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This paper was aimed at investigating the stability of the following viscoelastic problem with Balakrishnan-Taylor damping and
variable-exponent nonlinear time delay term u,, — ./%(HVuH%)Auj a(t)f(t)g(t - s)Au(s)ds + u, |u,|P<'Hu, +uy|u,(t— 1) \P('Hut(t
-7)=0inQ x R*, where Q is a bounded domain of R", p(.): Q@ — R is a measurable function, g >0 is a memory kernel

that decays exponentially, a > 0 is the potential, and (||Vu|3) = a + b||Vu(t) |3 + o[ ,VuVu,dx for some constants a >0, b>0,
and o >0. Under some assumptions on the relaxation function, we use some suitable Lyapunov functionals to derive the
general decay estimate for the energy. The problem considered is novel and meaningful because of the presence of the flutter
panel equation and the spillover problem including memory and variable-exponent time delay control. Our result generalizes

and improves previous conclusion in the literature.

1. Introduction

In recent years, much attention has been paid to the study
systems with variable exponents of nonlinearities which are
models of hyperbolic, parabolic, and elliptic equations.
These models may be nonlinear over the gradient of
unknown solutions and have nonlinear variable exponents.
Researches of these systems usually use the imbedding of

yy — M (|| Vu]|5) Au + at) i

u(x, 0) = tp(x), (%, 0) = (x),
Uy (%, 1) = jo (%, t = T),

u(x,t) =0,

t
J g(t = 5)Au(s)ds + py [u [P 2w, + [, (8 = 7)Y 20 (£ - 7) =0,

Lebesgue and Sobolev spaces with variable exponents (see,
e.g. [1, 2]). Or see [3-14] and the references therein for
more details of relevant problems.

In this paper, we concentrate on the asymptotic behavior
of weak solutions for the following weakly damped visco-
elastic wave equation with Balakrishnin-Taylor damping
and variable-exponent nonlinear time delay term

inQ x (0,00),

inQ, (1)
inQx (0, 1),

on 02 x (0,00),
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where u : Q% [0,00) — R is unknown function, y, > 0,4,
is a real number, 7> 0 is the time delay, g > 0 is a memory
kernel, and « > 0 is the potential.

Much attention has been paid to the simulation of phe-
nomena such as the vibration of elastic strings and elastic
plates, when g =0, and u, =, = 0; equation (1)) degrades
into the Kirchhoff’s original equation

hazu— +Eh "o 2d 62u+ 0<x<L,t>0
Pz =9Po EL ) (o2 f,0sx<Lt=0,
(2)

which was first introduced to study the oscillations of
stretched strings and plates in [15]. In addition, equation
(2) is also said to be the wave equation of Kirchhoff type,
where the unknown function u=u(x,t) represents lateral
deflection and E,p,h,L,p,, and f, respectively, denote
Young’s modulus, mass density, cross-section area, length,
initial axial tension, and external force. The Kirchhoff equa-
tion has been investigated in a lot of articles due to its abun-
dant physical background. At the present paper, we try to
mention some considerable efforts on this topic.

There are many important results, such as the local solu-
tions in time, well-posedness, and solvability; for the Kirch-
hoff type, equation (2) in general dimensions and domains
has been obtained in lots of articles (see, e.g., [16-24] and
the references therein).

When p > 1 identically equals to a constant, problem (1)
with the Balakrishnan-Taylor damping term (o >0) is
related to the flutter panel equation and the spillover prob-
lem involving time delay term. Balakrishnan and Taylor in
[25] and Bass and Zes in [26] introduced Balakrishnan-
Taylor damping, which arises from a wind tunnel experi-
ment at supersonic speeds (see, e.g., [22, 27-32]).

On damping terms, we point out several excellent works:
Lian and Xu in [33] studied a class of nonlinear wave equa-
tions with weak and strong damping terms, and they estab-
lished the existence of weak solutions and related blow-up
results under three different initial energy levels and differ-
ent conditions. Yang et al. [34] investigated the exponential
stability of a system with locally distributed damping. Lian
et al. [35] were interested in a fourth-order wave equation
with strong and weak damping terms; they obtained the
local solution, the global existence, asymptotic behavior,
and blow-up of solutions under some condition.

Time delays are common phenomena in many physical,
chemical, biological, thermal, and so on (see [36-38] for
more details). Several authors have investigated existence
and stability of the solutions to the viscoelastic wave equa-
tion involving delay term under some appropriate condi-
tions on u,, u,, and g (see, e.g, [39]). For other related
problems, one can also refer to [40-44]. The terminology
variable exponents mean that p(.) is a measurable function

and not a constant. This term p|u,|’ (')_zut + U,
|u, (t — 1) |P<')_2ut(t —T) is a generalization of pu, + p,u,(t
— ), which corresponds to p(.) > 1. In fact, (1) is also an
extension of the second-order viscoelastic wave equation
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under variable growth conditions

g = M (|| Vul|3) Au
t
va(t)| glt-)dus)ds+ s+ pu(t-1) )
0
=0inQ xR,

which is obtained when considering u,|u,|” =2y, + U,
|u,(t = 7)[")%u,(t — 7). Equation (3) is a well-known elec-
trorheological fluid model that appears in fluid dynamic
treatment (see in [45]). However, the researches related to
the viscoelastic wave equation possessing delay terms,
Balakrishnan-Taylor damping, and variable growth condi-
tions are not sufficient, and the results about these equations
are relatively rare (see [46]). In particular, in [40], the
authors considered this class of equations under some suit-
able assumptions; they use suitable Lyapunov functionals
to derive general energy decay results, and one see similar
work in [44]. Mingione and Réddulescu [47] were concerned
with the regularity theory of elliptic variational problems
under nonstandard growth conditions.

This paper devotes to generalize some previous results.
In particular, in this case, we will use the relaxation function,
the specified initial data, and a special Lyapunov functional,
which depends on the behavior of the relation function and
is not necessary to decay in some polynomial or exponential
form, to get a general decay estimate of the energy.

In addition to the introduction, this paper is divided into
two parts. In Section 2, we review some basic definitions
about Lebesgue and Sobolev spaces with variable exponen-
tials and give some related properties. At the end of this sec-
tion, we present our main results. In Section 3, we prove our
results, showing that a solution of (1) possesses a general
decay with small initial values (u,, u,).

2. Functional Setting and Main Results

In this section, we will give some preliminaries and our main
results.

Without loss of generality, hereinafter, we suppose Q ¢
R" (n>1) is a bounded domain with smooth boundary I
Moreover, let p: Q — (1,+00) be a measurable function
and denote

p- =essinf[p(x));
. (4)
p" == esssup[p(x)].

xeQ)

As in [1, 48, 49], we define the following variable-
exponent Lebesgue spaces and Sobolev spaces. The first
one is the variable-exponent space L’ (Q):

'O(Q)= {u/ : 2 — Rmeasurable|Q, ) o(¥) = j |ll/(x)\p(x>dx<+oo},
Q
(5)

and it is obvious a Banach space with the following
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Luxemburg norm

u(x)

p(x)
dx<1 } . (6)
Q
Actually, in many respects, variable-exponent Lebesgue
spaces are very similar to classical Lebesgue spaces (see
[49]). In particular, from the above definition of the norm,
we can directly get the following results:

[¥ll,().0 = inf {V > O‘J

min (|Ju ) ] ) < @y (1) < mae ([l [l )-
(7)
For any measurable function p : Q — [p~, p*] € (2,00),

where p* are constants, we define the second space and the
variable-exponent Lebesgue space

Q) = {qﬁ : Q — R : ¢ is measurable function on QJ |¢(x)\1’<x)dx<oo},
o
(8)

which is a Banach space with the following Luxemburg
norm:

. u|p(x)
[, = inf {v>0,JQ’; dxgl}. (9)

We also assume that p satisfies the following Zhikov-Fan
condition for the local uniform continuity: there exist a con-
stant M > 0 such that for all points x,y in Q with |x — y| < 1/2
, we have the inequality

M

< - . 10
< Tog 1 (10)

lp(x) —p(y)|

In addition, |[.[|, and ||.[[; ) denote the usual L7((2)
norm and H'(Q) norm.

In order to obtain the main results, we give the following
lemma firstly.
Lemma 1 (see [1]).
(D) If
2<p =essinfp(x) < p(x) <p* = ess supp(x) < oo,
x€Q xeQ
(11)
then
min (|l el < | )P e e )

(12)

for any u e LPU(Q)

(2) Assume that m,n,p : Q — (1,+00) are measurable
functions satisfying

in i (13)

m()  p() " n()

Then, for all functions u € I’")(Q) and v e L"V)(Q), we
have uv € L") (Q) with

[9¥]l .y < Bllullpiy 1Vl (14)

Lemma 2. Suppose thatp : Q — [p~, p*] C [1,+00) is a mea-
surable function satisfying

np(x) (15)

esssup(n—p(x))’
x€Q

2n .
ess supp(x) <p, < —— withp, =
x€Q n-2

Then, the embedding H}(Q)=Wp?(Q)=LFY(Q) is
continuous and compact, and there is a constant ¢, = ¢, (Q
,p*) such that

1915 < c. IVl for ¢ € Hy(€2). (16)

We assume that the relaxation function g and the poten-
tial « satisfy the following assumptions:

Hypothesis g, a: g, « : R* — R* are nonincreasing dif-
ferentiable functions such that

t

g(s)ds < co,a(t) >0,a - oc(t)J g(s)ds=1>0

(17)

00

9(s) ZO’IOZJ

0

Hypothesis &: there exist a positive differentiable func-
tions & satisfying

o ot 0
g'(t)<=E)g(0) fori=0, lim el =0 (19)

Hypothesis p(.): the function p(.) satisfies

Pt

P 22,ifn=1,2,2<p <p(x)<p jifn23 (19)
Hypothesis g, and p,: the constants y; and p, satisfy

| <P~y (20)

Calculating (d/dt)a(t)(gou)(t) with respect to ¢, it



shows that

o0)[ gte -9 u(sasn (05~

0

- gl - o @(gw)(t)—%H (0] a2
O g o) 0+ L geu - 2 o aoas
(1)
where
(g=0)(0)= | at-slue) -ueos 22)

t
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As in [38, 43], we present a new time-dependent variable
to deal with the time delay term:

z(x%, pot) =u(x, t —7p), x €02, p€(0,1),£>0. (23)

Consequently, we have
0,inQx (0,1) x (0,00).  (24)

7Z,(X, ps 1) + 2, (%, p, ) =

Therefore, problem (1) can be transformed into

wy — M (||Vu)3) Au + oc(t)J g(t = s)Au(s)ds + g [u, [P 2w, + | 2(1, £) PO 22(1,£) = 0,in Q x RY,
0
1Z,(p> t) + 2,(p> ) = 0,in (0, 1) X (0,00),
z(0,t) = u,, in (0,+00), >
z(p>0) = jo(=p(7 +1)),in (0, 1),
u(x,0) = uy(x), uy(x,0) = u; (x), x € Q.
By the standard methods as in Section 3 of [50], we can ~ where & and A are positive constants and they satisfy
easily prove the well-posedness of problem (1) presented as
follows.
- g P P 1
Whp - ‘P‘z|>€>|l42|P+ IS A<— 2 g; )‘

Theorem 3. Let (17)-(20) be in force and (uy, u;) € H)(Q) (28)

x L*(Q), j, € L*((©2) % (0, 1)). Then, problem (1) possesses
a unique local solution u such that

ueC([0, ) Hy(2)) N C'([0, T]; L* (), u, € C([0, T] s Hy(2)) N L*([0, T] x (Q)).

(26)
3. Main Asymptotic Theorem
Next, we will give the proof of Theorem 4.
The functional E of problem (25) is as follows:
1 , 1 t 5
E)= 5 I} + 5 (o o) g ) val}
+ l_’||Vu||4 +£J Lr M, (x, 5) P dsdx
t\ A
4 2 Qp(x) t-1

+ S a(t)(g=V()(0)
@)

The most important key to solve problem (1) is to obtain
a result that concerns the asymptotic stability of solutions.
The main result is as follows.

Theorem 4. Suppose (17)-(20) and (28) hold. Then, there
exists positive constants C,, C, and t; > 0 such that

E(t) < Coeicffzv,for t>t. (29)

To prove this theorem, the following technical lemmas
are necessary.
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Lemma 5. If u is a solution of problem (25). Then,

Ewso(55 |w|2)2 + L a(t) (g'5vu) (1)
- S 09l gtoas- §a<t>g<t>uwn5 + 2 (6)(geVu) (1)
o
- (el )| o

- . (%)
AEJQP(X) JH Dlu,(x, s)[P™ dsdx.

(30)

Proof. Using the same idea as in [50], multiply the first equa-
tion in (25) by u, and then integrate in Q. Similarly, multiply
the second equation in (25) by £ze™*™ and integrate in (0,
1) x Q. Summarizing the above, we can obtain

a(t)

B0 =-o (55 1vul) 5 (o'va) 0
- 5 Ovul} gteias— 2 g(oyvul;

‘(1) 5 3 p(x)

+ 2 g - Ju

—EJ ﬁe‘ﬂut(x,t—rﬂp(")dx (31)
(0}

1o 21 0P, s

0

+§J &%M(x, H)PW dx
[ el

By z(1, t) = u,(t — 7) and the Young inequality, we get

A=D1y, (x, 5)[P*) dsdu.

| O,
SRR (32)
<ol S| e s B s
Q P Jo
From (23), we have
—EJ Le_)“\ut(x,t—‘r)|"’(’c)dx
—ie“J |2(1, £) ™) dx
p Q

Comparing (31) and (32), we obtain

') =05 5170 |z) SLUIPEAI
)

- 50O gtoras— P gtoval?

2
“ t) (goVu)(t) - (Ml pi |;t—2|> JQlW'P *

(ernt D o

EJ ()L ”|u[(x,s)\P(")dsdx.

Setting

¢ |t
Co=H — — — —=,
0= M r
6 —T _1
= * |Hz‘—’

r*

(35)

by condition (28), we derived the desired inequality (30). O

Remark 6. If

-3 IVl sz (39)

holds, E(t) may not be nonincreasing.

Lemma 7. Assume that u be a solution of problem (25). Then,
2E(0
|Vul)3 < #eﬂo”)“(‘)), t>0, (37)

where I, and [ as in (17).

Proof. From (27) and (30), we have

1 t 1 I
/(053 ()19l g(shds == Sl (O]9} <=2 ()
(38)
Integrating the above inequality in (0, t), we get

E(t) < E(0)e oMx(01+ks(0) < B()elhMa(0), (39)

From (27), we see that
, 2
vl < 25(0) (40)

Combining it with (39), it gives (37).



Now, we give a modified functional:
L(t) = NE(t) + ea(t)gp(t) + exa()y (1), (41)

o
+ 2 Vulls, (42)

t

v(=-| (0] gte-9w)-

0

u(s))dsdx, (43)

where ¢, ¢,, and N are positive constants. In fact, L is equiv-
alent to E by the following lemma. O

Lemma 8. There exists C;, C, > 0 such that
C,E(t) < L(t) < C,E(t),t20. (44)

Proof. By the Poincaré theorem and Young inequality, we
have the following results through integrating by parts:

IL(t) - NE()] =

cio(t)| ueyno)des eia(t)§ 19Ul + sy (o)
X 0
sel\a<r>|JQ|u<t>|\ut<t>\dx+elgm(r)nwun;+e2§|«x<t>\||ut||§
vey s a(0)]e (@~ D(g V()1 <& D0 vul e, 2 3

1 o O 9ul + 23 a0) [+ €3 (0)Ea
< C(e; +&)E(t),

=D(geV(u)(t)

(45)
where ¢, as in Lemma 1, taking C; =N — C(g; +¢,) and C,
=N+ C(¢g, +¢,), provided ¢, and ¢, are sufficiently small,
and the proof is completed. O
Lemma 9. There exists c,, C, > 0 fulfilling

a

I
9" (6) < [l 2= 5 IVullz = bl Vullz + a(t) 5; (9oVu) (1)

+CS(J |ut|P<x>dx+J |z(1,t)|p">dx>
0] 0]
+C£J |u[P™) dx
Q
(46)

Proof. By the first equation of (25), we differentiate (42), and
then we have

(p’(t)=||u,||§+J v+a||Vu||§J VuVu,dx
0] [0}
o~ ot
= w3 - al|Vull3 = b]| Va3 + Of(f)JQJ g(t = s)Vu(s)dsVu(t)dx
0

- mJ |4, PO udx P‘zJ |2(1, )P 22(1, tyudx = ||u, |3
0 (0}
—a||Vul} - bvy +1, + 1, + I5.
(47)

By the Holder inequality, Sobolev-Poincaré inequalities,
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and (17), we estimate the second part of the right-hand side
in (47).

Jjgt §)Vuu(s)dsVu(t) dx
0Jo

qu\ dx) ( 2dx> N
Jﬂwu\ dx> < Lg(t s)\Vu(s)fdsdx)m
| J

1/2 s 12 2dsdx.
|Vu| dx[ g(s > ([ g(t=s)|Vu(s)| dsdx)
Q 0 0

g(t —s)Vu(s)ds

a(t)

<2 [ gy de g(s )ds+“(tJ Jg(t 9)|Vu(s)Pdsdx
2 o) 2 o}

< iUl [Vu| de (s)ds+ &J J g(t=s)|Vu(s)
2 2 Jalo

w0
w0
<aft) <
|
,

=Vu(t)+Vu(t

(48)

For every # > 0, using the Young inequality and (17), we
deduce

TJQ g(t = $)[Vu(s)=Vu(t)+Vu(t)*dsdx

at) [

g(l‘—s)((Vu(s)—Vu(t))2 +2|Vu(s)-Vu(t)||Vu| + \Vu|2)

dsdx < @ JQJ;g(t —5)|Vu(s)-Vu(t) Pdsdx
i

J g(t —s)|Vu|*dsdx
Q

+

oc(t)JQJ g(t=3s)|Vu(s)=Vu(t)||Vu|dsdx

< Dt + P [ goas| ouras

en "D g [vupas 5 (govn

t

s vupae S (14 ) (gowe
3 J\Vu|dx+ ()(1+’1>(goVu)()

(49)

Summarizing the above estimates, (48) and (49), we
obtain

oc(t)JQJ;g(t—s) Vu(s)dsvude < I)J|Vu|dx

+ (“2_1) (1 +;1)J Vu[2dx + @ (1 + %) (goVu) (t)

=D g 50 (1,
= @an) T 5 (1 D) gv o

(50)
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Setting 7 =1/(a - 1), it is easy to obtain

1] < (x(t)J th(t - 5)Vu(s)dsVudx
ol (51)
< (a=3) 1943 + a0,

and by means of the Young inequality, we have

e e e max (4 )| jurde=c | jurtax
O (o) (o)

+sc2J |ulf®dx
0
(52)

Blse Jenop
Q
+ & max (‘uﬁ’, ‘uf)‘[ |u[P®) dx
Q

+sc3J |ulP™) dx
o

(53)

Substituting (51)-(53) into (47), we deduce

I
9 (6) < llwllz = 5 [IVul3 + Csjﬂlulp(x’dx— b||Vul

e oV ve (] juroase | [z opar),
(54)

set C, =¢(c, +¢3) >0, for ¢ sufficiently small. O

Lemma 10. There exists positive constants § and cg satisfying

v' s~ (][ gdc} - I+ oo+ 26a-17
5&1(0)6(10/1)( <2dt||v ||2)2

+ {Ca + (25 + 41_5) (a- l)oc(t)}(goVu)(t)

+c5<J |ut|p(x)dx+J |z(1,t)P(")dx>
0 Q

902 (g

+0b||Vul|3 +

(55)

Proof. Similar to Lemma,9 by the first equation (25), we dif-

=<, [el1 0P
0

a(t) }|[Vull3

ferentiate (43), and it yields

v :—Lu,,fg(t $)(u(t) - u())dsdx
j u, —u(s))dsdx
(Og )Hufnz
= (a9 | 9ul gte o) Pute)-Tus)dsas

+0| VuVu de J; (t = s)(Vu(t)-Vu(s))dsdx

(Joste=symucaas) ([ ate=uto-vutoas)

|
I
—~
~
~
[

n m_[o|z(1, P21, t)j gt = 5)(u(t) - u(s))dsdx

0

[ ] o' = ut st ([ gteras s
- 31 ([ Batoas )l

(56)
By the Holder inequality, Sobolev-Poincaré inequalities,

and (17), we estimate the second part of the right-hand side
in (56).

uns(a+buw\|§){8|\w||2 b (gevu >}

I, BLE(
< 8a||Vu||? +8b]|Vul* + {Z§+ 025(1) (e

}(govux )
(57)

2
I
12|sao<J VuVutdx) Va2 + %(goVu)(t)
Q

ZGEZ(O) (/D (zdt| ||§) +%(govu)(t),
(58)

<48

ri=aao)] (] att=vue-vuco |Vu<r>|)ds)2dx
. %(x( )J (th(t—s)Vu(t)—Vu(s)|ds>2dx

<285 a(t)||Vul)} + <26 + 416) loa(£)(goVu)(t),
(59)



- o ot px)
rzea Jupes smax ()| ([[ate-0ue-upas) e
o a\Jo
<cs| [u ¥ dx+ 8 max (1) max (B E) max (&, &
5,[(2' il { (("1 .“1) (0 0 ) ( )
t
J oto=9lvute)-vu(oas}
0
<c [ 11, [P dx + 6] max W) max (¢, &) max
o e o {ma (448 ) ma ()

<<ZE(°) e(h,/l)zx(O)) i (25(0) e(toxz)a(0)> (pz)/z>
1 ’ I

(goVu) (1)} = csjﬂwwdx+6c4<ge\7u)<t><

Similarly,

I | (1 0 e + s g2 1)
’ (61

g(0)c
1l 8] - L5 (9'o9u) 1)

Comparing these above estimates (57)-(61), we have

t
v'(0)5~( [ gtas-a) lu +6{a+213a<t>}||wn§
20E(0) 1. 1ma(0) ?
U

. {Ca . <za+ %) lo(x(t)}(goVu)(t)
e, <J9|utp(")dx . Jﬂ|z(1, ) |P(">dx)

+0b||Vull; +

_ 9(0)c; "
45 (g V”)(t)’
(62)
where  Cy = {al,/48 + (bl,E(0)/281)eh/)0) 1 51,748 + &(c,
+¢5)} O

Lemma 11. There exists positive constants C;,C,, and t, sat-
isfying

L' (t) < =Csa(t)E(t) + C,a(t)(goVu)(t), t > t,. (63)

Proof. Since g > 0 and is continuous, then for any t > ¢, > 0,
we get

[[atas> [ ot9as=g, 0. (64)
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Differentiate (41), and using Lemmas 9 and 10, we get

L'(t) = NE'(t) + &0’ ()(t) + £10(t)9" (1) + 20’ (1w (1) + ep0(t)y' (1)

<—a(t){e;(go - O) — &} |12
—oc(t){s C.—& (a+21(2))06(t)}||v“”§
—a(t)(b(e; — &9))|ul3

—oc(t){ —, s 20 ( ) MMO)}G%HV%)Z
a(t)

0 9 s}J J2(1, £)"®) dx
2 : Lg ds)HVu||2+s o( )Luu dx

e
0] 0

Indeed,

{
{
_a(t){‘:_o_elc 5268” 4,/ dx
{
(t)

u(s))dsdx.

(65)

oc'(t)L)uutdx + a'(t)JQutJ;g(t = s)(u(t) - u(s))dsdx

<~ 051Vl - a3 - (05 (] a4 (gv (o)

(66)
Thus,
L'(1) < —a(t){ezwo —0) - + %}nu[ni
—a(t){sIQ—eza(a+zlg)a(0)+IZZ(S) <‘[O®g( )ds> ;(())}
[Vull — a(t)b(e; = &,8)[|Vul|; - a(f){asl - g,0 — el }

1d v
S 1Vl

+oc(t){£1 @ Fe,Cotey (204 %) () - iiéf? (J;g(s)ds)}

(@90 +a){ 5 -5 20 (59) 0 - a0

S o PO dy — a(t)d L e
{06(0) &6 52£6}JQ|”:| o(t) (0) &1~ &6
[ |2(1, )P dx

JO

(67)

Fix § > 0 such that

5 1
o (a+2[)a(0) < 2 gy, (68)

€

1
go—0> 390
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and take & and &, small enough to satisfy

€5 =€(go=90) —& >0,
¢ =€,C, —£,8(a+215)a(0) > 0.

Select ¢, and &, small enough to make (44) and (67)
hold, and moreover

E(0 N
b(e; —£,6)>0,0¢, — 52607()&10”)“(0) >0, 5

S

«(0)

2!
— €6, — &5 >0, —

—&C.—&C5>0.
(X(O) 1%e 248

(70)

Hence, for a generic positive constant ¢, (67) is equal to
the following results:

! “,(t) 2
Li(1) < —"f(f){“r W}Hutlz

—a(t){c+ 28 (] motes) + 7) }nwé

+a(t) {c - %} (geVu)(t),Vt = t,.

(71)

Noticing that lim, - a'(t)/&(t)a(t) = 0, so choose t,
> 1y, we see

L'(8) < —a(t) (el||I; + C[|Vu|3) + e(geVur) (1) (72)
<-Cya(t)E(t) + Cya(t)(goVu)(t),Vt = t;,
where C; and C, are positive constants. O

Now, we are in the position to prove Theorem 4.

Proof of Theorem 4. According to Lemma 5, Lemma 11, and
(17), we have

SO (1) < =Coa(t)S(HE(E) + Coa(t) (1) (90Vu) (8)
< -GS (E(E) - Coa(t) (9'oVu) (1)
< -Gy (HE(1)
-C, (ZE'(t) + oc'(t) (Jog(s)ds) ||Vu||§) .
(73)

Since {(t) is nonincreasing, by assumption (17) and the
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definition of E(t), we get
! vulz <o),
QL) +2C,E(D) < ~Caft){ (D)
e ()] gtsas) v
(74)

which leads to

%(C(f)F(f) +2C,E(t)) < ~Cya ()G (HE(1)

—ca (1) (j;g@)ds) Va2 < ~Coa(t)S(1)E(t)

2C4looc'(t)>E(t).

—a(H)(t) (Cs T Ta(0C(t)

(75)

Since lim, - o' (t)/a(t){(t) = 0, we can choose t, > t,

such that C; +2C,lya’ (t)/la(t){(t) > 0 for t>t,. Hence, if
we let

Z(t) = G(t)L(1) + 2C4E(t), (76)

then it is obvious that Z(t) is equivalent to E(¢) and satisfies

F'(t) < -k (t)a(t)L(t) fort > t,. (77)
Consequently, to integrate (77) over (¢, t), it yields
(1) < 2(t,)e TFOOB L (78)
Thus, the desired result yields from the equivalence relations
of Z(¢),L(¢), and E(¢). O
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