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The aim of this paper is to derive oscillation criteria of the following fourth-order differential equation with delay term
ðrðxÞðz ′′′ðxÞÞγÞ′ +∑n

i=1qiðxÞf ðzðηiðxÞÞÞ = 0, under the assumption
Ð∞
x0
r−1/γðsÞds =∞: The results are based on comparison with

the oscillatory behaviour of second-order delay equations and the generalised Riccati transformation. Not only do the provided
theorems provide an entirely new technique but also they vastly improve on a number of previously published conclusions.
We give three examples to illustrate our findings.

1. Introduction

Higher-order neutral differential equations have recently
been recognized as being sufficient to describe a variety of
real applications [1–4]. As a result, many researchers have
studied the qualitative behaviour of solutions of these equa-
tions (see [5–8]). The research of oscillation and oscillatory
behaviour of these equations, which has been investigated
using multiple approaches and techniques, has received spe-
cial attention (see [9–11]). The attempt to improve the work
and obtain a generalised platform that covers all special
cases inspires the investigation of fourth- and higher-order
equations.

In this work, we are concerned with oscillation of fourth-
order delay differential equations of the form

r xð Þ z′′′ xð Þ
� �γ� �

′ + 〠
n

i=1
qi xð Þf z ηi xð Þð Þð Þ = 0, ð1Þ

where x ≥ x0. Throughout this work, we suppose the
following:

(i) r ∈ C1ð½x0,∞Þ, RÞ and γ is a quotient of odd positive
integers

(ii) The following condition holds:

ð∞
x0

1
r1/γ sð Þ ds =∞, ð2Þ

for rðxÞ > 0, r′ðxÞ > 0, and

(iii) qi, ηi ∈ Cð½x0,∞Þ, RÞ, qiðxÞ ≥ 0, ηiðxÞ ≤ x, limx⟶∞ηi
ðxÞ =∞ (i = 1, 2,⋯), and f ∈ CðR, RÞ such that

f xð Þ
xγ

≥ ℓ > 0, for x ≠ 0: ð3Þ

By a solution of (1), we mean a function z ∈ C3½xz ,∞Þ,
xz ≥ x0, that has the property rðxÞðz′′′ðxÞÞγ ∈ C1½xz ,∞Þ and
fulfills (1) on ½xz ,∞Þ. If a solution of (1) has arbitrarily large
zeros on ½xz ,∞Þ, then it is considered oscillatory; otherwise,
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it is called nonoscillatory. Equation (1) is said to be oscilla-
tory if all its solutions are oscillatory.

Next, we give some previous findings in the literature
that are relevant to the present work. Grace [12] has studied
the equation

r xð Þz n−vð Þ xð Þ
� � vð Þ

+ q xð Þf z g xð Þ½ �ð Þ = 0, ð4Þ

in addition to Agarwal et al. [13] and Xu and Xia [14]
who have studied the equation

z n−1ð Þ xð Þ z n−1ð Þ xð Þ
��� ���γ−1� �

′ + f x, z η xð Þð Þð Þ = 0, ð5Þ

subject to condition (2). Zhang et al. [15] obtained oscil-
latory criteria of the equation

r xð Þ z′′′ xð Þ
� �γ� �

′ + q xð Þzγ η xð Þð Þ = 0, ð6Þ

with the condition

ð∞
x0

1
r1/γ uð Þ du <∞: ð7Þ

Baculikova et al. [16] used the comparison theory to
prove that if

y′ xð Þ + q xð Þf δηn−1 xð Þ
n − 1ð Þ!r1/γ η xð Þð Þ

� �
f y1/γ η xð Þð Þ� �

= 0 ð8Þ

is oscillatory, then

r xð Þ z n−1ð Þ xð Þ
� �γ� �

′ + q xð Þf z η xð Þð Þð Þ = 0 ð9Þ

is oscillatory for even n. Grace et al. [7] presented oscil-
lation criteria for fourth-order delay differential equations of
the form

r3 r2 r1z′
� �

′
� �

′
� �

′ xð Þ + q xð Þz η xð Þð Þ = 0, ð10Þ

under the assumption

ð∞
x0

dt
ri xð Þ <∞, i = 1, 2, 3: ð11Þ

Using the Riccati transformation, an oscillation criterion
for fourth-order neutral delay differential equation of the
form

r xð Þ z xð Þ + p xð Þz η xð Þð Þð Þ½ �′′′
� �αh i

′ +
ðb
a
q x, ξð Þf z g x, ξð Þð Þð Þ dξ = 0

ð12Þ

was obtained by Chatzarakis et al. [17]. By using the
technique of the Riccati transformation and the theory of

comparison with first-order delay equations, Bazighifan
and Abdeljawad [18] established some new oscillation cri-
teria for fourth-order advanced differential equations with
p-Laplacian-like operator of the form

b xð Þ z′′′ xð Þ�� ��p−2z′′′ xð Þ
� �

′ + 〠
j

i=1
qi xð Þg z ηi xð Þð Þð Þ = 0: ð13Þ

Very recently, Bazighifan et al. [19] established new cri-
teria for the oscillatory behaviour of the following fourth-
order differential equations with middle term

r xð Þ z′′′ xð Þ�� ��p1−2z′′′ xð Þ
� �

′ + σ xð Þ z′′′ xð Þ�� ��p1−2z′′′ xð Þ + q xð Þ z τ xð Þð Þj jp2−2z τ xð Þð Þ = 0,

ð14Þ

by the comparison technique and employing the Riccati
transformation under the condition

ð∞
x0

1
r sð Þ exp −

ðs
x0

σ ηð Þ
r ηð Þ dη

 !" #1/p1−1
ds =∞: ð15Þ

For convenience, in the present work, we denote

δ xð Þ =
ð∞
x

1
r1/γ sð Þ ds,

ψ xð Þ = π xð Þ 〠
n

i=1
ℓqi xð Þ η3i xð Þ

x3

� �γ

+ μx2 − 2γ
2r1/γ xð Þδγ+1 xð Þ

 !
,

φ xð Þ = π′ xð Þ
π xð Þ + γ + 1ð Þμx2

2r1/γ xð Þδ xð Þ ,

φ∗ xð Þ = τ′ xð Þ
τ xð Þ + 2

δ xð Þ ,

ψ∗ = τ xð Þ
ð∞
x

ℓ
r xð Þ

ð∞
x
〠
n

i=1
qi sð Þ

ηγi sð Þ
sγ

ds
 !1/γ

dx + 1 − r−1/γ xð Þ
δ2 xð Þ

 !
,

ð16Þ

where π, τ ∈ C1ððx0,∞Þ, ð0,∞ÞÞ. The generalised Riccati
transformation is defined as

ω xð Þ≔ π xð Þ
r xð Þ z′′′

� �γ
xð Þ

zγ xð Þ + 1
δγ xð Þ

0
@

1
A, ð17Þ

ϑ xð Þ≔ τ xð Þ z′ xð Þ
z xð Þ + 1

δ xð Þ

 !
: ð18Þ

We remark that in the study of the asymptotic behaviour
of the positive solutions of (1), there are only two cases:

Case 1. zðjÞðxÞ > 0 for j = 1, 2, 3,

Case 2. zðjÞðxÞ > 0 for j = 1, 3 and z′′ðxÞ < 0:
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In this work, using the Riccati approach and a compari-
son with a second-order equation, we shall obtain oscillation
criteria for (1).

2. Some Significant Auxiliary Lemmas

The following lemmas serve as a basis for our findings.

Lemma 1 (see [20]). Let α be a ratio of two odd numbers;
H > 0 and K are constants. Then,

P α+1ð Þ/α − P −Qð Þ α+1ð Þ/α ≤
P
α
Q1/α +Q1/αP −

1
α
Q 1+αð Þ/α, PQ ≥ 0, α ≥ 1,

αα

α + 1ð Þα+1
Kα+1

Hα ≥ Km −Hm α+1ð Þ/α, H > 0:

ð19Þ

Lemma 2 (see [17]). Let f ðjÞÞ > 0 and f ðn+1Þ < 0 for all j = 0
, 1,⋯, n. Then,

n!
xn

f xð Þ ≥ n − 1ð Þ!
xn−1

d
dx

f xð Þ: ð20Þ

Lemma 3 (see [21]). The equation

a xð Þ m′ xð Þγ
� �� �

′ + q xð Þmγ xð Þ = 0, ð21Þ

where a ∈ C½x0,∞Þ, aðxÞ > 0, and qðxÞ > 0, is nonoscillatory if
and only if there exist x ≥ x0 and σ ∈ C1½x,∞Þ such that

σ′ xð Þ + γ

r1/γ xð Þσ
1+1/γ xð Þ + q xð Þ ≤ 0, ð22Þ

for x ≥ x0.

Lemma 4 (see [22]). Suppose that h ∈ Cnð½x0,∞Þ, ð0,∞ÞÞ;
then,

h n−1ð Þ xð Þh nð Þ xð Þ ≤ 0, ð23Þ

for every λ ∈ ð0, 1Þ and x ≥ xλ.

3. Oscillation Criteria

In this section, we shall obtain some oscillation criteria for
equation (1).

Lemma 5. Suppose that z is a solution of (1) such that z > 0
and zðjÞ > 0 for all j = 1, 2, 3. If we have the function ω ∈ C1½
x,∞Þ defined in (17), where π ∈ C1ð½x0,∞Þ, ð0,∞ÞÞ, then

ω′ xð Þ ≤ −ψ xð Þ + φ xð Þω xð Þ − γμx2

2 r xð Þπ xð Þð Þ1/γ ω
γ+1ð Þ/γ xð Þ,

ð24Þ

for all x > x1, where x1 is large enough.

Proof. Let z be a solution of (1) where z > 0 and zðjÞðxÞ > 0
for all j = 1, 2, 3. Thus, from Lemma 4, we get

z′ xð Þ ≥ μ

2 x
2z′′′ xð Þ, ð25Þ

for all μ ∈ ð0, 1Þ and for every large x. From (17), we have
that ωðxÞ > 0 for x ≥ x1, and

ω′ xð Þ = π′ xð Þ
r xð Þ z′′′ xð Þ

� �γ
xð Þ

zγ xð Þ + 1
δγ xð Þ

0
@

1
A + π xð Þ

r xð Þ z′′′ xð Þ
� �γ� �

′
zγ xð Þ

− γπ xð Þ
zγ−1 xð Þz′ xð Þr xð Þ z′′′ xð Þ

� �γ
z2γ xð Þ + γπ xð Þ

r1/γ xð Þδγ+1 xð Þ
:

ð26Þ

Using (25) and (17), we acquire

ω′ xð Þ ≤ π′ xð Þ
π xð Þ ω xð Þ + π xð Þ

r xð Þ z′′′ xð Þ
� �γ� �

′
zγ xð Þ

− γπ xð Þ μ2 x
2
r xð Þ z′′′ xð Þ

� �γ+1
zγ+1 xð Þ + γπ xð Þ

r1/γ xð Þδγ+1 xð Þ

≤
π′ xð Þ
π xð Þ ω xð Þ + π xð Þ

r xð Þ z′′′ xð Þ
� �γ� �

′
zγ xð Þ

− γπ xð Þ μ2 x
2r xð Þ ω xð Þ

π xð Þr xð Þ −
1

r xð Þδγ xð Þ
� � γ+1ð Þ/γ

+ γπ xð Þ
r1/γ xð Þδγ+1 xð Þ

:

ð27Þ

Letting P = ωðxÞ/ðπðxÞrðxÞÞ, Q = 1/ðrðxÞδγðxÞÞ, and α
= γ and by using Lemma 1, we get

ω xð Þ
π xð Þr xð Þ −

1
r xð Þδγ xð Þ

� � γ+1ð Þ/γ

≥
ω xð Þ

π xð Þr xð Þ
� � γ+1ð Þ/γ

−
1

γr1/γ xð Þδ xð Þ γ + 1ð Þ ω xð Þ
π xð Þr xð Þ −

1
r xð Þδγ xð Þ

� �
:

ð28Þ

From Lemma 2, we obtain zðxÞ ≥ ðx/3Þz′ðxÞ, and hence,

z ηi xð Þð Þ
z xð Þ ≥

η3i xð Þ
x3

: ð29Þ

From (1), (27), and (28), we obtain

ω′ xð Þ ≤ π′ xð Þ
π xð Þ ω xð Þ − ℓπ xð Þ〠

n

i=1
qi xð Þ η3i xð Þ

x3

� �γ

− γπ xð Þ μ2 x
2r xð Þ ω xð Þ

π xð Þr xð Þ
� � γ+1ð Þ/γ

− γπ xð Þ μ2 x
2r xð Þ −1

γr1/γ xð Þδ xð Þ γ + 1ð Þ ω xð Þ
π xð Þr xð Þ −

1
r xð Þδγ xð Þ

� �� �

+ γπ xð Þ
r1/γ xð Þδγ+1 xð Þ :

ð30Þ
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This implies that

ω′ xð Þ ≤ π′ xð Þ
π xð Þ + γ + 1ð Þμx2

2r1/γ xð Þδ xð Þ

 !
ω xð Þ

−
γμx2

2r1/γ xð Þπ1/γ xð Þω
γ+1ð Þ/γ xð Þ

− π xð Þ 〠
n

i=1
ℓqi xð Þ η3i xð Þ

x3

� �γ

+ μx2 − 2γ
2r1/γ xð Þδγ+1 xð Þ

 !
:

ð31Þ

Thus,

ω′ xð Þ ≤ −ψ xð Þ + φ xð Þω xð Þ − γμx2

2 r xð Þπ xð Þð Þ1/γ ω
γ+1ð Þ/γ xð Þ:

ð32Þ

The proof is completed.

Lemma 6. Let z be a solution of (1) such that z > 0 and zðjÞ

ðxÞ > 0 for j = 1, 3 and z′′ðxÞ < 0. If the function ϑ ∈ C1½x,∞
Þ is defined in (18) such that τ ∈ C1ððx0,∞Þ, ð0,∞ÞÞ, then

ϑ′ xð Þ ≤ φ∗ xð Þϑ xð Þ − ψ∗ xð Þ − 1
τ xð Þ ϑ

2 xð Þ, ð33Þ

for all x > x1, where x1 is large enough.

Proof. Let z be a solution of (1) where z > 0 and zðjÞðxÞ > 0
for j = 1, 3 and z′′ðxÞ < 0. From Lemma 2, we have that zð
xÞ ≥ xz′ðxÞ. Integrating this inequality from ηðxÞ to x, we
obtain

z ηi xð Þð Þ ≥ ηi xð Þ
x

z xð Þ: ð34Þ

Hence, from (3) we have

f z ηi xð Þð Þð Þ ≥ ℓ
η
γ
i xð Þ
xγ

zγ xð Þ: ð35Þ

By integrating (1) from x to u and since z′ðxÞ > 0, we get

r uð Þ z′′′ uð Þ
� �γ

− r xð Þ z′′′ xð Þ
� �γ

=

−
ðu
x
〠
n

i=1
qi sð Þf z ηi sð Þð Þð Þds ≤ −ℓzγ xð Þ

ðu
x
〠
n

i=1
qi sð Þ

η
γ
i sð Þ
sγ

ds:

ð36Þ

Now letting u⟶∞ yields

r xð Þ z′′′ xð Þ
� �γ

≥ ℓzγ xð Þ
ð∞
x
〠
n

i=1
qi sð Þ

η
γ
i sð Þ
sγ

ds, ð37Þ

and so

z′′′ xð Þ ≥ z xð Þ ℓ
r xð Þ

ð∞
x
〠
n

i=1
qi sð Þ

ηγi sð Þ
sγ

ds

 !1/γ

: ð38Þ

Integrating this from x to ∞ gives

z′′ xð Þ ≤ −z xð Þ
ð∞
x

ℓ
r xð Þ

ð∞
x
〠
n

i=1
qi sð Þ

η
γ
i sð Þ
sγ

ds
 !1/γ

dx: ð39Þ

From (18), we have that ϑðxÞ > 0 for x ≥ x1 and by differ-
entiating, we get

ϑ′ xð Þ = τ′ xð Þ
τ xð Þ ϑ xð Þ + τ xð Þ z′′ xð Þ

z xð Þ − τ xð Þ ϑ xð Þ
τ xð Þ −

1
δ xð Þ

� �2
+ τ xð Þ
r1/r xð Þδ2 xð Þ

:

ð40Þ

Now, using Lemma 1 with P = ϑðxÞ/τðxÞ, Q = 1/δðxÞ,
and α = 1 yields

θ xð Þ
τ xð Þ −

1
δ xð Þ

� �2
≥

θ xð Þ
τ xð Þ
� �2

−
1

δ xð Þ
2ϑ xð Þ
τ xð Þ −

1
δ xð Þ

� �
:

ð41Þ

From (1), (40), and (41), we have the following:

ϑ′ xð Þ ≤ τ′ xð Þ
τ xð Þ ϑ xð Þ − τ xð Þ

ð∞
x

ℓ
r xð Þ

ð∞
x
〠
n

i=1
qi sð Þ

ηγi sð Þ
sγ

ds
 !1/γ

dx

− τ xð Þ ϑ xð Þ
τ xð Þ
� �2

−
1

δ xð Þ
2ϑ xð Þ
τ xð Þ −

1
δ xð Þ

� � !

+ τ xð Þ
r1/γ xð Þδ2 xð Þ

:

ð42Þ

This implies that

ϑ′ xð Þ ≤ τ′ xð Þ
τ xð Þ + 2

δ xð Þ

 !
ϑ xð Þ − 1

τ xð Þ ϑ
2 xð Þ

− τ xð Þ
ð∞
x

ℓ
r xð Þ

ð∞
x
〠
n

i=1
qi sð Þ

η
γ
i sð Þ
sγ

ds
 !1/γ

dx + 1 − r−1/γ xð Þ
δ2 xð Þ

 !
:

ð43Þ

Thus,

ϑ′ xð Þ ≤ φ∗ xð Þϑ xð Þ − ψ∗ xð Þ − 1
τ xð Þ ϑ

2 xð Þ: ð44Þ

The proof is completed.
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Lemma 7. Let z be a solution of (1) with z > 0. If π ∈ Cðx0,∞Þ
such that

ð∞
x0

ψ sð Þ − 2
μs2

� �γ r sð Þπ sð Þ φ sð Þð Þγ+1
γ + 1ð Þγ+1

 !
ds =∞, ð45Þ

for some μ ∈ ð0, 1Þ, then z does not fulfill Case 1.

Proof. Let z be a solution of (1) such that z > 0. From Lemma
5, we obtain that (24) holds. Using Lemma 1 with

K = φ xð Þ,H = γμx2

2 r xð Þπ xð Þð Þ1/γ� � , ð46Þ

and m = ω, we get

ω′ xð Þ ≤ −ψ xð Þ + 2
μx2

� �γ r xð Þπ xð Þ φ xð Þð Þγ+1
γ + 1ð Þγ+1 : ð47Þ

Now, integrating from x1 to x yields

ð∞
x1

ψ sð Þ − 2
μs2

� �γ r sð Þπ sð Þ φ sð Þð Þγ+1
γ + 1ð Þγ+1

 !
ds ≤ ω x1ð Þ, ð48Þ

which contradicts (45). So, the proof is complete.

Lemma 8. Let z be a solution of (1) with z > 0 and zðjÞðxÞ > 0
for j = 1, 3 and z′′ðxÞ < 0. If τ ∈ Cð½x0,∞ÞÞ such that

ð∞
x0

ψ∗ sð Þ − 1
4
τ sð Þ φ∗ sð Þð Þ2

� �
ds =∞, ð49Þ

then z does not fulfill Case 2.

Proof. Let z be a solution of (1) such that z > 0. From Lemma
6, we get that (33) holds. Using Lemma 1 with

H = φ∗ xð Þ, K = 1
τ xð Þ , γ = 1,m = ϑ, ð50Þ

we obtain

ω′ xð Þ ≤ −ψ∗ xð Þ + 1
4 τ xð Þ φ∗ xð Þð Þ2: ð51Þ

Integrating from x1 to x gives

ð∞
x1

ψ∗ sð Þ − 1
4 τ sð Þ φ∗ sð Þð Þ2

� �
ds ≤ ω x1ð Þ, ð52Þ

which contradicts (49). This completes the proof.

Theorem 9. Let π, τ ∈ C½x0,∞Þ such that (45) and (49) hold
for some μ ∈ ð0, 1Þ. Then, equation (1) is oscillatory.

Proof. The proof is very similar to the proofs of Lemmas 7
and 8.

Now, by using the comparison method, we develop addi-
tional oscillation results for (1) in the following theorem:

Theorem 10. Let (2) hold and assume that

r xð Þ
x2γ

z′ xð Þ
� �γ	 


′ + ψ xð Þzγ xð Þ = 0, ð53Þ

z′′ xð Þ + z xð Þ
ð∞
x

ℓ
r xð Þ

ð∞
x
〠
n

i=1
qi sð Þ

η
γ
i sð Þ
sγ

ds

 !1/γ

dx = 0,

ð54Þ

are both oscillatory; then, (1) is oscillatory.

Proof. Assume the contrary that (1) has a positive solution z,
and by virtue of Lemma 3 and if we set πðxÞ = 1 in (24), then
we get

ω′ xð Þ + γμx2

2r1/γ xð Þω
γ+1ð Þ/γ + ψ xð Þ ≤ 0: ð55Þ

Hence, we have that (53) is nonoscillatory, which is a
contradiction. If we set τðxÞ = 1 in (33), then we obtain

ϑ′ xð Þ + ψ∗ xð Þ + ϑ2 xð Þ ≤ 0: ð56Þ

Thus, equation (54) is nonoscillatory, which is a contra-
diction. The proof is now complete.

It is well known (see Řehák [23])) that if

ð∞
x0

1
r xð Þ dx =∞, lim

x⟶∞
inf

ðx
x0

1
r sð Þ ds

 !ð∞
x
q sð Þds > 1

4 ,

ð57Þ

then equation (21) with γ = 1 is oscillatory.

Theorem 11. Let (2) hold. Assume that

ð∞
x0

x2

r xð Þ dx =∞, ð58Þ

and

lim
x⟶∞

inf
ðx
x0

s2

r sð Þ ds
 !ð∞

x
ψ sð Þds > 1

2λ1
, ð59Þ
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for some constant λ1 ∈ ð0, 1Þ and

lim
x⟶∞

inf
ð∞
x

ð∞
x

ℓ
r xð Þ

ð∞
x
〠
n

i=1
qi sð Þ

η
γ
i sð Þ
sγ

ds

 !
dx

 !
ds > 1

4
,

ð60Þ

then every solution of (1) is oscillatory.
The proof is obvious.

4. Examples

In this section, we provide some examples to prove that the
results of Section 3 are valid.

Example 1. Consider

z 4ð Þ xð Þ + q0 − x2

x4
+ 1
x2

� �
z xð Þ = 0,  x ≥ 1, ð61Þ

where q0 > 0.
Let γ = 1, rðxÞ = 1, qðxÞ = ððq0 − x2Þ/x4 + ð1/x2ÞÞ = q0/x,

and ηðxÞ = x.
Hence, we have

δ x0ð Þ =∞,ψ xð Þ = q0
x
, φ xð Þ = 3

x
, φ∗ xð Þ = 1

x
, ψ∗ xð Þ = q0

6x :

ð62Þ

If we set πðxÞ = x3, τðxÞ = x, and ℓ = 1, then condition
(45) becomes

ð∞
x0

ψ sð Þ − 2
μs2

� �γ r sð Þπ sð Þ φ sð Þð Þγ+1
γ + 1ð Þγ+1

 !
ds

=
ð∞
x0

q0
s
−

9
2μs

� �
ds = q0 −

9
2μ

� �ð∞
x0

1
s
ds

=∞,  if q0 >
9
2μ :

ð63Þ

Therefore, from Lemma 7, if q0 > 9/2μ, then (61) has no
positive solution z satisfying z′′ðxÞ > 0. Also, condition (49)
becomes

ð∞
x0

ψ∗ sð Þ − 1
4 τ sð Þ φ∗ sð Þð Þ2

� �
ds =

ð∞
x0

q0
6s −

1
4s

� �
ds =∞,  if q0 >

3
2 :

ð64Þ

From Lemma 8, if q0 > 3/2, then (61) has no positive
solution z satisfying z′′ðxÞ < 0. Thus, from Theorem 9 every
solution of (61) is oscillatory if q0 > max f9/2μ, 3/2g:

Example 2. Consider the following differential equation rep-
resenting equation (1),

x3 z′′′ xð Þ
� �3� �

′ + c − x4

x7
+ 1
x3

� �
z3 εxð Þ = 0, x ≥ 1,

ð65Þ

where c > 0 and 0 < ε < 1 are constants.
Here, γ = 3, rðxÞ = x3, qðxÞ = ððc − x4Þ/x7Þ + ð1/x3Þ = c/x7

, and ηðxÞ = εx. Hence,

δ xð Þ =∞,ψ xð Þ = cε9

x
, φ xð Þ = 6

x
, φ∗ xð Þ = 1

x
, ψ∗ xð Þ = cε3

48

� �1/3 1
x
:

ð66Þ

If we set πðxÞ = x6, τðxÞ = x, and ℓ = 1, then condition
(45) yields

ð∞
x0

ψ sð Þ − 2
μs2

� �γ r sð Þπ sð Þ φ sð Þð Þγ+1
γ + 1ð Þγ+1

 !
ds

=
ð∞
x0

cε9

s
−

81
2μ3s

� �
ds = cε9 −

81
2μ3

� �ð∞
x0

1
s
ds:

ð67Þ

Therefore, from Lemma 7, if c > 3/4ε3, then (65) has a
solution z > 0 satisfying z′′ðxÞ > 0. Also, from condition
(49) we have

ð∞
x0

ψ∗ sð Þ − 1
4 τ sð Þ φ∗ sð Þð Þ2

� �
ds

=
ð∞
x0

cε3

48

� �1/3 1
s
−

1
4s

 !
ds = cε3

48

� �1/3
−
1
4

 !ð∞
x0

1
s
ds:

ð68Þ

Thus, from Theorem 9, every solution of (65) is oscilla-
tory if

c >max 3
4ε3 ,

81
2ε9μ3

� �
: ð69Þ

Example 3. Consider

z 4ð Þ xð Þ + q0x − x2

x5
+ 1
x3

� �
z

x
2
� �

= 0, x ≥ 1, ð70Þ

where q0 > 0.
Let γ = 1, rðxÞ = 1, qðxÞ = ðððq0x − x2Þ/x5Þ + ð1/x3ÞÞ = q0

/x4, and ηðxÞ = x/2. When ℓ = 1 is used, condition (59)
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becomes

lim
x⟶∞

inf
ðx
x0

s2

r sð Þ ds
 !ð∞

x

q0
s4
ds

= lim
x⟶∞

inf x3

3

� �ð∞
x

q0
s4
ds = q0

9 > 1
4 ,

ð71Þ

and condition (60) gives

lim
x⟶∞

inf
ð∞
x

ð∞
x

ℓ
r xð Þ

ð∞
x
q sð Þ η

γ sð Þ
sγ

ds
� �

dx
� �

ds

= lim
x⟶∞

inf
ð∞
x

ð∞
x

ð∞
x

q0
2s4 ds

� �
dx

� �
ds = q0

6 > 1
4 :

ð72Þ

Therefore, from Theorem 11, all solutions of (70) are
oscillatory if q0 > 2:25.

5. Conclusion

In this paper, we have established some new sufficient cri-
teria which ensure that every solution of the fourth-order
differential equations (1) is oscillatory. The approach we
used was based on comparisons with the oscillatory behav-
iour of second-order delay equations and the Riccati trans-
formation. Several illustrative examples have also been
presented.
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