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In this study, we contribute to the terminological debate about various fixed-point results’ use of the term intuitionistic fuzzy b-
metric space in defining the structure based on fuzzy sets. As a predominant result, we give an adequate condition for a sequence
to be Cauchy in the intuitionistic fuzzy b-metric space. Subsequently, we simplify the proofs of manifold fixed-point theorems in
the intuitionistic fuzzy b-metric spaces under the prominent contraction conditions. Also, we give a satisfactory condition for a
solution to Cauchy in the intuitionistic fuzzy b-metric spaces.

1. Introduction

Zadeh [1] was very striking with fuzzy logic in which the
truth values of variables may be any real number in the
interval [0,1]. In this real world, we all are surrounded by the
problems of uncertainty. To counter this problem of un-
certainty, Zadeh establishes fuzzy logic. Moreover, fixed-
point theory can be explored in fuzzy metric space (briefly,
FMS) in several different ways. Fuzzy generalization of
Banach contraction principle [2] expressed fuzzy mapping as
a notion and manifested a theorem for a fuzzy contraction
on a fixed point in linear metric spaces.

Fuzzy metric space was pioneered by Kramosil and
Michalek [3] by referring to the concept of the fuzzy set.
Subsequently, Grabiec [4] interpreted the concept of com-
pleteness in FMS and extended the Banach contraction
principle to G-complete FMS. Then, later on, George and
Veeramani [5] also played a vital role in the theory of FMS

and amended the idea of Cauchy sequence which was
established by Grabiec and, meantime, amended the notion
of a FMS which was introduced by Kramosil and came up
with the new idea of Hausdorff topology on FMS.

On a different note, Atanassov [6] generalized the FS and
brought up the idea of IFS. Using this concept, Park [7]
discovered the concept of IFMS in 2006. Saadati Park [8]
introduced the related results. Furthermore, we refer the
readers to [9-16]. In metric space, still there are enough
scopes. Bakhtin [17] and Czerwik [18] revealed a weaker
condition of metric space to generalize the Banach con-
traction principle [2]. They labeled it as b-MS. To explore
more about these spaces, see [14, 19-21]. The b-metric and
FMSs are related, which we can see in [22]. The idea of a
fuzzy b-MS was established in [23]. Using this idea, we
proved a very useful lemma by using the extension of t-norm
and t-conorm setting that the sequence {6n} is a Cauchy
sequence. This paper comprises various fixed-point results in
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the b-IFMS. After the criticism presented in [24] on the
adoption of the term “intuitionistic” in his original algebraic
structures, a defense of his position is given by Atanassov in
[25] by an “a posteriori” argument. Indeed, in [24], besides
the above discussed argument about the use of “intuition-
istic” term attributed to an algebraic negation which does
not satisfy the great part of the accepted principles of
intuitionistic logic, it is stressed that, in a paper of 1984 [26],
the term “intuitionistic fuzzy set theory by Takeuti and Titani
is an absolute legitimate approach, in the scope of intui-
tionistic logic, but it has nothing to do with Atanassov’s
intuitionistic fuzzy sets.”

We show a novel utilization of IFMS in a really difficult
space of dynamic (for example, professional decision). An
illustration of vocation assurance will be introduced,
accepting there is a dataset (for example, a portrayal of a
bunch of subjects and a bunch of vocations). We will portray
the condition of understudies knowing the after effects of
their presentation. The difficult portrayal utilizes the idea of
IFS that makes it conceivable to deliver two significant re-
alities. To begin with, the upsides of each subject presen-
tation change for every understudy. Second, in a professional
assurance dataset depicting vocation for various under-
studies, it ought to be considered that, for various under-
studies focusing on a similar vocation, the upsides of a
similar subject exhibition can be extraordinary. We utilize
the standardized Euclidean metric strategy surrendered to
gauge the metric between every understudy and each pro-
fession. The littlest acquired worth calls attention to a le-
gitimate vocation assurance dependent on scholarly
execution.

2. Preliminaries

Through this paper, we consider N be a set of all natural
numbers and k be a positive real number.

Definition 1 (see [17]). A functiond: 3 x 3 — [0, 00) is b-
metric if, for every b,e,w € 3,

(a) d(b,e)=0ob=¢

(b) d(b,e) =d(e,b)

(c) d(b,w) <s[d(b,e) +d(e,w)]

The ordered pair (3,d) is a b-MS. It is key to note that

b-MS are not metrizable, especially b-metric might not be a
continuous function of its variable.

Definition 2 (see [27]). A binary operation in such a way
%: [0,1]*> — [0,1] is said to be a continuous triangular
norm (t-norm) if

(@) T(p,b) =Z(b,p) and T (p, (b, 1)) = T((p,b), 1)
(b) € is continuous
() (p,1)=p, Vp e [0,1]

(d) T(p,b)<I(x,S)
S, forall p,b,x,S € [0, 1]

whenever p<r&b<
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Definition 3 (see [28]). Let T be a t-norm. Then,
Z,: [0, 11> — [0,1],y € N, is defined by

T, (k) = T(k,k), Ty, (k) = (T, (k). k), yeNke[o,1].
(1)
Let

sup T (k, k) = 1. (2)
0<k<1
Then, t-norm T is of H-type with the assuming the
functions family {2 (k)},, , which is equicontinuous at
k =1, where

(k) =k, T (k) = T(T"(k)), m=1,2,3,...,andk € [0,1].

(3)

The t-norm < _; (8,v) = min(d,v) is an example of
H-type.

Each t-norm € and t-conorm S can be drawn out to an
n-ary operation taking (9,,9,,...,9,) € [0, 11 (see [27]):

T8, =0,T), = ¥(2TL,9,9,) =2(8,,9,,...,3,). (4

Definition 4. Z i, T, and Ty can be extended in n-ary in

the following :vz;ls):~
smin(al’ab s 61;,) = min(él, 62, . ’61))
2,(8,,3,...,8,) =max ) 3, - (y-1),0
i=y (5)

Yy
Tp(3,,3,...,9y) = [ ] 3.
i=1

Definition 5 (see [29], t-conorm). “A binary operation
S: [0,1] x [0,1] — [0, 1] is continuous t-conorm if

(@) S(a,9) = S(gq,a)&S (a, (g,¢)) = S((a,9),¢)

(b) € is continuous

(c) S(a,0) =a,Va € [0,1]

(d) S(a,9)<S(c,s)
Va,g,c,s € [0,1]

whenever a<c&q<s,

Definition 6. A t-conorm, S,: [0,1] — [0,1],y € N is
defined by

S, (k) = S(k, k), Sy, (k) = S(S, (k). k), yeN,ke[0,1].
(6)
Let
01<rk1£1 Sthk) =1. (7)
Then, t-conorm S is of H-type with the assuming the

functions” family {S” (k)},_, which is equicontinuous at
k = 0, where
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S' (k) =k, S™" (k) = S(S" (k)), m=1,2,3,...,andk € [0,1].

(8)

The t-conorm S = max (0, v) is an example of
H-type.

The t-conorm can be stretched out by associativity in an
n-ary operation taking, for (0;,0,,...,9,) € [0, 1]%, the

values

(3,v)

max

Si10; = S(SL133y) = S(3,, 35, ..., 3y )- 9)

Example 1. The extensions of the t-conorm in n-ary are
Shin> Sp» andS,, are the following:

nmx(61’62"'~) ) nlax(

SL(61,62,..., m1n<261,1> (10)

min>

0 Y
Sp(3,,8,,...,8,) = > 3, - [ ] 3.
i=y i=1
For any {6n}n€N in [0,1], the t-norm and t-conorm can be

stretched out to a countable illimitable operation, that is,

lim ¢-'a,
n—~oo t’ !

i=1x _
T0, =

i=1 i=1 (11)
Se 0; = lim S 76,

n—~oo

The sequence S’;léi is increasing, and S’;léi is de-
creasing and has an upper bound and lower bound, re-
spectively, so the limit exists.

In this fixed-point theory, see [30, 31], it is very inter-
esting to discuss the classes of t-norms T and the classes of

t-conorm S and {6n} in [0, 1] such that lim,__,,,d, = 1 and

i=1
T 0= lim T3, =1, (12)
S lim S’lanﬂ = (13)

Proposition 1. Let {6D}geN in [0, 1] belim,__,,0, = 1and T
be a t-norm of H-type. Then,
- . -
T 0 = nlgnoo T, 9y, =L (14)
Proposition 2. Let {én}néN in [0, 1] nelim,__,,,0, =0and S
be a t-conorm of H-type. Then,
i=1 1
S 0, = nh;nm S’ 0y, = 0. (15)

Definition 7 (see [23]). A 3-tuple (3, #,Z
b-FMS. If VO,v,z € 3,5, k>0,

(a) A (d,v,k)>0
(b) (5, v,k)=1,Vk>0iff =v

) is called a

(c) A (0, v, k) = M (v,0,k)
(d) A (0, v,k +5)=Z (M (0, a,klb), M (a,v,s/b))
(e) A (d,v,-): [0,00) —> [0, 1] (left continuous)

where 3 is a nonempty set, ¥ is continuous t-norm, and .#
is a FS on 32 x (0, c0).

Example 2 (see [9]). Let A (0,v,k) = e~ -4 where p>1
Then,  is a b-metric with b = 271,

Definition 8. (see [7, 8]). A 5-tuple (3, #, V', Z,S) is called
intuitionistic fuzzy rectangular metric space. If, for every
0,v,z € 3 and s,k>0,

(a) A (0,v,k)+ NV (0,v,k)<1

(b) A (3,v,0) =0

(c) A (0, v,k)=1,Yk>0iff d=v

(d) A (d,v,k) = M (v,0,k)

(e) M (3, v,k +s)>Z (M (0, a,k/b), M (a,v,s/b))

(f) A (0,v,-): [0,00) —> [0, 1] (left continuous)

(g) limy_, A (0,v,k)=1,V0,ve 3

(h) #/(0,v,0) =1

(i) ¥ (0,v,k) =0,Vk>0iff d=v

G) N (B, v,k +5)=S(N(8,a,k/b), M (a,v,sIb))

(k) #(3,v,-): [0,00) — [0, 1] (right continuous)

@) lim;_, A (0,v,k) =0,V0,ve 3

where 3 is a random set, € is continuous t-norm, S is
continuous t-conorm, and .#Zand./ are ESs on X2 x (0, 0c0).

Example 3. Let M(B,v,k)=e 1OV g (q e k)=
1-e 4@k where p>1. Then, ./ and ./ are b-metric with
b=2r"1,

Definition 9 (see [9]). A function (: R — R is called
b-nondecreasing if d > bv implies {(3) = {(3),Vd, v € R.

Definition 10. A function {: R — R is called b-nonin-
creasing if 0 <bv implies {(3) < {(v),Vd,v € R.

Lemma 1 (see [23, 32]). Let A (0,v, <) be a b-FMS. Then,
M (8, v, k) is b-increasing with respect to t,Y0,v € 3.

Lemma 2. Let / (0,v,S) be an b-IFMS. Then, A (0, v, k) is
b-decreasing with respect to t,¥0,v € 3.

Definition 11 (see [23, 32]). Let (3,4, /V,Z,S) be an
b-IEMS. For k > 0, the open ball & (v, r, k) with centre d € 3
and radius 0<r <1 are defined as

B(B,r,k)={ve3: MO v,k)>1-r}

(16)
B(0,r,k)={veZ3: /O, v,k)<1l-r}

A sequence {6n}

(a) Converges to 9 if # (0,,0,k) — 1 asn — oo, for
each k> 0. In this case, we write lim,__,,d, = 0.



(b) Is a Cauchy sequence if VO <e< 1 &k >0,3y, € Nin
such a way that /%(6n’ 0,,k)>1—¢Vy,m=y,.

(c) Converges to 3 if /#(d,,0,k) — 0as ) — oo, for
each k> 0. In this case, we write lim,_,,d, = 9.

(d) Is a Cauchy sequence if VO <e<1&k>0,3y, € Nin
such a way that #7(9,,9,,,k) <1-¢& Vy,m=>1y,.

Definition ~ 12. The  intuitionistic =~ fuzzy = b-MS
(3,4, /,Z,S) is complete if and only if every Cauchy
sequence is a convergent sequence.

Lemma 3. In an b-IFMS (3, #, NV ,Z,S), we have a se-
quence { n} in 3 converges to 0; then, it is definitely a Cauchy
sequence and 9 is unique.

In a b-IFMS, we possess the successive proposition.

Proposition 3. Let (3,4, NV, Z,S) be a b-IFMS and {6n}
converges to x. Then,

k
/%(6,v,b>s lim sup.2/(8,, v, k) < 4 (3, v, bk),

/%(a, v§> < lim inf.((3,, v,k) <4 (3, v, k),
(17)

N (3,v,bk)< lim supﬂ(én,v,k)sﬂ(é,v, %)
o k
N (3,v,bk) < lim inf (3, v, k) s/%(é, v, 5).

Remark 1. A b-IFM is not continuous generally.

Example 4. Let 3= [0,00), (3,v,k) =e ¢OVk and

N(a,e,k)=1- e‘d(‘l)l’)/k, and

zm—ml i
M (B, By ) /%<6n,6n+m, 2 )

[\

v
Q

2

=

yeNk>0:
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0, ifa=v
d(d,v) =4 218 -v|, ifd,vel0,1) (18)
1 .
5|5 —v|, otherwise.

Then, (3,4, V,Z,S) be a b-IFMS with b = 6.

3. Main Results

Furthermore, we will use a b-IFMS in terms of definition
with additional condition, lim;__, . (0, v,k) = 1.

Lemma 4. Let {3,} in a b-IFMS (3,4, /', Z,S) be

k
M (B, By, k) 2/%(6n_1,6n,p), yeNk>0,

(19)
k
N (8ys By, k) < /V(énl, 6n,ﬁ>, yeN,k>0,
and there exist 8,0, € 3 and v € (0,1) such that
lim ‘lffﬁ(él,él,ki) =1,
1—>00 vV
(20)

k
lim S 1(61,61, ,.> =0, k>0.

i—00

Then, {6n} is a Cauchy sequence.

Proof. Let w € (0,1). Then, the sum Y, @' is convergent,
and then, there exists 1), € N such that ¥°, &' <1, for every
n>1,. Let n>m>y,. Since  is b-increasing by Definition
8(e) and /' is b-decreasing by Definition 8(j), for every k > 0,
we obtain

k" kZ?Jrn’ﬁl ‘o

</”<“b)“”<66 e ey
k" k" k™!

R P D WY A s |

By (19), it implies . (3,,8,,,,k) =4 (3,3, k/u"),
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k pj—m—l i
/V<6n’6n+m’¥>
kaw” kz,trnflwi
< s</V<an,zst,ﬂ,?),/V<zsn+1,amm,+1 (22)

kaw” kaw"*! ka1
> S(./V(én, 6”*”?)’ S(‘/V<al]+l’ 6n+2) T)a e "/V(at]erl’ 6‘)*’”’ T)))

N (Bys Bypmr k)

By (19), it implies ./ (8,,08,,,,k) <A (3,0, k/u?), Since n>m and b > 1, we have

yeN,k>0.

kwl)+n1* 1

o ke o ka"!
.ﬂ(an,6mm,k)2~ M 60)61,@ | A 60)61,@ NN 4 50>61,W e

ko'
y+m-—1
>Sy ﬂ(éo,al,m), (23)

ko'
y+m-1
N (Bys Byer k) = STy m(eso,al,bi—ﬂi)

_ k
>SS w(&so,al,?),

where v = by/wis v € (0, 1). By equation (20), it implies {61]} holds, then {6n} is a Cauchy sequence.
O

is a Cauchy sequence.
Lemma 5. If there exists y € (0,1) and 0,v € 3 such that

Corollary 1. Let {3,} be a b-IFMS (3, M, V', X, S), where )
M (3, v, k) > %(én_l,én,ﬁ), yeNk>0,

T and S are H-type. If there exists y € (0,1/b) such that
(25)

k
M (3> By,15 k) zﬂ(énl,én,y) yeN,k>0, L
(24) /V(a,v,k) S'/V<6t)1’6n"u>’ t) € N,k>0,

k
‘/V(afi’énﬂ’k) S/V(an—l’én’;) y €N k>0, holds, then 0 = v.



Proof. Condition (25) implies that

ﬂ(é,v,k)z/%(é,v,!%), npeN,k>0

> lim %(6 v,kn) yeN,k>0,
IS

(26)
k
N (8, v, k) S/V(én_l,én,;), yeN,k>0
, k
< lim & 6,]_1,6‘],; , peNk>o0.
By definition of b-IFMS, we have 0 = v. O

Theorem 1. Let (3,4, NV,<,S) be a b-IFMS, which is
complete and Q: 3 — 3. Suppose there exists y € (0,1/b)
such that

ﬂ(Qé)Qv>k)2-ﬂ(6sV,E), 6,1/6 3,k>0,
4

(27)
W(Qé,Qv,k)Z/V(fﬁ,v,S), 0,ve3,k>0,

holds. Furthermore, there exists 0, € 3 and v € (0, 1) such

that
. 00 k
lim 5.4 60,Q60,? =1,

n—~ao~o

(28)

lim S, ./V<60,Q60, k) 0,
holds. Then, Q has a unique fixed point in 3.
Proof. Let §, € 3 and 0,,; = Q0,,y € N. If we take d = 9,
and y = 0, , in (27), then we have
k
M (B, By, k) = M 6n_1,6n,; . 9eNk>0,
(29)
N (Bys Byrs k) < m(an_l,an,ﬁ), y e N, k>0.
#

A (Q3,08,k)>Z| A Q3,0,, ) <6 9, k)
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By Lemma 4, it implies {611} is Cauchy sequence. Since
(3,4, /,L,S) is complete, then lim,_,,,d, =9, 0 € 3.
Therefore,

lim .#(3,3,,k) =1
Jim H(@.3, K) <0

and

By (27), as n — co, we have
M (Q8,0,k)>Z(1,1) =1,

(32)
N (Q8,8,k)<S(0,0) =

Let us assume that x and y are fixed points for Q. By (24),
we obtain

(0, v, k) = A (Q0,Q0, k) 2/%(5, v%)
(33)
N (8, v, k) = M (Q3,Q0, k) g./%(é, v:>

Using Lemma 5, we have 0 = v. O

Example 5. Assume 3 = [0, 1]. Using Example 3 for p =2
implies (3, 4, /,Z,S) is a b-IFMS with b = 2 and b-IFM.
We define

(D, v, k) = e @V eIk (34)

Let Q(v)

and./V(6 vk)=1-
= kv, k<+/2/2,d € 3. Then,

2 > 2 k
M (QB, Qv, k) = e—k (8-v)*/k Ze—ﬂ(é—v) Ik _ ﬂ(a, V’E)’ o,v € 8,t> 0,

(35)

N (QB,Qu, k) = 1 — M (Q3,Quk) =1 — KOV Thgy _ gru@ ik _ /%(a, v§> 3,ve3t>0,

for 1/b > u > k?; hence, equation (27) will be satisfied, and we
can say that Q possess a fixed point in 3 which is unique.

Theorem 2. Let (3,4, V,Z,S) be a b-IFMS and
Q: 3 — 3. Assume that y € (0,1/b) such that
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) k
M (Q0,Qv, k) > mln{.ﬂ<6, v, ), .%(Qé,
H#
k
N (Q3,Qv, k) > max{/l/(fi, v, ;), ./V(Qé,

and there exists 0, € 3, v € (0,1) such that

lim s;’_"n/%(ao,qao%) _1,

n—a~oo

(37)

k
lim S7° | 8y, Q8p,— | =0, Vk>0.
n—sco Y 4

Then, Q has a unique fixed point in 3.

Proof. Let 8, € 3, d,,; = Q0,, y € N. By (36), with d =g,
and v =0,_;, for every y € N, k>0, we have

k k k
'%(6U’ 6‘]-“;)’ -%<6n+1> 6“’[_4)’ ﬂ(éw 69—1"‘:>}

M (By,,5 3y, k) = min

> min 4

< min-

N (Bys15 By, k) < min ] /V(

M (QB,3,K)> s(%(Qa, Qén,t%>,/%<6n+l,6,

)

b

7
k k
))) -%(QV) V’)})
4 ¢
(36)
,E),./V<Qv, v,k)}, Vo, v € 3,k>0,
U ¢
If y e N,k >0, then
k
M By, 0y, k) > /%(Zﬁml, at,,y),
(39)
k
N (Byi1> Bys k) < /V(éml, at,,;)
Lemma 5 implies 8, = d,,,,9 € N. Therefore,
k
M (B, 8y, k) 2 ﬂ(én, 6n_1,y>,
(40)

N (Bys15 3y, k) < W(én,6n1,§>,

and by lemma, we have {6n} is a Cauchy sequence. Hence,

lim, 0, =v,0¢€3:
lim 4(8,8,,k) =1, k>0,
lim #(3,3,,k) =0, k>0.

Let us prove 0 is a fixed point for Q. Let w; € (ub,1) and
w, = 1 - w,. By (36), we have

tw tw tw tw
><( mind.#| 8,8,,— |, .#| 8,Q5,— |, .#| 8,.,,3,~—2 ,/%(6 ,6,—2) ,
(mm{ ( i bH) ( Q bﬂ) (“” bu>} " b

tw;

(0,06 < S(#(Q8.Q0,, 1) (4.1,

)

(42)

< g(max{Af(a, at,,tb“:), m(a,Qa,tb“:), /V(aml, 62“:) } By, t‘;f))

Taking n — oo and using (41), we have



M (Q0,0,k) > S(min{l,ﬂ(é, Qé,za:), 1}, 1)

- s<ﬂ<6,Q6,tﬂ>,1>
by

= ﬂ(é,Qé,%), k>0,

(43)
H(Q3,3,K) SS(max{O,/V(é,Qé,tbwl), 1},0)
(o
tw,
=S| #{3,Q3,— |,0
by
k
= /V<6,Q6,;), k>0,
where v = bu/w, € (0, 1). Therefore, we obtain
k
M (Q3,8,k) > ./%(6, Q6,—>, k>o,
v
(44)

N (Q0,0,k) > /V(é,Qé,%), k>o0.

Lemma 5 implies Q0 = 0.
Suppose that 0 and v are fixed points for Q (ie.,
Qd = 0 &Qv = v). By (36), we obtain
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M (QB,Qv, k) > min{ﬂ(é, v,%),/l((ﬁ, Qé,%),/%(y, Qv,%)]»

= min{/[(é, V,E>, 1, 1}
U
= /l(é,v,k>
U

= /%(Qé,Qv,E>,
U

N (QB,Qv, k) < max{/V<6, v,%),/V(é, Qé,g),/V(y, Qv,k>}

Y
= max{/V(é, V,E>, 1, 1}
U
= ./V(B, v,k>
U

= /V(QB, Qv,%), fork > 0.
(45)

By Lemma 5, it follows that Q3 = Qv, which implies that
d=. O

Example 6. Let X = (0,2), (D, v, k) = e O Wk and
N (B, v,k) =1—e Ok Then, (8,4, /,Z,S) is b-IFMS
which is complete with b = 2. Let

2-9, ifde (0,1),

Q) :{ 1, ifde[L2). (46)

Case (i): if O,ve[1,2), then Z(Q3,Qv,k)=1
and/ (Q3,Qv, k) =0, k>0, and conditions (36) will
be trivially satisfied.

Case (ii): if 8 € [1,2),v € (0,1), then y € (1/4,1/2); we
have

M (QB,Qv, k) = e—(l—v)z/k > e—4ﬂ(1—v)2/k = ﬂ(Qv) v,g), k>0,

) . k
N (QB, Qv k) =1 — M (QB,Qu,k) = 1 — e Ik oy _ gmau=nTk _ /V(Qv, V,A>,

Case (iii): for py € (1/4,1/2), we have

M (QO,Qv, k) = M

N(QO,Qv, k) =N

(47)
k>0.

(Qv, vé),k>0,

(Qv, v,%),k > 0.

(48)
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Case (iv): if ,v € (0, 1), then p € (1/4,1/2); we have

M (QB,Qv, k) > e—(a— Wk > e—(l—v)zlk > e—4,4(1—v)2/k _ .ﬂ(Qv, V)E))
U
P 2 k
K (QB,QuK) = 1~ (QD,Quyk) = 1 & 1 <1 - =9k _ /V(Qv,y,ﬁ),
(49)
M (QB,Qv, k) Zﬂ(Qv, v,k),
I

W(Q8,Qv, k) < /V(Qv, v%)

So, condition (36) is satisfied Vd,v € ,k>0, and by Theorem 3. Let (8, #,V,Z,S) be a complete b-IFMS and
Theorem 2, Q possess a unique fixed point. QX —XIf

M (Q0,Qv, k) = min«lﬂ(é, V,E>, /%(Qé, 6&), ﬂ(Qv, v,k), %(Qé, v,g), .%(6, fv,k) },
I3 4 U 4 U

N (Q0d, Qv, k) zmin{./l/(é, v,k>,./V<Q6, 5,E>,./V(Qv, V,E>,./V(Q6, v,g),./%(fi, fv,k>},
U U Y Y U

for 4 (0,1/b%), then Q possess a unique fixed point in v. Proof. Let §, € 3 and 9,,; = Qd,,y € N. By (37), with 9 =
9, and v = v, using Definition 8(d) and ¥ = T ;,, we have

sunen Yoo} ()
i (3000 ) 0,5 (500
ol (e ) (s )
/V(én, 6n1,§>, m(aml, 6n,§), m(an, 61,16)
max«l/V(EinH, an,%), ,/V(Eﬁn, 6n_1,£), m(an, 6n,£>} (51)

k k
<max- /V<6n’69_1’5)’%<6n+1’ 6“,E>}

Proceeding as in proof of Theorem 2, Lemma 5, and
Corollary 1, it follows that

M (8,8, k) >min

N (Bys1> 3y» k) < max
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k lim .#(0,8,,k k>o0,
/%(6n+1,6t,,k)2/%(6 3, l’by) Jim 4 )=1 )
(52) lim #(3,3,,k) =0, k>0.
k
/V(anﬂ’én’k) S‘/V<6 Gy l’by) Letw, € (pb’,1)and w, = 1 — w,. By (50) and Definition
8(e), for T =, we have
and {6n} is a Cauchy sequence. So, there exists 8 € 3 such
that lim,, 0, = 0 and
. tw, tw,
(Q3,8,K)> min | ( Q3,1 Q0,1 )2 @3, 8.2 )|
tw, tw tw
3,3, 3,Q0,~—2 ), M| 3,,8,,1,-— ),
ﬂ( ! bﬂ) ( ? u)‘%< v bP‘)
min
> min min{.2z( Q8,8,°1 ), .ae( 5,5, 22 ), .ae( 3,3, 5"
b# > n)b:;,# > > );H.]’ b‘u >
tw
oot
, , (54)
w, w
(0,8, < max| (0, Q3 1.3 ), #(@0,,8.72 )}
tw, tw,
-/V<6) 6),1’%)’ -/V(a’Q6> bM) (6 6I]Jr1> b# ))
max
<max 4 tw; tw,
d,0, N 8,8, , N\ 0,0,,1 ,
(e o) (o)l
tw,
(0002
for all y € N and k > 0. Taking n — oo and using (41), we
obtain
./%(Qé,&i,k)2min<‘min{1,/%(6,Q6,twl),1, min{ (Qa 5, t“’2> H 1}
tw;
=\ Q3,3, k>0,
by
(55)
tw; th
A (Q0, 8, k) < max{ maxq 1, /| 3,Q3,— |, 1, max{ 4| Q0,d, ,1
tw,
=4 Q8,8,— ), k>0,
by
and by Lemma 5, with v = b?u/w, € (0,1), it follows that By condition (50), d = Q0 and v = Qv; we have

Qo=29
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orfl@ag) (@)
wlefmsg ol o)
ofefu sl aor o)
o}
_ %<Q6,Qv,£),

M (QJ, Qv, k) > min

(56)
(6 v,— ) ( 5,6,z>,/V<Qv, v,— )
A (Q0, Qv, k) < max
a1 ) o0y, )|+ (000}
U
k
=max<[ (6 v, ) 1,1, max{ /V<6 Vy— )},/V(é,v,ﬁ)}
= ./V(a, v,k)
bu
- /V(Qé, Qv,5>,
b
and by Lemma 3, it follows that d = v. O Theorem 4. Let (0, 4, NV,%,S), T > "fp, be a b-IFMS
which is complete and Q: 3 —> 3, for some u € (0,1/b%),
such that
k
A (Q0, Qv, k) > min .%(6, v,k), .%(Q(’ﬁ, 6,E>,%<Qv, v,—), .%(Q(), v,g> ,./%(6, fv,k) ,
U Y u U U
(57)
W(Qa’Qv)k)Smax '/l/.(a) V’E))W<Q6’ a)k>"/V<Q‘V’ V’E>) ‘/V<Q6’ V)§>"/l/<6’fv’k) b
U U 4 U U
and there exists 0, € 3, v € (0,1); we have
. - k
nhinm Si_n./%(éo,Qéo,J) =1,
(58)

n—=~oo

lim S ./V<60,Q60,ki):0.

Then, Q possess a unique fixed point in 3.
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Proof. Let 9, € 3&3,,; = QJ,,y € N. Taking =9, and
V=¥, in condltlon (57), and ¥ = ¥, we have

( k k k
a5 5 ala, 8.5 al5,8, %),
<""1#> ("“"#) (""‘#)
2 K k
\jﬂ(éml’an’@)’\]‘%<6n’6n-1’@)’/%<6‘1’6‘)’E)’

~p>

M(By,5 By, k) > min {

(59)
k k k
NN 0y, 0y 15— |, | Oyi15 0 — |, A 8y, 0y 15— |5
(""‘M) ("“"u) ("’“u)
N ((Bya1> By, k) < max
k k k
A \j./V(ém_l, 6‘],E> 5 \j./V(én, 6"_1’5) ;/V(ét), 61),@).
Since /M (0,,,,9,,k) is b-nondecreasing and Therefore,
Va.b>min{a,b}; A (d,,,,0,,k) is b-nonincreasing and
Va.b < max{a, b}.
M(By, 1,0y, k inq .| 8,,,,0 K M\ B, 0 K
(3y:1,3y, k) > min vt Oy ) 1 g
(60)
N ( By 15 0ps k N\ 8,150 k N\ 8,0 k
( y+1> Yy )Smax y+1> nyﬁ > y— pb/l
for y € N, k>0. By lemma, and {6n} is a Cauchy sequence. Since (8, #,./,Z,S) is a
k complete b-IFMS, then lim, .0, =v, d € 3 and
M (311, By, k)>/”<5 Oy ) lim .2(3,3,,k) = 1
(61) T (62)
k lim #(3,3,,k) =0
./V(aml,én,k)z/lf(én,én l’by)’ oo
€ (b’u,1) and w, € (b’w,1). Also and for T>Z,, we

have

20(Q3,8.)> % (2, Qan,t: ),.e(v, 8 tw2>)

tw, tw tw
ﬂ(é,én, by) (6 QJ, 1),ﬂ<6n,a‘,+1,b—Pj>

tw
>%| min ,.%<5m1,6,f2>

b
tw tw tw
M| QBB —1 ), || 8,8, =2 ), (| 8,8,,,,—
\j <Q “b3u>\/ ( ”b3u) ( " b#)
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( tw tw tw
6a6 )71 ) ) )71 > ) )71 >
%( ! b#) /%(a @ bﬂ) ﬂ(a" S bﬂ)
tw tw
in{ min 3,8, — |, M 6,6,—1>},
o { (Q v’ #) ( Vb

tw
(a Byt b >,/ﬂ<aw,6,72)

A (Q3.8.K)<5(#(Q2.Q3,, 1) (@2, 3.5 )
to, to, toy
-/V(é) 6);]) b!,l )) -/V<6)Q6) b‘[,[ )) -/V(aj;]) 6tj+l) b‘u)
<S| max-
#(Q0,8, 590 ) o[ 8,0,,520 ), (8,5, 52
k bu V)TN bu
-/V(6)61]> bl,[ >:-/V<6’Q6) b‘u )) ‘/V<6n’ 6tj+l’ b‘L{ ))

\Y
2

tw
o)

<s| min] max{ (Qa 5, t““) m(a,an,t;‘“)}, , (63)

bu by

tw,
By Ogyts L b ’/V<6n+1’6’7>
for every y € N and k > 0. Taking n — o0 and using
M (Q3,3, k)>‘7<mln{ ,/%(6,Q6 ) L mm{ (QES 5, Z““) },1},1)
#
tw,
> | Q9,0,

(64)

) e
N (Q3, 3, k)<§(max{0 /V( ) 0, max«l (Qé,é,;ﬂ),o},o},o)
‘u

</V(Q66twl) k>0,
b’y

and by Lemma 5 with v = b*u/w,; € (0, 1), we have Q3 =3
and

‘%<6> V)E>7 ‘%(Qa) 6)E>> ‘%<QV) V’E))
u u p
\/‘%(Qéa 6>£> > \]%(6) Va£> > ‘%<6: QV>E>
by by u

M(Q8,Qv, k) =%
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> < ( ) 1,1, mm{l /%(6 v, k)},/%(é,v,£)>
by by
Q6 Qv, , k>0,
5 v, , (Q6 0, k) (Qv, v,S),
N (Q0,Qv, k) <S (65)
o) (o) (s
bu [Z
SS 61/, 1 1, max{l ./V<6 v,k>},,/lf(6,v,k>)
by bu
= /V(in, Qv,—), k>0.
bu
Thus, by Lemma 5, we have 8 = v. O Define Q: 3 — Jas f(0)=f(1)=0,f(3)=0
We observe that if d=v or 08,ve{0,1}, then
Example 7. Let A (Q3,Qv, k) = land AV (Q3,Qv, k) =0, k>0, and (57) is

3=1{0,1,3},.4(3,v,k) = e Ok (3, v,k) =1
—e~ (0= Wk ,or / (8, v,k) =e (O W= -0 ,T=2,S=S,.
Then, (3, 4, /,Z,S) is a complete b-IFM with b = 2.

satisfied.
If x=1and y =3, then u € (1/9,1/4) and

M3, fr,k) =e " 2minfe ¥, 1,675 e 1],
Iy (66)
A (f6, fV, k) —e 1/t-1 < max{e— 4;4/t—4p.) Le 9/4/t—9;4’ e—y/Zt— 4u , e—y/t—y}.

In the same way, if we take d =3 and v=1 and for
y € (1/9,1/4), condition (57) is satisfied, for all
d,ve 3,k>0, and Q possess a unique fixed in 3.

4. Applications of b-Intuitionistic Fuzzy
Metric Space

The substance of giving satisfactory data to understudies to
legitimate vocation decision cannot be overemphasized. This
is a principle on the grounds that the various issues of
absence of legitimate vocation control looked by under-
studies are of extraordinary result on their profession de-
cision and effectiveness. Accordingly, it is practical that
understudies be given adequate data on vocation assurance
or decision to upgrade satisfactory arranging, arrangement,
and capability. Among the vocation deciding elements such
as scholarly execution, interest, and character make-up; the
first-referenced is by all accounts’ abrogating. We use
b-IFMS as a device since it joins the enrollment degree (i.e.,
the marks of the questions answered by the student), the
nonparticipation degree (i.e., the marks of the questions the
student failed), and the dithering degree (which is the mark
allocated to the questions the student do not attempt).

5. Conclusions

The authors introduced and discussed several notions of
intuitionistic fuzzy b-metric space from different points of
view with a suitable notion for the intuitionistic fuzzy
metric of a given intuitionistic fuzzy b-metric space. In
particular, we explore several properties of the intuition-
istic fuzzy b-metric space. We have presented the b-IFMS
and identified with fixed-point results about career de-
termination which is of incredible importance since it gives
precise and appropriate professional decision dependent
on scholastic execution. We give a satisfactory condition
for an arrangement to Cauchy in the b-IFMS. Accordingly,
we work on the verifications of complex fixed-point hy-
potheses. Profession decision is a fragile independent di-
rection issue since it has a reverberatory impact on
productivity, and capability is appropriately dealt with. In
the proposed application, we utilized standardized Eu-
clidean distance to compute the distance of every under-
study from each career regarding the subjects, to acquire
outcomes. We use b-IFMS as an instrument since it fuses
the membership degree, the nonmembership degree, and
the hesitation degree.
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