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In this paper, we propose an innovative approach to determine the approximate solution of the coupled time-fractional Keller-
Segel (K-S) model. We use the fractional complex transform (FCT) to switch the model into its differential partner, and then,
the homotopy perturbation method (HPM) is introduced to tackle its nonlinear elements using He’s polynomials. This two-
scale theory helps to define the physical meaning of the FCT for the solution of the K-S model. Some examples are illustrated
to show that the proposed scheme presents the significant results. The considerable findings show that this strategy does not
require any assumptions and also reduces the massive computations without imposing any constraints. This technique is also
suitable in functional studies of fractal calculus due to its powerful and robust support for nonlinear problems.

1. Introduction

Fractional differential equations (FDEs) are the generaliza-
tions of classical differential equations with integer orders.
It is worth reporting that some mathematical models of
integer-order derivatives particularly nonlinear models do
not work adequately for most of the cases [1–3]. This is
because integer order derivatives are limited operators and
are inappropriate for infinite variance whereas fractional
order derivatives are worldwide to take account of the dom-
ination of the neighborhood. In recent years, nonlinear
FDEs in mathematical physics are competing against a prin-
cipal role in miscellaneous domains, such as biological
science, applied science, signal processing, control theory,
finance, and fractal dynamics [4–7].

In 1970, Keller and Segel introduced a hypothesis to
express the combination system of cellular slime mold by
chemical fascination. The K-S model has broadly been prac-
ticed for chemotaxis terms due to its competency to capture

the key facts and its impulsive nature. The significance of
chemotaxis has achieved much attraction due to its crucial
function in a broad variety of biological occurrences [8, 9].
In this article, we examine the coupled time-fractional K-S
model of the form

∂δη
∂℘δ

= a
∂2η
∂I2 −

∂
∂I

η
∂
∂I

χ ςð Þ
� �

,

∂δς
∂℘δ

= b
∂2ς
∂I2 + cu − dv,

ð1Þ

subject to the initial solutions, we get

η I, 0ð Þ = η0 Ið Þ,
ς I, 0ð Þ = ς0 Ið Þ,

ð2Þ
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where ηðI, ℘Þ and ςðI, ℘Þ represent the bacterial density
and the concentration of chemical substance as a function
of I and ℘, respectively, and DIðηðI,℘ÞDIχðςÞÞ denotes
the chemotactic term and shows that the cells are sensitive
to the chemicals and are attracted by them [10]. The sensi-
tivity function χðςÞ is a smooth function which describes
the cell’s perception and response to the chemical stimulus
ς while a, b, c, and d are positive constants. If δ = 1, the
time-fractional K-S model (1) leads to a simple nonlinear
differential equation that has been studied extensively
whereas Dδ

℘ taken as Caputo’s sense [11] and Dδ
℘ = ∂δ/∂℘δ

is He’s fractional derivative defined [12, 13]

∂δη
∂℘δ

= 1
Γ n − δð Þ

dn

dtn

ð
s−℘ð Þn−δ−1 η0 sð Þ − η sð Þ½ �ds: ð3Þ

Many actions in physics and engineering can be pre-
cisely characterized by utilizing differential equations with
various sorts of fractional derivatives. The finding of the
approximate and exact solution of FDEs is a very crucial
challenge. There have been a lot of developments to solve
FDEs in nonlinear dynamics. FDEs are used extensively
because they do not have exact solutions, and thus, approx-
imate and numerical solutions are needed. The homotopy
perturbation method (HPM) [14] is one of the most famous
approaches to achieve the series solutions of linear and
nonlinear differential equations of arbitrary orders. Later,
various methods have been developed to show that HPM a
is very efficient and powerful tool for finding the approxi-
mate solution to FDEs [15–18]. In order to get the solution
of the K-S model, many powerful and efficient techniques
have been suggested to obtain the analytical solutions such
as Laplace homotopy perturbation method [19], iterative
method [20], homotopy perturbation Sumudu transform
[21], and natural homotopy transform method [22] with a
logic sensitivity function and small diffusivity. Some partial
differential equations with fractional order are not easy to
solve, and then, their approximate solution can be evaluated.
The two-scale approach converts the fractional order to a
simple partial differential equation which is now easy to
solve by the homotopy perturbation method.

This study presents the idea of a two-scale method to
obtain the solution of the fractional K-S model in Caputo
sense. The FCT converts the model into its differential
partner, and then, HPM is introduced to bring down the
nonlinear terms in algebraic series. The quality of the cur-
rent method is appropriate to provide the analytical results
to the given examples. This study is summarized as follows:
In Section (2), we recall some basic definitions of fractional
calculus. We present the idea of the homotopy perturbation
method and the two-scale approach in Sections (3) and (4),
respectively. Some numerical examples are provided to
demonstrate the performance of this approach in Section
(5) and the discussion of results in Section (6). The conclu-
sion is given in Section (7).

2. Preliminary Concepts

Definition 1. The Riemann-Liouville fractional integral oper-
ator of order δ > 0 of a function f ðtÞ ∈ Cμ, μ ≥ −1, is defined
as [23]

Jδ f ℘ð Þ = 1
Γ 1+δð Þ

ð℘
0
℘−τð Þf τð Þdτ, J0 f ℘ð Þ = f ℘ð Þ: ð4Þ

Definition 2. The Caputo fractional derivative of f ð℘Þ in the
Caputo sense is given [23]

Dγw I,℘ð Þ =

1
Γ γ−δð Þ

ð℘
0
℘−τð Þγ−δ−1 ∂

γw I,℘ð Þ
∂τγ

dτ, γ − 1 < δ < γ,

∂w I,℘ð Þ
∂℘γ

, δ = γ ∈ℕ:

8>>><
>>>:

ð5Þ

Lemma 3. If γ − 1 < δ ≤ γ, γ ∈ℕ, ℘>0, w ∈ Cγ
−1, then

Dδ Jδw ℘ð Þ =w ℘ð Þ,

Dδ Jδw ℘ð Þ =w ℘ð Þ − 〠
γ−1

k=0
wk 0+ð Þ℘

k

k!
, ℘ > 0:

ð6Þ

The fractional derivatives are considered in Caputo
sense which allows the conditions to deal with the expression
of the problems.

3. Basic Idea of the Homotopy
Perturbation Method

In this segment, we explain the fundamental concept of
HPM. Let the following nonlinear equation [24]

L ηð Þ − f ϱð Þ = 0, ϱ ∈ϒ , ð7Þ

with boundary conditions

B η, ∂η
∂n

� �
= 0, ϱ ∈Θ, ð8Þ

where L is a general function with boundary operator B, f ðϱÞ
is analytic function, and Θ is the boundary of the domain ϒ .
The operator L can normally be separated into two operators
with M as a linear and N being a nonlinear operator. Thus,
Equation (7) can be accompanied as follows:

M ηð Þ +N ηð Þ − f ϱð Þ = 0: ð9Þ

Let us consider ςðr, pÞ:ϒ × ½0, 1�⟶ℝ that confirms or

H ς, qð Þ = 1 − qð Þ L ςð Þ −M η0ð Þ½ � + q L ςð Þ −N ςð Þ − f ϱð Þ½ �,
ð10Þ

2 Journal of Function Spaces



H ς, qð Þ = L ςð Þ −M η0ð Þ + qM η0ð Þ + q N ςð Þ − f ϱð Þ½ � = 0,
ð11Þ

where q ∈ ½0, 1� is said to be a homotopy parameter and η0 is
an initial approximation of Equation (7). According to
HPM, we can take q as a small element, and suppose that
the solution of Equation (11) can be written as a power series
of q:

ς = ς0 + qv1 + q2ς2+⋯: ð12Þ

Considering q = 1, the approximate solution of Equation
(7) is obtained as follows:

η = lim
q⟶1

ς = ς0 + ς1 + ς2 + ς3+⋯: ð13Þ

Using Equations (11) and (12), we can identify the sim-
ilar powers of q to obtain the following series solution form:

q0 : ς0 − f Ið Þ = 0,
q1 : ς1 −H ς0ð Þ = 0,

q2 : ς2 −H ς0, ς1ð Þ = 0,
q3 : ς3 −H ς0, ς1, ς2ð Þ = 0,

⋮,

ð14Þ

where Hðς0, ς1, ς2,⋯,ςjÞ depending upon ς0, ς1, ς2,⋯, ςj
called He’s polynomials can be computed by adopting the
following rule:

H ς0, ς1, ς2,⋯,ςj
� �

= 1
j!
∂j

∂qj
N 〠

j

i=0
ςiq

i

 !�����
q=0

: ð15Þ

The system of nonlinear equations in (14) is evidently
simple to calculate, and thus, the components ςi, i ≥ 0 of
HPM can be identified easily which leads to the series solu-
tions very rapidly.

4. Fractional Complex Transform

The dimension and scale are highly important elements due
to its impressive outcomes and properties of the configura-
tion through the modeling of a problem. FCT is a systematic
technique that turns FDEs into its differential parts in a
steady period and is described as [25–27]

ΔS = Δ℘δ

Γ 1 + δð Þ , ð16Þ

where ΔS is the slighter scale and Δ℘ is the greater scale. The
time fractional K-S model reacts discontinuously on a sligh-
ter scale, particularly at the highest point whereas it antici-
pates a plane solitary wave on the greater scale. Thus,
Equation (11) is considered two-scale transform [28–30].
The outcomes of any study problem depend on the scale.

For an observable scale, the fluid is consistent; therefore,
Newton’s laws can be applied; however, they are illegitimate
at the molecular scale. If the motion is free of time, then
Newton’s law is acceptable; otherwise, it can be revoked.

4.1. Convergence Theorem. Let P and Q be the Banach spaces
and ς : P⟶Q be a contraction nonlinear mapping. If the
sequence generated by HPM such as

ηn P,℘ð Þ = ς ηn−1 P,℘ð Þð Þ = 〠
n−1

i=0
ηi P,℘ð Þ, n = 1,2,3,⋯, ð17Þ

then the following conditions must be true:

(1) kηnðP,℘Þ − ηðP,℘Þk ≤ φnkψðP,℘Þ − ηðP,℘Þk
(2) ηnðP, ℘Þ is always in the neighborhood of ηðP, ℘Þ

meaning ηnðP,℘Þ ∈ BðηðP,℘Þ, rÞ = fη∗ðP,℘Þ/kη∗ðP,℘Þ
− ηðP,℘Þkg

(3) limn⟶∞ηnðP,℘Þ = ηðP,℘Þ

Proof.

(1) We prove condition (1) by induction on n, kη1 − ηk
= kGðη0Þ − ηk, and according to the Banach fixed
point theorem, ς has a fixed point η meaning ςðηÞ
= η; therefore,

η1 − ηk k = G η0ð Þ − ηk k = G η0ð Þ − G ηð Þk k ≤ φ η0 − ηk k = φ ψ P,℘ð Þ − ηk k,
ð18Þ

since ς is a contraction mapping. Assume that kηn−1 − ηk ≤
φn−1kψðP, 0Þ − ηðP,℘Þk is an induction hypothesis, then

ηn − ηk k = G ηn−1ð Þ −G ηð Þk k ≤ φ ηn−1 − ηk k ≤ φφn−1 ψ P,℘ð Þ − ηk k
ð19Þ

(2) The first concern is to demonstrate that ψðP,℘Þ ∈ B
ðηðP,℘Þ, rÞ, and this is achieved by induction on m.
So, for m = 1, kψðP,℘Þ − ηðP,℘Þk = kηðP, 0Þ − ηðP,℘Þ
k ≤ r with ηðP, 0Þ the initial condition. Assume that
kψðP,℘Þ − ηðP,℘Þk ≤ r for m − 2 is an induction
hypothesis, then

ψ P,℘ð Þ − η P,℘ð Þk k = ψm−2 P,℘ð Þ − f m Pð Þ
Γ δ −m + 1ð Þ℘

δ−m
���

≤ ψm−1 P,℘ð Þ − η P,℘ð Þk k + f m Pð Þ
Γ δ −m + 1ð Þ℘

δ−m
����

���� = r:

ð20Þ
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Now, for all n ≥ 1, using condition (1), we have

ηn − ηk k ≤ φn ψ P,℘ð Þ − ηk k ≤ φnr ≤ r: ð21Þ

(3) Using condition (2) and the fact that limn⟶∞ϕn = 0
yields that limn⟶∞kηn − ηk = 0; therefore,

lim
n⟶∞

ηn = η: ð22Þ

Thus, η converges.

5. Numerical Examples

In this segment, we implement a two-scale method to
achieve the approximate solution of the K-S model in one
dimension. Results disclose that this approach is an
extremely efficient and powerful aid for solving FDEs.

5.1. Example 1. Consider the K-S model in one dimension
given as

∂δη
∂℘δ

= a
∂2η
∂I2 −

∂
∂I

η
∂
∂I

χ ςð Þ
� �

,

∂δς
∂℘δ

= b
∂2ς
∂I2 + cη − dς,

ð23Þ

with the initial conditions

η I, 0ð Þ =me−I
2 ,

ς I, 0ð Þ = ne−I
2
:

ð24Þ

Considering that the sensitivity function χðςÞ = 0; thus,
the chemotactic term is zero, i.e., ∂/∂Iðη ∂/∂IχðςÞÞ = 0
and using

S = ℘δ

Γ 1 + δð Þ : ð25Þ

Thus, the coupled K-S model of Equation (23) becomes

∂η
∂S

= ∂η
∂S

,

∂ς
∂S

= b
∂2ς
∂I2 + cη − dς:

ð26Þ

We can use HPM with He’s polynomials on the system
of Equation (26), and we get

∂η1
∂S

= a
∂2η0
∂I2 , η1 I, 0ð Þ, ð27Þ

∂ς1
∂S

= b
∂2ς0
∂I2 + cη0 − dς0, ς1 I, 0ð Þ, ð28Þ

∂η2
∂S

= a
∂2η1
∂I2 , η2 I, 0ð Þ, ð29Þ

∂ς2
∂S

= b
∂2ς1
∂I2 + cη1 − dς1, ς2 I, 0ð Þ, ð30Þ

∂η3
∂S

= a
∂2η2
∂I2 , η3 I, 0ð Þ, ð31Þ

∂ς3
∂S

= b
∂2ς2
∂I2 + cη2 − dς2, ς3 I, 0ð Þ: ð32Þ

With the help of Equation (24), we can get the following
iterations:

η I, 0ð Þ =me−I
2 , ð33Þ

ς I, 0ð Þ = ne−I
2 , ð34Þ

η1 I, Sð Þ = 2am −1 + 2I2� 	
e−I

2
S, ð35Þ

ς1 I, Sð Þ = 2bn 2I2 − 1
� �

+ cm − dnð Þ� 	
e−I

2
S, ð36Þ

η2 I, Sð Þ = 4a2m 3 − 12I2 + 4I4� 	
e−I

2 S2

2 , ð37Þ

ς2 I, Sð Þ = d −cm + dnð Þ + 2acm −1 + 2I2� ��
+ 2b −1 + 2I2� �

cm − 2dnð Þ

+ 4b2 3 − 12I2 + 4I4� �	
e−I

2 S2

2 ,
ð38Þ

η3 I, Sð Þ = 8a3m −15 + 90I2 − 60I4 + 8I6� 	
e−I

2 S3

6 , ð39Þ

ς3 I, Sð Þ = d2 cm − dnð Þ + 2bd −2cm + 3dnð Þ −1 + 2I2� ��
+ 4a2cm 3 − 12I2 + 4I4� �
+ 4b2 cm − 3dnð Þ 3 − 12I2 + 4I4� �
+ 8b3n −15 + 90I2 − 60I4 + 8I6� �
+ 2acm d − 2dx2 + b 6 − 24I2 + 8I4� �
 �	

e−I
2 S3

6 :

ð40Þ
In the same way, other of the elements can be identified.

So, the series solution of Equation (23) with the help of
Equation (25) is as follows:

η I,℘ð Þ =me−I
2 + 2ame−I

2
−1 + 2I2� 	 ℘δ

Γ 1 + δð Þ
� �

+ 2a2me−I
2 3 − 12I2 + 4I4� 	 ℘δ

Γ 1 + δð Þ
� �2

+ 4
3 a

3me−I
2
−15 + 90I2 − 60I4 + 8I6� 	 ℘δ

Γ 1 + δð Þ
� �3

,

ð41Þ
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ς I,℘ð Þ = ne−I
2 + 2bn 2I2 − 1

� �
+ cm − dnð Þ� 	

e−I
2 ℘δ

Γ 1 + δð Þ
� �

+ 1
2 d −cm + dnð Þ + 2acm −1 + 2I2� ��

+ 2b −1 + 2I2� �
cm − 2dnð Þ

+ 4b2 3 − 12I2 + 4I4� �	
e−I

2 ℘δ

Γ 1 + δð Þ
� �2

+ 1
6 12b2cm + 4bcdm − 120b3n − 36b2dn
�

− 6bd2n − d3n − 48b2cmx2 − 8bcdmx2

+ 72b3nx2144b2dnx2 + 12bd2nx2 + 16b2cmx4

− 48b3nx4 − 48b2dnx4 + 64b3nx6 + 4a2cm 3 − 12I2 + 4I4� �
+ 2amc d − 2dx2 + b 6 − 24I2 + 8I4� �� ��e−I2 ℘δ

Γ 1 + δð Þ
� �3

:

ð42Þ

Only some of terms are evaluated while the other
terms can be obtained using the iterative formula. As a
result, the solution of the system of Equation (23) is as
follows:

η I,℘ð Þ = η I, 0ð Þ + η1 I, 0ð Þ + η2 I, 0ð Þ + η3 I, 0ð Þ+⋯,
ς I,℘ð Þ = ς I, 0ð Þ + ς1 I, 0ð Þ + ς2 I, 0ð Þ + ς3 I, 0ð Þ+⋯:

ð43Þ

5.2. Example 2.

∂δη
∂℘δ

= a
∂2η
∂I2 −

∂
∂I

η
∂
∂I

χ ςð Þ
� �

,

∂δς
∂℘δ

= b
∂2ς
∂I2 + cη − dς,

ð44Þ

with the initial conditions

η I, 0ð Þ =me−I
2 ,

ς I, 0ð Þ = ne−I
2
:

ð45Þ

Considering that the sensitivity function χðςÞ = ς; thus,
the chemotactic term becomes ∂/∂Iðη∂/∂IχðhÞÞ = ∂η/∂I
∂h/∂I + η∂2h/∂I2 and using
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(a) Surface solution of ηðI, ℘Þ when δ = 0:25
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(b) Surface solution of ηðI, ℘Þ when δ = 0:50
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(c) Surface solution of ηðI, ℘Þ when δ = 0:75
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(d) Surface solution of ηðI, ℘Þ when δ = 1

Figure 1: The surface solution of ηðI, ℘Þ for distinct values of δ.
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S = ℘δ

Γ 1 + δð Þ : ð46Þ

Thus, the coupled K-S model of Equation (44)
becomes

∂η
∂S

= a
∂2η
∂I2 −

∂η
∂I

∂h
∂I

− η
∂2h
∂I2 , ð47Þ

∂ς
∂S

= b
∂2ς
∂I2 + cη − dς: ð48Þ

Now, using the two-scale approach, with the help of
Equation (45), we can get the following iterations directly

η I, 0ð Þ =me−I
2 , ð49Þ

ς I, 0ð Þ = ne−I
2 , ð50Þ

η1 I, Sð Þ = 2m a 2I2 − 1
� �

− ne−I
2 4I2 − 1
� �h i

S, ð51Þ

ς1 I, Sð Þ = 2bn 2I2 − 1
� �

+ cm − dnð Þ� 	
e−I

2
S, ð52Þ

η2 I, Sð Þ = 2me−3I
2
−cmeI

2
−1 + 4I2� �h

+ 2a2e2I2 3 − 12I2 + 4I4� �
− 2aneI2 7 − 58I2 + 40I4� �
+ n deI

2
−1 + 4I2� �

− 2beI2 3 − 18I2 + 8I4� �n
+ 2n 1 − 18I2 + 24I4� �oi S2

2 ,

ð53Þ
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(a) Surface solution of ςðI, ℘Þ when δ = 0:25
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(c) Surface solution of ςðI, ℘Þ when δ = 0:75
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(d) Surface solution of ςðI, ℘Þ when δ = 1

Figure 2: The surface solution of ςðI, ℘Þ for distinct values of δ.
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ς2 I, Sð Þ = 2e−2I2 2b2eI2
n 3 − 12I2 + 4I4� �h

+ beI
2
cm −1 + 2I2� �

+ dn 1 − 6I − 2I2 + 4I3� �� �
+I −d2eI

2
n − 2aceI2

m −3 + 2I2� ��
+ cm deI

2 + 4n −3 + 4I2� �� i S2
2 :

ð54Þ
In the same way, other of the elements can be identi-

fied. So, the series solution of Equation (44) with the help
of Equation (46) is as follows:

η I, Sð Þ =me−I
2 + 2m a 2I2 − 1

� �
− ne−I

2 4I2 − 1
� �h i ℘δ

Γ 1 + δð Þ
� �

+me−3I
2
−cmeI

2
−1 + 4I2� �

+ 2a2e2I2 3 − 12I2 + 4I4� �h
− 2aneI2 7 − 58I2 + 40I4� �

+ n deI
2
−1 + 4I2� �n

− 2beI2 3 − 18I2 + 8I4� �
+ 2n 1 − 18I2 + 24I4� �oi ℘δ

Γ 1 + δð Þ
� �2

,

ð55Þ

ς I, Sð Þ = ne−I
2 + e−I

2 2bn 2I2 − 1
� �

+ cm − dnð Þ� 	 ℘δ

Γ 1 + δð Þ
� �

+ e−2I
2 2b2eI2

n 3 − 12I2 + 4I4� �
+ beI

2
cm −1 + 2I2� ��h

+ dn 1 − 6I − 2I2 + 4I3� �Þ +I −d2eI
2
n − 2aceI2

m −3 + 2I2� ��

+ cm deI
2 + 4n −3 + 4I2� �� i ℘δ

Γ 1 + δð Þ
� �2

:

ð56Þ

6. Results and Discussion

In this segment, we demonstrate the validity and the accu-
racy of the two-scale approach through the 3D graphical
representations. We also present the graphical models and
physical behaviors of the time-fractional K-S model. Mathe-
matica program 11.0.1. is used to calculate the iterations and
the graphical representations. Figures 1–4 show the surface
graphs of the K-S model for ηðI, ℘Þ and ςðI, ℘Þ, respec-
tively, at different values of δ with 0 ≤I ≤ 2 and 0 ≤ ℘≤2.
On behalf of graphical illustrations, we adopt m = 0:000012,
n = 0:000016, a = 0:5, b = 3, c = 1, d = 2. The graphical illus-
trations have validated the convergence of fractional-order
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(a) Surface solution of ηðI, ℘Þ when δ = 0:25
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(b) Surface solution of ηðI, ℘Þ when δ = 0:50
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(c) Surface solution of ηðI, ℘Þ when δ = 0:75
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(d) Surface solution of ηðI, ℘Þ when δ = 1

Figure 3: The surface solution of ηðI, ℘Þ for distinct values of δ.
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solutions in the direction of integer-order solutions. We cal-
culate the iteration only up to 3 terms, and the series of the
solution converges to the exact solution very rapidly. Some
more iterations can be evaluated for more accuracy of the
approximate solutions. It is noted that the obtained
solutions are similar which legitimize the reliability of the
proposed strategies:

7. Conclusion

In this study, we have successfully applied a hybrid strategy
where FCT has coupled with HPM to investigate the approx-
imate solution of the nonlinear time fractional K-S model.
The current association is not just helpful for fractional-
order differential equations but also other differential equa-
tions with some variants. The main advantage of FCT is that
it deals with the nonlinear problems straightforward to cus-
tomize FDEs into their differential parts. We performed two
numerical illustrations of the fractional K-S model to exam-
ine the reliability of the suggested approach. The results
indicate that the two-scale approach is a more effective and
powerful strategy in determining the analytical solutions of
nonlinear differential equations. Thus, we conclude that

our proposed scheme is suitable and can be considered for
the other nonlinear fractional partial differential equations
with fractal derivatives in future study.

Data Availability

All the data are available within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the Foundation of Yibin
University, China (Grant no. 2019QD07).

References

[1] D. Baleanu, J. A. T. Machado, and A. C. Luo, Fractional
dynamics and control, Springer Science & Business Media,
2011.

[2] K. S. Miller and B. Ross, An introduction to the fractional cal-
culus and fractional differential equations, Wiley, 1993.

2.0

1.5

1.0

0.5

0.0
2.0

1.5
1.0

0.5
0.0

𝜁 )( ,



–0.001

0.000

0.001

(a) Surface solution of ςðI, ℘Þ when δ = 0:25

2.0

1.5

1.0

0.5

0.0
2.0

1.5
1.0

0.5
0.0

𝜁 )( ,



–0.001
0.000
0.001

0.002

(b) Surface solution of ςðI, ℘Þ when δ = 0:50

2.0

1.5

1.0

0.5

0.0
2.0

1.5
1.0

0.5
0.0

𝜁 )( ,



0.000
0.001

–0.001
–0.002

(c) Surface solution of ςðI, ℘Þ when δ = 0:75

2.0

1.5

1.0

0.5

0.0
2.0

1.5
1.0

0.5
0.0

𝜁 )( ,



0.000
0.001

–0.001
–0.002

(d) Surface solution of ςðI, ℘Þ when δ = 1

Figure 4: The surface solution of ςðI, ℘Þ for distinct values of δ.

8 Journal of Function Spaces



[3] I. Podlubny, Fractional differential equations: an introduction
to fractional derivatives, fractional differential equations, to
methods of their solution and some of their applications, Else-
vier, 1998.

[4] A. Atangana, “Numerical solution of space-time fractional
derivative of groundwater flow equation,” Proceedings of the
International Conference of Algebra and Applied Analysis,
vol. 2, p. 20, 2012.

[5] K. M. Owolabi, A. Atangana, and A. Akgul, “Modelling and
analysis of fractal-fractional partial differential equations:
application to reaction-diffusion model,” Alexandria Engineer-
ing Journal, vol. 59, no. 4, pp. 2477–2490, 2020.

[6] G. W. Wang and T. Z. Xu, “The improved fractional sub-
equation method and its applications to nonlinear fractional
partial differential equations,” Romanian Reports in Physics,
vol. 66, no. 3, pp. 595–602, 2014.

[7] L. Debnath, “Recent applications of fractional calculus to sci-
ence and engineering,” International Journal of Mathematics
and Mathematical Sciences, vol. 2003, 3442 pages, 2003.

[8] F. Haq, K. Shah, Q. M. Al-Mdallal, and F. Jarad, “Application
of a hybrid method for systems of fractional order partial dif-
ferential equations arising in the model of the one-
dimensional Keller-Segel equation,” The European Physical
Journal Plus, vol. 134, no. 9, pp. 1–11, 2019.

[9] N. Bournaveas and V. Calvez, “The one-dimensional Keller–
Segel model with fractional diffusion of cells,” Nonlinearity,
vol. 23, no. 4, pp. 923–935, 2010.

[10] I. R. Lapidus and R. Schiller, “A mathematical model for bac-
terial chemotaxis,” Biophysical Journal, vol. 14, no. 11,
pp. 825–834, 1974.

[11] H. Zhang, M. Nadeem, A. Rauf, and Z. G. Hui, “A novel
approach for the analytical solution of nonlinear time-
fractional di_erential equations,” International Journal of
Numerical Methods for Heat & Fluid Flow, vol. 31, no. 4,
pp. 1069–1084, 2020.

[12] K.-L. Wang and S.-W. Yao, “He’s fractional derivative for the
evolution equation,” Thermal Science, vol. 24, no. 4,
pp. 2507–2513, 2020.

[13] J.-H. He and Z.-B. Li, “Converting fractional differential equa-
tions into partial differential equations,” Thermal Science,
vol. 16, no. 2, pp. 331–334, 2012.

[14] J.-H. He, “Homotopy perturbation technique,” Computer
Methods in Applied Mechanics and Engineering, vol. 178,
no. 3-4, pp. 257–262, 1999.

[15] J. Biazar and H. Ghazvini, “Exact solutions for nonlinear Bur-
gers' equation by homotopy perturbation method,” Numerical
Methods for Partial Differential Equations, vol. 25, no. 4,
pp. 833–842, 2009.

[16] N. Anjum and J. H. He, “Homotopy perturbation method for
N/MEMS oscillators,” Mathematical Methods in the Applied
Sciences, 2020.

[17] J. H. He and Y. O. El Dib, “Homotopy perturbationmethod for
Fangzhu oscillator,” Journal of Mathematical Chemistry,
vol. 58, no. 10, pp. 2245–2253, 2020.

[18] H. M. Sedighi and F. Daneshmand, “Static and dynamic pull-
in instability of multiwalled carbon nanotube probes by Hes
iteration perturbation method,” Journal of Mechanical Science
and Technology, vol. 28, no. 9, pp. 3459–3469, 2014.

[19] V. F. Morales-Delgado, J. F. Gómez-Aguilar, S. Kumar, and
M. A. Taneco-Hernández, “Analytical solutions of the Keller-
Segel chemotaxis model involving fractional operators without

singular kernel,” The European Physical Journal Plus, vol. 133,
no. 5, p. 200, 2018.

[20] A. Atangana, “Extension of the Sumudu homotopy perturba-
tion method to an attractor for one- dimensional Keller-
Segel equations,” Applied Mathematical Modelling, vol. 39,
no. 10-11, pp. 2909–2916, 2015.

[21] D. Sharma, G. S. Samra, and P. Singh, “Approximate solution
for fractional attractor one-dimensional Keller-Segel equations
using homotopy perturbation Sumudu transform method,”
Nonlinear Engineering, vol. 9, no. 1, pp. 370–381, 2020.

[22] H. Liu, H. Khan, R. Shah, A. A. Alderremy, S. Aly, and
D. Baleanu, “On the fractional view analysis of Keller–Segel
equations with sensitivity functions,” Complexity, vol. 2020,
15 pages, 2020.

[23] S. Kumar, A. Kumar, and I. K. Argyros, “A new analysis for the
Keller-Segel model of fractional order,” Numerical Algorithms,
vol. 75, no. 1, pp. 213–228, 2017.

[24] F. Li and M. Nadeem, “He–Laplace method for nonlinear
vibration in shallow water waves,” Journal of Low Frequency
Noise, Vibration and Active Control, vol. 38, no. 3-4,
pp. 1305–1313, 2019.

[25] R. W. Ibrahim, “Fractional complex transforms for fractional
differential equations,” Advances in Difference Equations,
vol. 2012, no. 1, p. 192, 2012.

[26] J.-H. He, S. Elagan, and Z. Li, “Geometrical explanation of the
fractional complex transform and derivative chain rule for
fractional calculus,” Physics Letters A, vol. 376, no. 4,
pp. 257–259, 2012.

[27] Z.-B. Li and J.-H. He, “Fractional complex transform for frac-
tional differential equations,” Mathematical and Computa-
tional Applications, vol. 15, no. 5, pp. 970–973, 2010.

[28] Q. T. Ain and J.-H. He, “On two-scale dimension and its appli-
cations,” Thermal Science, vol. 23, no. 3 Part B, pp. 1707–1712,
2019.

[29] J.-H. He, “Fractal calculus and its geometrical explanation,”
Results in Physics, vol. 10, pp. 272–276, 2018.

[30] Q. T. Ain, J.-H. He, N. Anjum, and M. Ali, “The fractional
complex transform: a novel approach to the time-fractional
Schrödinger equation,” Fractals, vol. 28, no. 7, article
2050141, 2020.

9Journal of Function Spaces


	Fractional Complex Transform and Homotopy Perturbation Method for the Approximate Solution of Keller-Segel Model
	1. Introduction
	2. Preliminary Concepts
	3. Basic Idea of the Homotopy Perturbation Method
	4. Fractional Complex Transform
	4.1. Convergence Theorem

	5. Numerical Examples
	5.1. Example 1
	5.2. Example 2

	6. Results and Discussion
	7. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

