 0:7 σ = 0:8 σ = 0:9 σ = 1 Exact Error

0.25

0:25 0:0357780 0:0420024 0:0456542 0:0486750 0:0486750 7:6753 × 10−12

0:50 0:0205174 0:0286599 0:0333034 0:0379082 0:0379082 1:6649 × 10−10

0:75 0:0112779 0:0189974 0:0238430 0:0295229 0:0295229 3:8695 × 10−10

1:00 0:0069793 0:0127259 0:0169906 0:0229925 0:0229925 5:6253 × 10−10

0.50

0:25 0:1660490 0:1748887 0:1854495 0:1947002 0:1947002 1:1877 × 10−10

0:50 0:1279483 0:1353176 0:1441304 0:1516327 0:1516327 7:2917 × 10−10

0:75 0:0946332 0:1052157 0:1124282 0:1180916 0:1180916 1:1956 × 10−9

1:00 0:0696568 0:0820349 0:0872306 0:0919699 0:0919699 1:2032 × 10−9

0.75

0:25 0:3660803 0:3889022 0:4149060 0:4380754 0:4380754 2:6901 × 10−10

0:50 0:2980705 0:2987502 0:3193789 0:3411735 0:3411735 4:0079 × 10−10

0:75 0:2559271 0:2423933 0:2546668 0:2657062 0:2657062 1:0422 × 10−9

1:00 0:2239921 0:2048991 0:2081581 0:2069322 0:2069322 3:1164 × 10−9

1.0

0:25 0:6401432 0:6932895 0:7398243 0:7788008 0:7788008 6:2071 × 10−11

0:50 0:4874058 0:5155939 0:5609473 0:6065307 0:6065307 1:5635 × 10−9

0:75 0:4145884 0:4015728 0:4331895 0:4723665 0:4723666 3:2396 × 10−9

1:00 0:3913723 0:3364194 0:3492084 0:3678794 0:3678794 1:8734 × 10−9

Table 8: Numerical results of Example 3 for N = 8, σ = 1.

xi t j Method in [26] Method in [27] Chebyshev method Exact

0.25

0:25 0:0486755 0:0486750 0:0486750 0:0486750
0:50 0:0379232 0:0379081 0:0379082 0:0379082
0:75 0:0296326 0:0295228 0:0295229 0:0295229
1:00 0:0234375 0:0229911 0:0229925 0:0229925

0.50

0:25 0:1947021 0:1947002 0:1947002 0:1947002
0:50 0:1516927 0:1516326 0:1516327 0:1516327
0:75 0:1185303 0:1180911 0:1180916 0:1180916
1:00 0:0937500 0:0919643 0:0919699 0:0919699

0.75

0:25 0:4380798 − 0:4380754 0:4380754
0:50 0:3413086 − 0:3411735 0:3411735
0:75 0:2666931 − 0:2657062 0:2657062
1:00 0:2109375 − 0:2069322 0:2069322

1.00

0:25 − 0:7788008 0:7788008 0:7788008
0:50 − 0:6065306 0:6065307 0:6065307
0:75 − 0:4723643 0:4723665 0:4723665
1:00 − 0:3678571 0:3678794 0:3678794
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Example 3. Consider Form III in (65) and residual function
(67). The exact solution is uðx, tÞ = x2 exp ð−tÞ if σ = 1. The
three-dimensional figures of the approximate solutions are
depicted in Figures 5(a)–5(d) for N = 8 and σ =
0:7,0:8,0:9,1. The plot of the absolute error function is seen
in Figure 5(e) for N = 8 and σ = 1. The obtained solutions
are plotted in Figure 6 at t = 1 for N = 8 and σ =
0:7,0:8,0:9,1 which are compared to those presented by
[27]. The values of the resultant solution at the selected
points are listed in Table 7 which are compared to the values
of the exact one for N = 8 and various values of σ. As σ⟶ 1
, the numerical solutions converge to the exact one. The
obtained results are compared to those reported in [26, 27]
in Table 8 for N = 8 and σ = 1. As seen, the proposed
method presents better accuracy.

6. Conclusion

This paper deals with numerically solving a class of frac-
tional partial differential equations with proportional delays
on the domain Ω = ½0, 1� × ½0, 1�. A spectral collocation
approach, based on the sixth-kind Chebyshev polynomials
as basis functions, has been considered to solve this class
of equations. The two-variable Chebyshev polynomials of
the sixth kind were introduced, and their integral opera-
tional matrices were derived. The relationship between the
delay Chebyshev polynomials and the original basis was
stated in a matrix form called delay operational matrix.
The numerical results were reported in tables and figures
and confirmed the accuracy and good agreement of the
approximate solutions with exact ones. An error analysis
has been presented which showed that the method error
becomes small when N is properly selected. The picked
examples were also solved by homotopy perturbation and
natural decomposition methods in [26, 27], and values of
approximate solutions were reported at some selected
points. It was clear from Tables 2, 5, and 8; the proposed
method is more efficient. Therefore, the sixth-kind Cheby-
shev polynomials can be used to numerically solve other
fractional functional equations.

Data Availability

All results have been obtained by conducting the numerical
procedure, and the ideas can be shared for the researchers.
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