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A discrete-time Michaelis-Menten-type prey harvesting is discussed in this paper, in the modified Leslie-Gower predator-prey
model. Detailed analysis of the topology of nonnegative interior fixed points is given, including their existence and stability
dynamics. Also, the conditions for the existence of flip and Neimark-Sacker bifurcations are derived by using the center
manifold theorem and bifurcation theory. The numerical simulations are provided, using a computer package, to illustrate the
consistency of theoretical results.

1. Introduction

The basic interaction between various species on this planet
is predation and is widely present in nature. The existence of
most species in our ecosystem is based on predator-prey
relationships, which makes the rich biodiversity of complex
ecosystems possible [1]. These complexities can aptly be
explained using mathematical models and the related
dynamics. As Clark has observed in [2], the dynamics of
the predator-prey models also provide methods to optimally
manage renewable resources, apart from coexistence condi-
tions of predators and preys. For this ecosystem, the most
basic model was proposed by Lotka [3] and Volterra [4], in
early 20th century. This model captured the oscillating
behavior in populations of a predator and its prey. The
simplicity of this model, however, is unable to address
most real-world scenarios. To rectify this, many modifica-
tions of Lotka-Volterra type model have been proposed by
researchers. In [5], Holling proposed various types of

functional responses to better understand the components
of predator-prey interactions.

An alternative was proposed by Leslie, in [6], in which
the number of prey and the carrying capacity of the preda-
tor’s environment was proportional. Leslie focused on the
fact that the increasing capacity of both predator and prey
cannot be unbounded. This fact was not incorporated in
the Lotka-Volterra model. This model was shown, in [7],
to possess globally asymptotically stable and unique positive
equilibrium, for any permissible parameters. Then, May in
[8] showed its stability with Holling functional responses. L.
Chen and F. Chen proved the global stability of the unique
interior equilibrium for a Leslie-Gower predator-prey model
with feedback controls [9]. Uniqueness of limit cycles and the
Hopf bifurcation for this model was discussed in [10, 11].

The primary drawback of this model is that if the prey
population is at low densities, it is not possible for the
predator to switch to alternative food source [12]. Aziz-
Alaoui and Daher [13] rectified this scenario by adding a
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provisional alternative food source parameter. This model is
generally called the modified Leslie-Gower predator-prey
model. Caughley [14] modelled the biological control of
the prickly-pear cactus by the moth Cactoblastis cactorum,
using this system. In [15, 16], the authors used this system
to model the predator-prey mite outbreak interactions on
fruit trees. Much work has been done on this model. For fur-
ther details, look at [17–23] and the references therein. In
[24], W. C. Allee introduced what was altered termed as
the Allee effects, to the Leslie-Gower type models. The stabil-
ity dynamics and bifurcation analysis of the predator-prey
systems subject to Allee effect is discussed in [25–28].

Harvesting of different biological species is necessary for
a variety of reasons. The ever-increasing use of natural
resources, either due to the increase in human population
or in the name of economic progress, has caused the ecolog-
ical system of this planet to trip from the equilibrium it was
in, for thousands of years. A common outcome of these
practices is the extinction of species from the face of this
planet. Harvesting of such species is one way to minimize
the damage. Harvesting for species is also practices for
purely business reasons. But there is a silver lining in this
strategy. The more harvesting is done, the more predator
species are likely to become extinct [29]. Thus, the need to
reinforce scientific management of harvesting is much
needed. Clark [2] discussed the problem of combined or
nonselective harvesting of two ecologically independent
populations obeying the logistic law of growth. Multispecies
harvesting models are studied in detail by Chaudhuri
[30, 31], Mesterton-Gibbons [32], Kar and Chaudhuri
[33, 34], etc. Nonselective harvesting model of a prey-
predator fishery is studied in detail by Chaudhuri and
Ray [35], Kar et al. [36], etc.

Michaelis-Menten-type predator-prey model, alterna-
tively known as the ratio-dependent predator-prey model,
uses the idea that the ratio of prey to predator abundance
directly affects the per capita predator growth rate. The
effectiveness of this model is backed by a plethora of exper-
imental and observational data, for the predator which must
compete for prey. For more details, see ([37–43]). Michaelis-
Menten-type predator-prey model has been rigorously
studied in ([44–49]) and references therein. This investiga-
tion discovered existence of rich dynamics, like stable limit
cycle, multiple attractors, and deterministic extinction, to
name a few. Existence of hyperbolic, parabolic, and elliptic
orbits was revealed near the origin, as well as combinations
of such orbits, for various parametric values.

The continuous predator-prey models have been success-
fully used to obtain desired results, and the disadvantages of
using continuous systems are also quite apparent. By defini-
tion, the continuous systems require the subject species have
continuous and overlapping generations. This is not gener-
ally true, for example, salmon, which have an annual spawn-
ing season and are born at the same time each year. For these
types of populations which have nonoverlapping generation
characteristics, the discrete time models are more descriptive
and suitable than the continuous models [50]. Also, the
discrete models should generate richer and reality-based
dynamics compared to the continuous time models [51]. In

addition, since many continuous models cannot be solved
analytically, using difference equations for approximation
and finding solution is much practical way to approach the
problem. In population biology and complex ecosystems,
discrete-time models are used to examine the taxonomic
group of organisms and species with the passage of time.
These models are best to describe the chaotic behavior of
nonlinear dynamics [52, 53].

Gupta and Chandra, in [54], proposed and studied
modified Leslie-Gower predator-prey model with Michaelis-
Menten-type prey harvesting in prey. They proved the perma-
nence and stability and discuss different bifurcations of this
model. Their model guaranteed a feasible upper bound of
the rate of harvesting for the coexistence of the species. Their
model is given in [54] as

dx
dt

= x 1 − x −
αy

m + x
−

h
c + x

� �
, ð1Þ

dy
dt

= ρy 1 − βy
m + x

� �
, ð2Þ

with the initial conditions xð0Þ > 0, yð0Þ > 0. Here, xðtÞ and
yðtÞ represent prey and predator densities, respectively, at time
t. The details of the parameters are given in their paper. For
our purposes, all parameters are positive.

Another possible way to understand the complex prob-
lem of interaction between prey and predator is by using
discrete models. We use the forward Euler method to discre-
tize the above system. The discrete counterpart of (1) can be
given as

xn+1 = xn + kxn 1 − xn −
αyn

m + xn
−

h
c + xn

� �
, ð3Þ

yn+1 = yn + kρyn 1 − βyn
m + xn

� �
: ð4Þ

In the remainder of this paper, we present the discrete
counterpart of the Michaelis-Menten-type prey harvesting
in modified Leslie-Gower predator-prey model, ((4)). Our
aim is to illustrate the detailed mathematical analysis of the
topology of nonnegative interior fixed points, including their
existence in Section 2 and stability dynamics in Section 3.
The conditions for the existence of flip and Neimark-
Sacker bifurcations will be derived in Section 4, using the
center manifold theorem and bifurcation theory. The theory
will be verified through numerical examples in Section 5.
Finally, we will conclude in Section 6.

2. The Fixed Points

In order to find the fixed points, we need to solve the follow-
ing system.

x 1 − x −
αy

m + x
−

h
c + x

� �
= 0, ð5Þ
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y 1 − βy
m + x

� �
= 0: ð6Þ

The system has four fixed points on the boundary,
namely,

E1, E2, E3,4
� �

= 0, 0ð Þ, 0, m
β

� �
,

1 − c ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c + 1ð Þ2 − 4h

q
2 , 0

0
@

1
A

8<
:

9=
;:

ð7Þ

For positive equilibrium points, we have the following
cases.

(i) The system has no positive stationary point, if

α − β c + 1ð Þð Þ2 < 4β2h ð8Þ

(ii) If ðα − βðc + 1ÞÞ2 = 4β2h, then the system has a
unique positive stationary point, E∗ = ðx∗,m + x∗/β
Þ, where

x∗ = 1
2 1 − c −

α

β

� �
ð9Þ

(iii) If ðα − βðc + 1ÞÞ2 > 4β2h, the system will have two
positive stationary points E5 = ðxm,m + xm/βÞ and
E6 = ðxp,m + xp/βÞ, where

xm =
−α + β 1 − cð Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α − β c + 1ð Þð Þ2 − 4β2h

q
2β

xp =
−α + β 1 − cð Þ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α − β c + 1ð Þð Þ2 − 4β2h

q
2β

ð10Þ

As can be seen in Figure 1, the positive interior points
may vanish or merge into one another, depending on the
values of parameters.

3. The Topological Dynamics of the
Fixed Points

The respective Jacobian matrices, evaluated at each fixed
point, are

J1 =

1 + k 1 − h
c

� �
0

0 1 + kρ

2
666664

3
777775

J2 =

1 + k 1 − h
c
−
α

β

� �
0

k
ρ

β
1 − kρ

2
66664

3
77775

J3,4 =
1 + kx −1 + 1 − x

c + x
−
α

β

� �
−k

xα
m + x

0 1+kρ

2
66664

3
77775

J∗,5,6 =
1 + kA1 −kA2

kA3 1 − kA4

2
664

3
775, ð11Þ

where

A1 = x
h

c + xð Þ2 + αy

m + xð Þ2 − 1
 !

,

A2 =
αx

m + x
,

A3 =
ρy

m + x
,

A4 = ρ:

ð12Þ

In order to find the topology and properties of the afore-
mentioned fixed points, the following lemma will be used,
which is omnipresent in the text books related to discrete
dynamical systems.

Lemma 1. Let ti = TrðJiÞ, deti = jJij, and piðzÞ = z2 − tiz +
deti, i ∈ f1, 2, 3, 4,∗,5, 6g. Suppose z1 and z2 are the roots of
pðzÞ. Then,

(i) jz1,2j < 1 if and only if pð−1Þ > 0 and det < 1

(ii) jz1,2j > 1 if and only if pð−1Þ > 0 and det > 1

(iii) jz1j < 1 and jz2j > 1 (or vice versa) if and only if
pð−1Þ < 0

(iv) z1 = −1 and jz2j ≠ 1 if and only if pð−1Þ = 0 and
t ≠ −2, 0

(v) z1,2 are complex, and jz1,2j = 1 if and only if 4 det
− t2 > 0 and det = 1

If z1 and z2 are the eigenvalues of 2 × 2 Jacobian matrix,
then,

Lemma 2. A fixed point Ei, i ∈ f1, 2, 3, 4,∗,5, 6g is called

(i) Sink if jz1j < 1 and jz2j < 1, so sink is locally asymp-
totically stable
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(ii) Source if jz1j > 1 and jz2j > 1, so source is locally
unstable

(iii) Saddle if jz1j < 1 and jz2j > 1 (or jz1j > 1 and jz2j < 1)

(iv) Nonhyperbolic if either jz1j = 1 or jz2j = 1

Using the above lemma, we can easily see that E1 is
saddle if c < h and unstable if c > h. If h = c, then it may
undergo transcritical or fold bifurcation, and if h = cð1 +
2/kÞ, it undergoes period-doubling bifurcation. Similarly,
the fixed representing the prey free scenario, E2, is saddle if
h < cð1 − α/βÞ and stable if h > cð1 − α/βÞ. If h = cð1 − α/βÞ,
then it may undergo transcritical or fold bifurcation, and if
h = cð1 − α/β + 2/kÞ, it undergoes period-doubling bifurca-
tion. The fixed points, representing the extinction of preda-
tor, E3,4, are saddle if h < ðc + �xÞ2 and unstable if h >
ðc + �xÞ2. If h = ðc + �xÞ2, then these fixed points may undergo
transcritical or fold bifurcation, and if h = ð1 − 2/k�xÞðc + �xÞ2,
the fixed points undergo period-doubling bifurcation. For all
these boundary fixed points, Neimark-Sacker bifurcation is
not possible.

We are much more interested in the behavior of interior
fixed points, which are much more richer in comparison and
for practical purposes, usable.

Theorem 3. For the fixed points E∗, E5, and E6 , if β ≥ A2/A1
then let ρ > 0, and if β < A2/A1, then let ρ ∉ ðρ1, ρ2Þ, where

ρ1 =
− βA1 − 2A2ð Þ − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 A2 − A1βð Þp

β
,

ρ2 =
− βA1 − 2A2ð Þ + 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 A2 − A1βð Þp

β
:

ð13Þ

If

k1 =
A1 − A4 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1 + A4ð Þ2 − 4A2A3

q
A1A4 − A2A3

,

k2 =
A1 − A4 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1 + A4ð Þ2 − 4A2A3

q
A1A4 − A2A3

:

ð14Þ

Then,

(1) The fixed points are locally asymptotically stable if
k ∈ ð0, k1Þ

(2) The fixed points are locally unstable if k ∈ ðk2,∞Þ
(3) The fixed points are saddle if k ∈ ðk1, k2Þ

0.0
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0.2

0.3
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0.5
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The positive interior fixed points

0.6 0.8 1.0

Figure 1: The purple graph is for α = 0:3, h = 0:1,m = 0:1, c = 0:05, β = 1, ρ = 2:6, which is showing two positive fixed points. The brown
dashed graph is for α = 0:42, h = 0:1,m = 0:1, c = 0:05, β = 1, ρ = 2:6, which is showing unique positive fixed point. The black dotted graph
is for α = 0:5, h = 0:1,m = 0:1, c = 0:05, β = 1, ρ = 2:6, which is showing no positive fixed point.
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(4) The fixed points are nonhyperbolic with eigenvalues
z1 = 1 and jz2j ≠ 1, if and only if h = ðc + �xÞ2

(5) The fixed points are nonhyperbolic with eigenvalues
z1 = −1 and jz2j ≠ 1, if k ∈ fk1, k2g and k ∉ f2/A4 −
A1, 4/A4 − A1g

(6) The fixed points are nonhyperbolic, having complex
conjugate eigenvalues, with jz1j = 1 = jz2j if and only
if k = A1 − A4/A1A4 − A2A3 and k ∈ ð0, 4/A4 − A1Þ

Proof. For any positive interior fixed point, E∗, E5, or E6, the
characteristic polynomial of the Jacobian matrix at the given
fixed point is

p zð Þ = z2 − tz + det, ð15Þ

where t = 2 + ðA1 − A4Þk and det = ðA2A3 − A1A4Þk2 + ðA1
− A4Þk + 1. Then, we can use Lemma 1, since for any k > 0,

p 1ð Þ = 1 − t + det = A2A3 − A1A4ð Þk2: ð16Þ

Thus, pð1Þ = 0 if h/ðc + xÞ2 − 1 = 0, or

h = c + xð Þ2: ð17Þ

Also,

p −1ð Þ = A2A3 − A1A4ð Þk2 + 2 A1 − A4ð Þk + 4, ð18Þ

which shows that

p −1ð Þ > 0 k ∈ 0, k1ð Þ ∪ k2,∞ð Þ,
p −1ð Þ < 0 k ∈ k1, k2ð Þ,
p −1ð Þ = 0 k ∈ k1, k2f g:

0
BB@ ð19Þ

Also,

det > 1 k ∈
A1 − A4

A1A4 − A2A3
,∞

� �
,

det < 1 k ∈ 0, A1 − A4
A1A4 − A2A3

� �
,

det = 1 k = A1 − A4
A1A4 − A2A3

:

0
BBBBBBBB@

ð20Þ

Then, using Lemmas 1 and 2, we have the following
results.

(1) Each fixed point is a sink if and only if

k ∈ 0, k1ð Þ ∪ k2,∞ð Þf g ∩ 0, A1 − A4
A1A4 − A2A3

� �
= 0, k1ð Þ

ð21Þ

(2) Each fixed point is a source if and only if

k ∈ 0, k1ð Þ ∪ k2,∞ð Þf g ∩ A1 − A4
A1A4 − A2A3

,∞
� �

= k2,∞ð Þ

ð22Þ

(3) Each fixed point is saddle if and only if k ∈ ðk1, k2Þ
(4) The Jacobian matrix at the given fixed points has

eigenvalues z1 = 1 and jz2j ≠ 1 if and only if h =
ðc + �xÞ2

(5) The Jacobian matrix at the given fixed points has
eigenvalues z1 = −1 and jz2j ≠ 1, if and only if k =
k1 or k = k2 and h ≠ 2/A4 − A1 and h ≠ 4/A4 − A1

(6) The eigenvalues are complex conjugates with jz1j =
1 = jz2j if and only if k = A1 − A4/A1A4 − A2A3 and
k ∈ ð0, 4/A4 − A1Þ

Remark 4. As used in [55, 56], we know that due to the jury
condition, a transcritical or fold bifurcation is obtained when
pjð1Þ = 0, j ∈ f∗,5, 6g. As shown above, this is only true if

h = ðc + �xÞ2. For the fixed point E∗, this condition is equiv-
alent to h = 1/4ðα/β − c − 1Þ2, which we gets automatically,
since in this scenario, ðα/β − c − 1Þ2 − 4h = 0. Thus, we
always have p∗ð1Þ = 0 for the fixed point E∗, i.e., a tran-
scritical or fold bifurcation is always obtained for any
parametric values, at the fixed point E∗.

4. Bifurcations

For positive fixed points, E5 and E6, define

ΩPD = α, β, h,m, c, ρ, k0ð Þ ∈ℝ7
+ : k0 = k1ork2, k0

�
≠

2
A4 − A1

, k0 ≠
4

A4 − A1
, ρ ∉ ρ1, ρ2ð Þ

�
,

ΩNS = α, β, h,m, c, ρ, k0ð Þ ∈ℝ7
+ : k0

�
= A1 − A4
A1A4 − A2A3

, k ∈ 0, 4
A4 − A1

� ��
:

ð23Þ

The procedure is identical for finding the normal form of
the bifurcations for E5 and E6, as illustrated below.

4.1. Period-Doubling Bifurcation. Let ðα, β, h,m, c, ρ, k0Þ ∈
ΩPD and let K denote the perturbation parameter for the
mapping (3), i.e., jKj⋘1. Then, variation of parameters in
small neighborhood of ΩPD gives emergence of period
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doubling bifurcation. Let k0 be the bifurcation parameter.
The perturbed mapping is

x

y

 !
⟶

x + k + Kð Þx 1 − x −
αy

m + x
−

h
c + x

� �

y + k + Kð Þρy 1 − βy
m + x

� �
0
BBB@

1
CCCA:

ð24Þ

Define X = x − �x and Y = y − �y, to translate the fixed
point to ð0, 0Þ. Here, ð�x, �yÞ is the positive interior fixed point.
Then, the above mapping is converted to

X

Y

 !
⟶

X + k + Kð Þ X + �xð Þ 1 − X + �xð Þ − α Y + �yð Þ
m + X + �xð Þ −

h
c + X + �xð Þ

� �

Y + k + Kð Þρ Y + �yð Þ 1 − β Y + �yð Þ
m + X + �xð Þ

� �
0
BBB@

1
CCCA:

ð25Þ

After Taylor series expansion, the above mapping can be
written as

X

Y

 !
⟶

a11 a12

a21 a22

 !
X

Y

 !
+

f PD X, Y , Kð Þ
gPD X, Y , Kð Þ

 !
,

ð26Þ

where a11 = 1 + kA1, a12 = −kA2, a21 = kA3, and a22 = 1 − kA4,
and

f PD X, Y , Kð Þ = kb1X
2 + kb2XY + A1KX − A2KY + kb3Y

2

+ kb4X
3 + kb5X

2Y + b1KX
2 + b2KXY

+ b3KY
2 + kb6XY

2 + kb7Y
3

+O X + Y + Kj j4� 	
,

gPD X, Y , Kð Þ = kb8X
2 + kb9XY + A3KX − A4KY + kb10Y

2

+ kb11X
3 + kb12X

2Y + b8KX
2 + b9KXY

+ b10KY
2 + kb13XY

2 + kb14Y
3

+O X + Y + Kj j4� 	
,

ð27Þ

and

b1 =
ch

c + �xð Þ3 + αm�y

m + �xð Þ3 − 1,

b2 = −
αm

m + �xð Þ2 ,

b3 = 0

b4 = −
ch

c + �xð Þ4 −
αm�y

m + �xð Þ4 ,

b5 =
αm

m + �xð Þ3 ,

b6 = 0,

b7 = 0,

b8 = −
ρ�y

m + �xð Þ2 ,

b9 =
2ρ

m + �x
,

b10 = −
βρ

m + �x
,

b11 =
ρ�y

m + �xð Þ3 ,

b12 = −
2ρ

m + �xð Þ2 ,

b13 =
βρ

m + �xð Þ2 ,b14 = 0: ð28Þ

To convert the system (43) in the normal form, let

X

Y

0
BBB@

1
CCCA = TPD

u

v

0
BBB@

1
CCCA =

a12 a12

z1 − a11 z2 − a22

0
BBB@

1
CCCA

u

v

0
BBB@

1
CCCA

=

a12 a12

−1 − a11 z2 − a22

0
BBB@

1
CCCA

u

v

0
BBB@

1
CCCA,

ð29Þ

where TPD is an invertible matrix. Thus, we can convert the
above system, such that we have ð0, 0Þ as fixed points, as
shown below.

u

v

0
BBB@

1
CCCA⟶

−1 0

0 z2

0
BBB@

1
CCCA

u

v

0
BBB@

1
CCCA + T−1

PD

f PD u, v, Kð Þ
gPD u, v, Kð Þ

0
BBB@

1
CCCA

⟶

−1 0

0 z2

0
BBB@

1
CCCA

u

v

0
BBB@

1
CCCA +

~f PD u, v, Kð Þ
~gPD u, v, Kð Þ

0
BBB@

1
CCCA,

ð30Þ
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where

~f PD u, v, Kð Þ = d1u
2 + d2uv + d3Ku + d4Kv + d5v

2 + d6u
3

+ d7u
2v + d8Ku

2 + d9Kuv + d10Kv
2 + d11uv

2

+ d12v
3 +O u + v + Kj j4� 	

,

~gPD u, v, Kð Þ = d13u
2 + d14uv + d15Ku + d16Kv + d17v

2

+ d18u
3 + d19u

2v + d20Ku
2 + d21Kuv

+ d22Kv
2 + d23uv

2 + d24v
3 +O u + v + Kj j4� 	

,
ð31Þ

and

d1 = c1k a12 a11 + 1ð Þ b9 − b2c2ð Þ + a212 b1c2 − b8ð Þ�
+ a11 + 1ð Þ2 −b10ð Þ	,

d2 = c1 −kð Þ −a12 a11 + a22 − z2 + 1ð Þ b9 − b2c2ð Þð
+ 2a212 b8 − b1c2ð Þ + 2 a11 + 1ð Þb10 a22 − z2ð ÞÞ,

d3 = c1 a12 A1c2 + A3ð Þ + a11 + 1ð Þ A2c2 − A4ð Þð Þ,

d4 = c1 a22 − z2ð Þ A2c2 − A4ð Þ + a12 A1c2 + A3ð Þð Þ,

d5 = c1k a12 a22 − z2ð Þ b9 − b2c2ð Þ + a212 b1c2 − b8ð Þ�
− b10 a22 − z2ð Þ2	,

d6 = c1k a312 b4c2 − b11ð Þ + a11 + 1ð Þa212 b12 − b5c2ð Þ�
− a11 + 1ð Þ2a12b13

	
,

d7 = c1k a212 2a11 + a22 − z2 + 2ð Þ b12 − b5c2ð Þ�
− 3a312 b11 − b4c2ð Þ − a11 + 1ð Þa12b13
� a11 + 2a22 − 2z2 + 1ð ÞÞ,

d8 = c1 a12 a11 + 1ð Þ b9 − b2c2ð Þ + a212 b1c2ð�
− b8Þ + a11 + 1ð Þ2 −b10ð ÞÞ,

d9 = −c1 −a12 a11 + a22 − z2 + 1ð Þ b9 − b2c2ð Þð
+ 2a212 b8 − b1c2ð Þ + 2 a11 + 1ð Þb10 a22 − z2ð ÞÞ,

d10 = c1 a12 a22 − z2ð Þ b9 − b2c2ð Þ + a212 b1c2 − b8ð Þ�
− b10 a22 − z2ð Þ2	,

d11 = c1k a212 a11 + 2a22 − 2z2 + 1ð Þ b12 − b5c2ð Þ�
− 3a312 b11 − b4c2ð Þ − a12b13 a22 − z2ð Þ
� 2a11 + a22 − z2 + 2ð ÞÞ,

d12 = c1k a212 a22 − z2ð Þ b12 − b5c2ð Þ + a312 b4c2 − b11ð Þ�
− a12b13 a22 − z2ð Þ2	,

d13 = c1k a12 a11 + 1ð Þ −b2c3 − b9ð Þ + a212 b1c3 + b8ð Þ�
+ a11 + 1ð Þ2b10

	
,

d14 = c1 −kð Þ a12 a11 + a22 − z2 + 1ð Þ b2c3 + b9ð Þð
− 2a212 b1c3 + b8ð Þ − 2 a11 + 1ð Þb10 a22 − z2ð ÞÞ,

d15 = c1 a12 A1c3 + A3ð Þ + a11 + 1ð Þ A2c3 − A4ð Þð Þ,

d16 = c1 a22 − z2ð Þ A2c3 − A4ð Þ + a12 A1c3 + A3ð Þð Þ,

d17 = c1k −a12 a22 − z2ð Þ b2c3 + b9ð Þ + a212 b1c3 + b8ð Þ�
+ b10 a22 − z2ð Þ2	,

d18 = c1k a312 b4c3 + b11ð Þ − a11 + 1ð Þa212 b5c3 + b12ð Þ�
+ a11 + 1ð Þ2a12b13

	
,

d19 = c1k −a212 2a11 + a22 − z2 + 2ð Þ b5c3 + b12ð Þ�
+ 3a312 b4c3 + b11ð Þ + a11 + 1ð Þa12b13
� a11 + 2a22 − 2z2 + 1ð ÞÞ,

d20 = c1 −a12 a11 + 1ð Þ b2c3 + b9ð Þ + a212 b1c3 + b8ð Þ�
+ a11 + 1ð Þ2b10

	
,

d21 = −c1 a12 a11 + a22 − z2 + 1ð Þ b2c3 + b9ð Þ − 2a212 b1c3 + b8ð Þ�
− 2 a11 + 1ð Þb10 a22 − z2ð ÞÞ,

d22 = c1 −a12 a22 − z2ð Þ b2c3 + b9ð Þ + a212 b1c3 + b8ð Þ�
+ b10 a22 − z2ð Þ2	,

d23 = c1k −a212 a11 + 2a22 − 2z2 + 1ð Þ b5c3 + b12ð Þ�
+ 3a312 b4c3 + b11ð Þ + a12b13 a22 − z2ð Þ
� 2a11 + a22 − z2 + 2ð ÞÞ,

d24 = c1k −a212 a22 − z2ð Þ b5c3 + b12ð Þ + a312 b4c3 + b11ð Þ�
+ a12b13 a22 − z2ð Þ2	 andX = a12 u + vð Þ, Y

= − 1 + a11ð Þu + z2 − a22ð Þv:
ð32Þ

In order to implement the center manifold theorem,
we assume that MC be the center manifold of (30), evalu-
ated at ð0, 0Þ in a small neighborhood of K = 0. It can be
approximated as follows.

MC = K , u, vð Þ: v = GPD K , uð Þ, uj j < δ1, Kj jf
< δ2,GPD 0, 0ð Þ = 0,DGPD 0, 0ð Þ = 0g, ð33Þ
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where

FPD K ,GPD K , uð Þð Þ = GPD K , z1u + ~f PD K , u,GPD K , uð Þð Þ

 �

− z2GPD K , uð Þ − ~gPD K , u,GPD K , uð Þð Þ
= GPD K ,−u + ~f PD K , u,GPD K , uð Þð Þ


 �
− z2GPD K , uð Þ − ~gPD K , u,GPD K , uð Þð Þ:

ð34Þ

We need to find GPDðK , uÞ such that FPDðK ,GPDðK ,
uÞÞ = 0. Since we need the conditions in MC to be satis-
fied, we may assume

GPD K , uð Þ =m1u
2 +m2Ku +m3K

2 +O K + uj j3� 	
: ð35Þ

Thus, we can write

FPD K ,GPD K , uð Þð Þ = m1 1 − z2ð Þ − d13ð Þu2
− d15 +m2 z2 + 1ð Þð ÞKu
+m3 1 − z2ð ÞK2 +O K + uj j3� 	

:

ð36Þ

By comparing coefficients in the equation FPDðK ,GPD
ðK , uÞÞ = 0, we get

m1 =
d13

1 − z2
,

m2 = −
d15

1 + z2
,

m3 = 0,

ð37Þ

and

GPD K , uð Þ = d13
1 − z2

u2 −
d15

1 + z2
Ku +O K + uj j3� 	

: ð38Þ

The dynamics restricted to MC are given locally by the
map

FC : u↦ z1u + ~f PD K , u,GPD K , uð Þð Þ
= −u + d1u

2 + d3Ku −
d4d15
1 + z2

K2u

+ d8 −
d4d13
1 − z2

−
d2d15
1 + z2

� �
Ku2

+ d6 +
d2d13
1 − z2

� �
u3 +O K + uj j4� 	

:

ð39Þ

Furthermore, define

Y1 =
∂2FC

∂K∂u
+ 1
2
∂FC

∂K
∂2FC

∂u2

 !
0,0ð Þ

= d3 ≠ 0,

Y2 =
1
6
∂3FC

∂u3
+ 1

2
∂2FC

∂u2

 !2 !
0,0ð Þ

= d21 + d6 +
d2d13
1 − z2

≠ 0:

ð40Þ

Theorem 5. If Y1 ≠ 0 and Y2 ≠ 0, then system undergoes
period-doubling bifurcation at the unique positive equilib-
rium point when parameter k varies in small neighborhood
of k1 or k2. Moreover, the period-two orbits that bifurcate
from positive equilibrium are stable if Y2 > 0 and unstable
if Y2 < 0.

Remark 6. Since we have already found the center manifold
for our system in (39), we can easily show the existence of
transcritical or fold bifurcation, when one of the eigenvalue
equals 1 and the other not on the unit circle.

4.2. Neimark-Sacker Bifurcation. Let ðα, β, h,m, c, ρ, k0Þ ∈
ΩNS, i.e., k0 = A1 − A4/A1A4 − A2A3. Then, variation of ðα,
β, h,m, c, ρ, kÞ in small neighborhood of ΩNS gives emer-
gence to Neimark-Sacker bifurcation. Let K denote the
perturbation parameter for the mapping (3), i.e., jKj1. The
perturbed mapping is

x

y

 !
⟶

x + k + Kð Þx 1 − x −
αy

m + x
−

h
c + x

� �

y + k + Kð Þρy 1 − βy
m + x

� �
0
BBB@

1
CCCA:

ð41Þ

Define X = x − �x and Y = y − �y, to translate the fixed
point to ð0, 0Þ. Here, ð�x, �yÞ is the positive interior fixed point.
Then, the above mapping is converted to

X

Y

 !
⟶

X + k + Kð Þ X + �xð Þ 1 − X + �xð Þ − α Y + �yð Þ
m + X + �xð Þ −

h
c + X + �xð Þ

� �

Y + k + Kð Þρ Y + �yð Þ 1 − β Y + �yð Þ
m + X + �xð Þ

� �
0
BBB@

1
CCCA:

ð42Þ

After Taylor series expansion, the above mapping can be
written as

X

Y

 !
⟶

c11 c12

c21 c22

 !
X

Y

 !
+

f NS X, Yð Þ
gNS X, Yð Þ

 !
, ð43Þ

8 Journal of Function Spaces



0.4

0.0

0.2

0.4

0.6

0.8

0.5
x

y

0.6 0.7 0.8

(a) k = 0:88

0.4

0.0

0.2

0.4

0.6

0.8

0.5
x

y

0.6 0.7 0.8

(b) k = 0:89

0.4

0.0

0.2

0.4

0.6

0.8

0.5
x

y

0.6 0.7 0.8

(c) k = 1:06

Figure 2: Continued.
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where c11 = 1 + ðk + KÞA1, c12 = −ðk + KÞA2, c21 = ðk + KÞA3,
and c22 = 1 − ðk + KÞA4, and

f NS X, Yð Þ = k + Kð Þb1X2 + k + Kð Þb2XY + k + Kð Þb3Y2

+ kb4X
3 + kb5X

2Y + kb6XY
2

+ kb7Y
3 +O X + Yj j4� 	

,

gNS X, Yð Þ = k + Kð Þb8X2 + k + Kð Þb9XY + k + Kð Þb10Y2

+ kb11X
3 + kb12X

2Y + kb13XY
2

+ kb14Y
3 +O X + Yj j4� 	

,
ð44Þ

and bi, i ∈ f1, 2,⋯, 14g are defined as above. Let the
characteristic polynomial of matrix in (43) be

pNS zð Þ = z2 − P Kð Þz +Q Kð Þ, ð45Þ

where

P Hð Þ = c11 + c22,

Q Hð Þ = c11c22 − c21c12:
ð46Þ

Since ðα, β, h,m, c, ρ, kÞ ∈ΩNS, therefore the roots of
(45) are complex conjugate z1, z2, and jz1j = jz2j = 1, and it

follows that z1,2 = PðHÞ/2 ± 1/2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4QðHÞ − PðHÞ2

q
and 1 =

jz1j = jz2j =
ffiffiffiffiffiffiffiffiffiffiffi
QðHÞp

. Note that PðKÞ2 − 4QðKÞ < 0, which
implies that PðKÞ2 < 4QðKÞ or PðKÞ ∈ ð−2, 2Þ. Also,

d z1,2
�� ��
dK

 !
K=0

= 1
2 ρ − �x

h

c + �xð Þ2 + α�y

m + �xð Þ2 − 1
 ! !

:

ð47Þ

Thus, if ρ ≠ �xðh/ð�x + cÞ2 + α�y/ð�x +mÞ2 − 1Þ, then

d z1,2
�� ��
dK

 !
K=0

≠ 0: ð48Þ

In order to ensure that the roots of the characteristic
polynomial do not lie in the intersection of unit circle of
coordinate axis when K = 0, we need to check that zm1,2 ≠
1, for m = 1, 2, 3, 4 at K = 0. This is equivalent to checking
Pð0Þ ≠ −2, 0, 1, 2. Since ðα, β, h,m, c, ρ, kÞ ∈ΩNS, we already
know that Pð0Þ ≠ −2, 0, 2. Finally,

P 0ð Þ ≠ 1⇔ k ≠
1

A4 − A1
: ð49Þ

Thus, the roots of (45) do not lie in the intersection of
unit circle of coordinate axis when K = 0. Now, to convert
the system (43) to the normal form, when K = 0, let R =
Pð0Þ/2 and S = 1/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Qð0Þ − Pð0Þ2

q
and let

TNS =
0 1
S R

 !
: ð50Þ

Here, TNS is an invertible matrix. Consider the trans-
formation

X

Y

 !
= TNS

u

v

0
BB@

1
CCA: ð51Þ
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Figure 2: Phase portraits for the system, with initial conditions ðx0, y0Þ = ð0:8,0:4Þ, at parametric values ðα, β, h,m, c, ρÞ = ð0:4,1,
0:1,0:1,0:05,2:6Þ, around the bifurcation parameter k0 = 0:881137.
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Figure 3: Period-Doubling bifurcation diagrams for positive interior points of the model (3), in the interval k ∈ ½0:8,1:14�, with initial
conditions ðx0, y0Þ = ð0:8,0:4Þ and the parametric values ðα, β, h,m, c, ρÞ = ð0:4,1, 0:1,0:1,0:05,2:6Þ.

The system (43) can be written as

u

v

 !
⟶

R −S

S R

 !
u

v

 !
+

~f NS u, vð Þ
~gNS u, vð Þ

 !
, ð52Þ

where

~f NS u, vð Þ = e1u
2 + e2uv + e3v

2 + e4u
3 + e5u

2v

+ e6uv
2 + e7v

3 +O u + vj j4� 	
,

~gNS u, vð Þ = e8u
2 + e8uv + e10v

2 + e11u
3 + e12u

2v

+ e13uv
2 + e14v

3 +O u + vj j4� 	
,

ð53Þ

and

e1 =
k + Kð Þ −R b2S + b1ð Þ + S b10S + b9ð Þ + b8ð Þ

S
,

e2 =
b2 −Rð Þ + 2b10S + b9ð Þ R k + Kð Þð Þ

S
,
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Figure 4: Continued.
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Figure 4: Phase portraits for the system, with initial conditions ðx0, y0Þ = ð0:3,0:6Þ, at parametric values ðα, β, h,m, c, ρÞ = ð
0:01,0:6,0:2,0:4,0:1,1:9Þ, around the bifurcation parameter k0 = 1:06112.

e4 =
k −R b5S + b4ð Þ + S b13S + b12ð Þ + b11ð Þ

S
,

e3 =
b10 R2 k + Kð Þ� 	

S
,

e5 =
kRð Þ 2b13S + b12ð Þ − b5Rð Þ

S
,

e6 =
b13 kR2� 	

S
,

e7 = 0,

e8 = b2S + b1ð Þ k + Kð Þ,

e9 = b2R k + Kð Þ,
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e10 = 0,

e11 = k b5S + b4ð Þ,
e12 = b5kR,

e13 = 0,

e14 = 0, X = v, Y = Su + Rv: ð54Þ

For the map (52) to undergo Neimark-Sacker bifurca-
tion, the following quantity must not zero [22]:

MNS = −Re ϖ20ϖ11
1 − 2z1ð Þz22
1 − z1

� �
−
1
2 ϖ11j j2 − ϖ02j j2 + Re ϖ21z2ð Þ

 �� �
K=0

,

ð55Þ
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Figure 5: Period-doubling bifurcation diagrams for positive interior points of the model (3), in the interval k ∈ ½1,1:42�, with initial
conditions ðx0, y0Þ = ð0:3,0:6Þ and the parametric values ðα, β, h,m, c, ρÞ = ð0:01,0:6,0:2,0:4,0:1,1:9Þ.
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Figure 6: Continued.
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where

ϖ20 =
1
8

∂2�f NS

∂u2
−
∂2�f NS

∂v2
+ 2 ∂

2�gNS

∂u∂v

"

+ ι
∂2�gNS

∂u2
−
∂2�gNS

∂v2
− 2 ∂

2�f NS

∂u∂v

 !#
,

ϖ11 =
1
4

∂2�f NS

∂u2
+ ∂2�f NS

∂v2
+ ι

∂2�gNS

∂u2
+ ∂2�gNS

∂v2

 !" #
,

ϖ02 =
1
8

∂2�f NS

∂u2
−
∂2�f NS

∂v2
− 2 ∂

2�gNS

∂u∂v

"

+ ι
∂2�gNS

∂u2
−
∂2�gNS

∂v2
+ 2 ∂

2�f NS

∂u∂v

 !#
,

ϖ21 =
1
16

∂3�f NS

∂u3
+ ∂3�f NS

∂u∂v2
+ ∂3�gNS

∂u2∂v
+ ∂3�gNS

∂v3

"

+ ι
∂3�gNS

∂u3
+ ∂3�gNS

∂u∂v2
−

∂3�f NS

∂u2∂v
−
∂3�f NS

∂v3

 !#
:

ð56Þ
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(c) Larger attracting invariant closed curves with some rough edges at k = 1:81
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(d) Larger attracting invariant closed curves with edges starting to vanish at k = 1:84

Figure 6: Phase portraits for the parametric values ðα, β, h,m, c, ρ, k0Þ = ð0:05,2:3,0:001,0:05,0:5,1:275,1:79111Þ at ð�x, �yÞ = ð
0:977584,0:446776Þ.
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Figure 7: Continued.
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Using the result in [57] and the above analysis, we
have the following result.

Theorem 7. If k ≠ 1/A4 − A1 and MNS defined in (55) is
nonzero, then the model (5) undergoes Neimark-Sacker
bifurcation at the equilibrium point ð�x, �yÞ, provided that
parameter k changes in the small neighborhood of k0 = A1 −
A4/A1A4 − A2A3 and ðα, β, h,m, c, ρ, k0Þ ∈ΩNS. Moreover, if
MNS < 0 (resp., MNS > 0), then an attracting (resp., repelling)
invariant closed curve bifurcate from the fixed point ð�x, �yÞ for
k > k0 (resp., k < k0).

5. Numerical Simulations

In this section, we will present some examples which will
show the presence of period-doubling and Neimark-Sacker
bifurcations for the system (3), using specific numerical
values of its parameters ðα, β, h,m, c, ρÞ and taking the
step-size, k, as the bifurcation parameter. The illustration
will be done using bifurcation diagrams, and it will be rati-
fied by showing that Theorems 5 and 7 are satisfied.

Example 1. Select ðα, β, h,m, c, ρÞ = ð0:4,1, 0:1,0:1,0:05,2:6Þ,
k ∈ ½0:8,1:14�, and the initial value ðx0, y0Þ = ð0:8,0:4Þ. The
Jacobian matrix is

1 + 0:179861k −0:311111k
2:6k 1 − 2:6k

 !
, ð57Þ

and z1 = 1 − 2:26979k and z2 = 1 − 0:150344k are the corre-
sponding eigenvalues. Both eigenvalues are less then 1, for
any k > 0. Also, z1 = −1 and z2 ∈ ð−1, 1Þ, if k = 0:881137
and z1 < −1 and z2 = −1, if k = 13:3028. Thus, with these
parametric conditions, the fixed point is never unstable or
saddle. The fixed point is stable for any k ≠ 0:881137, or
k = 13:3028; otherwise, the fixed point undergoes period-

doubling bifurcation, as k varies in the small neighbor-
hood of k0, where let k0 = 0:881137. From the phase por-
trait in Figure 2(b), it is apparent that the fixed point
ð0:35,0:45Þ of map (3) is stable for k < 0:881137 and the
period-doubling bifurcation occurs around 0:881137.
Figure 2(c) shows that another stable period-doubling
bifurcation at around k = 1:06. This can also be verified
using the bifurcation diagrams in Figure 3.

After calculations, we get, Y1 = 0:330205 ≠ 0 and Y2 =
336:675 ≠ 0. These values further complement the dynamics
of our map, observed above and proves the correctness of
Theorem 5. Moreover, Y2 > 0, which shows that the
period-two orbits that bifurcate from positive equilibrium
are stable.

Example 2. Select ðα, β, h,m, c, ρÞ = ð0:01,0:6,0:2,0:4,0:1,1:9Þ,
k ∈ ½1,1:42�, and the initial value ðx0, y0Þ = ð0:3,0:6Þ. The
Jacobian matrix is

1 − 0:528241k −0:00651351k
3:16667k 1 − 1:9k

 !
, ð58Þ

and z1 = 1 − 1:8848k and z2 = 1 − 0:543446k are the corre-
sponding eigenvalues. Both eigenvalues are less then 1, for
any k > 0. Also, z1 = −1 and z2 ∈ ð−1, 1Þ, if k = 1:06112 and
z1 < −1 and z2 = −1, if k = 3:68022. Thus, with these paramet-
ric conditions, the fixed point is never unstable or saddle. The
fixed point is stable for any k ≠ 1:06112, or k = 3:68022; other-
wise, the fixed point undergoes period-doubling bifurcation,
as k varies in the small neighborhood of k0, where let k0 =
1:06112. From the phase portrait in Figure 4(b), it is apparent
that the fixed point ð0:747285,1:91214Þ of map (3) is stable for
k < 1:06112 and the period-doubling bifurcation occurs
around 1:06112. Figure 4(c) shows that another stable
period-doubling bifurcation at around k = 1:31. This can also
be verified using the bifurcation diagrams in Figure 5.
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(d) Larger attracting invariant closed curves with edges starting to vanish at k = 3:79

Figure 7: Phase portraits for model (3) for the parametric values at ð�x, �yÞ = ð0:50972255689403,1:2815659608127545Þ.
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After calculations, we get, Y1 = −0:23876 ≠ 0 and Y2 =
8:71736 ≠ 0. These values further complement the dynamics
of our map, observed above and proved the correctness of
Theorem 5. Moreover, Y2 > 0, which shows that the period-
two orbits that bifurcate from positive equilibrium are stable.

5.1. Neimark-Sacker Bifurcation

Example 3. Let us assume the following parameter values, ðα,
β, h,m, c, ρÞ = ð0:05,2:3,0:001,0:05,0:5,1:275Þ, k ∈ ½1:75,1:85�,

and the initial value ðx0, y0Þ = ð0:955,0:3Þ. The Jacobian
matrix is

1 − 0:956455k −0:0475671k
0:554348k 1 − 1:275k

 !
, ð59Þ

and z1 = −0:998393 − 0:056668ι and z2 = −0:998393 +
0:056668ι are the corresponding eigenvalues, for k = k0 =
1:79111. Both eigenvalues are on the unit circle. Also,
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Figure 8: Bifurcation diagrams for initial conditions ðx0, y0Þ = ð0:955,0:3Þ and k ∈ ½1:75,1:85�, with parameters ðα, β, h,m, c, ρÞ =
ð0:05,2:3,0:001,0:05,0:5,1:275Þ, at ð�x, �yÞ = ð0:977584,0:446776Þ.
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k0 ≠ 1/A4 − A1 = 0:448138, k0 ∈ ð0, 4/A4 − A1Þ = ð0,1:79255Þ,
ðdjz1j/dKÞK=0 = ðdjz2j/dKÞK=0 = 1:11573 ≠ 0 and MNS = −
1297652:848483635 ≠ 0. Thus, the fixed point exhibits
Neimark-Sacker bifurcation, at the fixed point ð�x, �yÞ =
ð0:977584,0:446776Þ. Moreover, since MNS < 0, an attract-
ing invariant closed curve bifurcates from the fixed point
ð0:977584,0:446776Þ for k > 1:79111.

From the phase portrait in Figure 6(a), the attractor becomes
a stable spiral point and as the parameter k increases, and

the stable spiral enlarges in size. As k continues to increase,
the spiral becomes larger before changing in to an attracting
invariant closed curve with rough edges due to Neimark-
Sacker bifurcation. This spiral and edges are plotted in
Figure 6(b) at k = 1:795. At k = 1:81, the attracting invariant
closed curves become larger with some rough edges as
shown in Figure 6(c). It is clear from the close values of
the parameter k how quasi-periodic motions are produced
around fixed point due to this type of bifurcation. Increasing
k furthermore gives rise to continued invariant closed curves
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Figure 9: Bifurcation diagrams for initial conditions ðx0, y0Þ = ð0:45,1:1Þ and k ∈ ½3:71,3:85�, at ð�x, �yÞ = ð0:50972255689403,
1:2815659608127545Þ, with parameters ðα, β, h,m, c, ρÞ = ð0:5,1:1,0:02,0:9,0:05,0:4Þ.
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around the fixed point, but their edges begin to vanish as
plotted in Figure 6(d).

Example 11. Let us assume that for k ∈ ½3:71,3:85� and the
initial value ðx0, y0Þ = ð0:45,1:1Þ, we have the following
parameter values, ðα, β, h,m, c, ρÞ = ð0:5,1:1,0:02,0:9,0:05,
0:4Þ. The Jacobian matrix is

1 − 0:31283k −0:180788k
0:363636k 1 − 0:4k

 !
, ð60Þ

and z1 = −0:331058 − 0:943611ι and z2 = −0:331058 +
0:943611ι are the corresponding eigenvalues, for k = k0 =
3:734575030140114. Both eigenvalues are on the unit
circle. Also, k0 ≠ 1/A4 − A1 = 1:40286, k0 ∈ ð0, 4/A4 − A1Þ =
ð0,5:61144Þ, ðdjz1j/dKÞK=0 = ðdjz2j/dKÞK=0 = 0:356415 ≠ 0,
and MNS = −6:56955 ≠ 0. Thus, the fixed point exhibits
Neimark-Sacker bifurcation, at the equilibrium point
ð�x, �yÞ = ð0:50972255689403,1:2815659608127545Þ. More-
over, since MNS < 0, an attracting invariant closed curve
bifurcates from the fixed point for k > 3:734575030140114.

From the phase portrait in Figure 7(a), we can see that
the attractor becomes a stable spiral point and as the
parameter k increases, the stable spiral enlarges in size
(Figure 7(b)). As k continues to increase, the spiral
becomes larger before changing into an attracting invari-
ant closed curve with rough edges due to Neimark-
Sacker bifurcation. This spiral and edges are plotted in
Figure 7(c) at k = 3:74. At k = 3:79, we see continued
invariant closed curves around the fixed point, but their
edges begin to vanish as plotted in Figure 7(d).

6. Conclusion

In this paper, we studied the existence and stability of the
positive interior fixed points of system (5) and flip bifurca-
tion and Neimark-Sacker bifurcation, under certain
conditions, by using central manifold theorem and bifurca-
tion theory. Our main results are given in Theorem 3 and
Theorems 5 and 7 and numerical simulations in Section 5.
In the details of the result, when the integral step size k is
chosen as a bifurcation parameter, the discrete-time modi-
fied Leslie-Gower system with Michaelis-Menten-type prey
harvesting displays much richer dynamical behavior. It can
be seen from Figures 3–9 that the system displays period-1,
2, 4, and 8 orbits. Moreover, Figures 3 and 5 show that the
system exhibits period-doubling bifurcation, and the
period-two orbits that bifurcate from positive equilibrium
are stable, which shows the correctness of Theorem 5. Simi-
larly, Figures 8 and 9 show that the system exhibits
Neimark-Sacker bifurcation, with an attracting invariant
closed curve bifurcates from the fixed point, proving the
correctness of Theorem 7.
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