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This paper was aimed at investigating the stability of the following viscoelastic problem with Balakrishnân-Taylor damping and
variable-exponent nonlinear time delay term utt −Mðk∇uk22ÞΔu + αðtÞÐ t0gðt − sÞΔuðsÞds + μ1jut jpð:Þ−2ut + μ2jutðt − τÞjpð:Þ−2utðt
− τÞ = 0 inΩ ×ℝ+, where Ω is a bounded domain of ℝn, pð:Þ: �Ω⟶ℝ is a measurable function, g > 0 is a memory kernel
that decays exponentially, α ≥ 0 is the potential, and Mðk∇uk22Þ = a + bk∇uðtÞk22 + σ

Ð
Ω
∇u∇utdx for some constants a > 0, b ≥ 0,

and σ > 0. Under some assumptions on the relaxation function, we use some suitable Lyapunov functionals to derive the
general decay estimate for the energy. The problem considered is novel and meaningful because of the presence of the flutter
panel equation and the spillover problem including memory and variable-exponent time delay control. Our result generalizes
and improves previous conclusion in the literature.

1. Introduction

In recent years, much attention has been paid to the study
systems with variable exponents of nonlinearities which are
models of hyperbolic, parabolic, and elliptic equations.
These models may be nonlinear over the gradient of
unknown solutions and have nonlinear variable exponents.
Researches of these systems usually use the imbedding of

Lebesgue and Sobolev spaces with variable exponents (see,
e.g., [1, 2]). Or see [3–14] and the references therein for
more details of relevant problems.

In this paper, we concentrate on the asymptotic behavior
of weak solutions for the following weakly damped visco-
elastic wave equation with Balakrishnân-Taylor damping
and variable-exponent nonlinear time delay term

utt −M ∇uk k22
� �

Δu + α tð Þ
ðt
0
g t − sð ÞΔu sð Þds + μ1 utj jp xð Þ−2ut + μ2 ut t − τð Þj jp xð Þ−2ut t − τð Þ = 0, inΩ × 0,∞ð Þ,

u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ, inΩ,
ut x, tð Þ = j0 x, t − τð Þ, inΩ × 0, τð Þ,
u x, tð Þ = 0, on ∂Ω × 0,∞ð Þ,

8>>>>>>><
>>>>>>>:

ð1Þ
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where u : �Ω × ½0,∞Þ⟶ℝ is unknown function, μ1 ≥ 0,μ2
is a real number, τ > 0 is the time delay, g > 0 is a memory
kernel, and α ≥ 0 is the potential.

Much attention has been paid to the simulation of phe-
nomena such as the vibration of elastic strings and elastic
plates, when g = 0, and μ1 = μ2 = 0; equation (1)) degrades
into the Kirchhoff’s original equation

ρh
∂2u
∂t2

= p0 +
Eh
2L

ðL
0

∂u
∂x

� �2
dx

( )
∂2u
∂x2

+ f , 0 ≤ x ≤ L, t ≥ 0,

ð2Þ

which was first introduced to study the oscillations of
stretched strings and plates in [15]. In addition, equation
(2) is also said to be the wave equation of Kirchhoff type,
where the unknown function u = uðx, tÞ represents lateral
deflection and E, ρ, h, L, p0, and f , respectively, denote
Young’s modulus, mass density, cross-section area, length,
initial axial tension, and external force. The Kirchhoff equa-
tion has been investigated in a lot of articles due to its abun-
dant physical background. At the present paper, we try to
mention some considerable efforts on this topic.

There are many important results, such as the local solu-
tions in time, well-posedness, and solvability; for the Kirch-
hoff type, equation (2) in general dimensions and domains
has been obtained in lots of articles (see, e.g., [16–24] and
the references therein).

When p > 1 identically equals to a constant, problem (1)
with the Balakrishnân-Taylor damping term ðσ > 0Þ is
related to the flutter panel equation and the spillover prob-
lem involving time delay term. Balakrishnân and Taylor in
[25] and Bass and Zes in [26] introduced Balakrishnân-
Taylor damping, which arises from a wind tunnel experi-
ment at supersonic speeds (see, e.g., [22, 27–32]).

On damping terms, we point out several excellent works:
Lian and Xu in [33] studied a class of nonlinear wave equa-
tions with weak and strong damping terms, and they estab-
lished the existence of weak solutions and related blow-up
results under three different initial energy levels and differ-
ent conditions. Yang et al. [34] investigated the exponential
stability of a system with locally distributed damping. Lian
et al. [35] were interested in a fourth-order wave equation
with strong and weak damping terms; they obtained the
local solution, the global existence, asymptotic behavior,
and blow-up of solutions under some condition.

Time delays are common phenomena in many physical,
chemical, biological, thermal, and so on (see [36–38] for
more details). Several authors have investigated existence
and stability of the solutions to the viscoelastic wave equa-
tion involving delay term under some appropriate condi-
tions on μ1, μ2, and g (see, e.g., [39]). For other related
problems, one can also refer to [40–44]. The terminology
variable exponents mean that pð:Þ is a measurable function

and not a constant. This term μ1jutjpð:Þ−2ut + μ2
jutðt − τÞjpð:Þ−2utðt − τÞ is a generalization of μ1ut + μ2utðt
− τÞ, which corresponds to pð:Þ > 1. In fact, (1) is also an
extension of the second-order viscoelastic wave equation

under variable growth conditions

utt −M ∇uk k22
� �

Δu

+ α tð Þ
ðt
0
g t − sð ÞΔu sð Þds + μ1ut + μ2ut t − τð Þ

= 0 inΩ ×ℝ+,

ð3Þ

which is obtained when considering μ1jutjpð:Þ−2ut + μ2
jutðt − τÞjpð:Þ−2utðt − τÞ: Equation (3) is a well-known elec-
trorheological fluid model that appears in fluid dynamic
treatment (see in [45]). However, the researches related to
the viscoelastic wave equation possessing delay terms,
Balakrishnân-Taylor damping, and variable growth condi-
tions are not sufficient, and the results about these equations
are relatively rare (see [46]). In particular, in [40], the
authors considered this class of equations under some suit-
able assumptions; they use suitable Lyapunov functionals
to derive general energy decay results, and one see similar
work in [44]. Mingione and Rădulescu [47] were concerned
with the regularity theory of elliptic variational problems
under nonstandard growth conditions.

This paper devotes to generalize some previous results.
In particular, in this case, we will use the relaxation function,
the specified initial data, and a special Lyapunov functional,
which depends on the behavior of the relation function and
is not necessary to decay in some polynomial or exponential
form, to get a general decay estimate of the energy.

In addition to the introduction, this paper is divided into
two parts. In Section 2, we review some basic definitions
about Lebesgue and Sobolev spaces with variable exponen-
tials and give some related properties. At the end of this sec-
tion, we present our main results. In Section 3, we prove our
results, showing that a solution of (1) possesses a general
decay with small initial values ðu0, u1Þ.

2. Functional Setting and Main Results

In this section, we will give some preliminaries and our main
results.

Without loss of generality, hereinafter, we suppose Ω ⊆
ℝn (n ≥ 1) is a bounded domain with smooth boundary Γ.
Moreover, let p : �Ω⟶ ð1,+∞Þ be a measurable function
and denote

p− ≔ essinf
x∈Ω

p xð Þ½ �,

p+ ≔ esssup
x∈Ω

p xð Þ½ �: ð4Þ

As in [1, 48, 49], we define the following variable-
exponent Lebesgue spaces and Sobolev spaces. The first
one is the variable-exponent space Lpð:ÞðΩÞ:

Lp :ð Þ Ωð Þ = ψ : Ω⟶ℝmeasurablejϱp :ð Þ,Ω ψð Þ≔
ð
Ω

ψ xð Þj jp xð Þdx<+∞
� �

,

ð5Þ

and it is obvious a Banach space with the following
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Luxemburg norm

ψk kp :ð Þ,Ω ≔ inf ν > 0j
ð
Ω

u xð Þ
ν

����
����
p xð Þ

dx ≤ 1
( )

: ð6Þ

Actually, in many respects, variable-exponent Lebesgue
spaces are very similar to classical Lebesgue spaces (see
[49]). In particular, from the above definition of the norm,
we can directly get the following results:

min uk kp−p :ð Þ, uk kp+p :ð Þ
	 


≤ ϱp :ð Þ,Ω uð Þ ≤max uk kp−p :ð Þ, uk kp+p :ð Þ
	 


:

ð7Þ

For any measurable function p : �Ω⟶ ½p−, p+� ⊂ ð2,∞Þ,
where p± are constants, we define the second space and the
variable-exponent Lebesgue space

Lp :ð Þ Ωð Þ = ϕ : Ω⟶ℝ : ϕ is measurable function onΩ,
ð
Ω

ϕ xð Þj jp xð Þdx<∞
� �

,

ð8Þ

which is a Banach space with the following Luxemburg
norm:

uk kp :ð Þ = inf ν > 0,
ð
Ω

u
ν

��� ���p xð Þ
dx ≤ 1

� �
: ð9Þ

We also assume that p satisfies the following Zhikov-Fan
condition for the local uniform continuity: there exist a con-
stantM > 0 such that for all points x,y inΩ with jx − yj < 1/2
, we have the inequality

p xð Þ − p yð Þj j ≤ M
log x − yj jj j : ð10Þ

In addition, k:kq and k:kH1ðΩÞ denote the usual LqðΩÞ
norm and H1ðΩÞ norm.

In order to obtain the main results, we give the following
lemma firstly.

Lemma 1 (see [1]).

(1) If

2 ≤ p− ≔ ess inf
x∈Ω

p xð Þ ≤ p xð Þ ≤ p+ ≔ ess sup
x∈Ω

p xð Þ <∞,

ð11Þ

then

min uk kp−p :ð Þ, uk kp+p :ð Þ
n o

≤
ð
Ω

u :ð Þj jp xð Þdx ≤max uk kp−p :ð Þ, uk kp+p :ð Þ
n o

ð12Þ

for any u ∈ Lpð:ÞðΩÞ

(2) Assume that m, n, p : �Ω⟶ ð1,+∞Þ are measurable
functions satisfying

1
m :ð Þ = 1

p :ð Þ + 1
n :ð Þ ð13Þ

Then, for all functions u ∈ Lpð:ÞðΩÞ and v ∈ Lnð:ÞðΩÞ, we
have uv ∈ Lmð:ÞðΩÞ with

uvk km :ð Þ ≤C uk kp :ð Þ vk kn :ð Þ: ð14Þ

Lemma 2. Suppose that p : Ω⟶ ½p−, p+� ⊂ ½1,+∞Þ is a mea-
surable function satisfying

ess sup
x∈Ω

p xð Þ < p∗ ≤
2n
n − 2

with p∗ =
np xð Þ

ess sup
x∈Ω

n − p xð Þð Þ : ð15Þ

Then, the embedding H1
0ðΩÞ =W1,2

0 ðΩÞ↪Lpð:ÞðΩÞ is
continuous and compact, and there is a constant c∗ = c∗ðΩ
, p±Þ such that

ϕk kp :ð Þ ≤ c∗ ∇ϕk k2 for ϕ ∈H1
0 Ωð Þ: ð16Þ

We assume that the relaxation function g and the poten-
tial α satisfy the following assumptions:

Hypothesis g, α: g, α : ℝ+ ⟶ℝ+ are nonincreasing dif-
ferentiable functions such that

g sð Þ ≥ 0, l0 =
ð∞
0
g sð Þds <∞,α tð Þ > 0, a − α tð Þ

ðt
0
g sð Þds ≥ l > 0

ð17Þ

Hypothesis ξ: there exist a positive differentiable func-
tions ξ satisfying

g′ tð Þ ≤ −ξ tð Þg tð Þ, for t ≥ 0, lim
t⟶∞

−α′ tð Þ
ξ tð Þα tð Þ = 0 ð18Þ

Hypothesis pð:Þ: the function pð:Þ satisfies

p− ≥ 2, ifn = 1, 2, 2 < p− ≤ p xð Þ ≤ p+ < n + 2
n − 2 if n ≥ 3 ð19Þ

Hypothesis μ1 and μ2: the constants μ1 and μ2 satisfy

μ2j j < p−μ1 ð20Þ

Calculating ðd/dtÞαðtÞðg ∘ uÞðtÞ with respect to t, it
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shows that

α tð Þ
ðt
0
g t − sð Þ

ð
Ω

u sð Þdsut tð Þdx =

−
α tð Þ
2 g tð Þ u tð Þk k22 −

d
dt

α tð Þ
2 g ∘ uð Þ tð Þ − α tð Þ

2 u tð Þk k22
ðt
0
g sð Þds

� �

+ α tð Þ
2 g′ ∘ u
	 


tð Þ + α′ tð Þ
2 g ∘ uð Þ tð Þ − α′ tð Þ

2 u tð Þk k22
ðt
0
g sð Þds,

ð21Þ

where

g ∘ uð Þ tð Þ =
ðt
0
g t − sð Þ u tð Þ − u sð Þk k22ds: ð22Þ

As in [38, 43], we present a new time-dependent variable
to deal with the time delay term:

z x, ρ, tð Þ = ut x, t − τρð Þ, x ∈Ω, ρ ∈ 0, 1ð Þ, t > 0: ð23Þ

Consequently, we have

τzt x, ρ, tð Þ + zρ x, ρ, tð Þ = 0, inΩ × 0, 1ð Þ × 0,∞ð Þ: ð24Þ

Therefore, problem (1) can be transformed into

By the standard methods as in Section 3 of [50], we can
easily prove the well-posedness of problem (1) presented as
follows.

Theorem 3. Let (17)–(20) be in force and ðu0, u1Þ ∈H1
0ðΩÞ

× L2ðΩÞ, j0 ∈ L2ððΩÞ × ð0, 1ÞÞ. Then, problem (1) possesses
a unique local solution u such that

u ∈ C 0, T½ � ;H1
0 Ωð Þ� �

∩ C1 0, T½ � ; L2 Ωð Þ� �
, ut ∈ C 0, T½ � ;H1

0 Ωð Þ� �
∩ L2 0, T½ � × Ωð Þð Þ:

ð26Þ

3. Main Asymptotic Theorem

Next, we will give the proof of Theorem 4.
The functional E of problem (25) is as follows:

E tð Þ = 1
2 ut tð Þk k22 +

1
2 a − α tð Þ

ðt
0
g sð Þds

� �
∇uk k22

+ b
4 ∇uk k42 + ξ

ð
Ω

1
p xð Þ

ðt
t−τ

eλ s−tð Þ ut x, sð Þj jp xð Þdsdx

+ 1
2 α tð Þ g∘∇ uð Þð Þ tð Þ,

ð27Þ

where ξ and λ are positive constants and they satisfy

μ1p
− − μ2j j > ξ > μ2j jp+ p

+ − 1
p−

, λ < 1
τ
ln μ2p

+ p+ − 1ð Þ
ξp−

����
����:
ð28Þ

The most important key to solve problem (1) is to obtain
a result that concerns the asymptotic stability of solutions.

The main result is as follows.

Theorem 4. Suppose (17)–(20) and (28) hold. Then, there
exists positive constants C0, C, and t1 > 0 such that

E tð Þ ≤ C0e
−C
Ð t

t1
v, for t ≥ t1: ð29Þ

To prove this theorem, the following technical lemmas
are necessary.

utt −M ∇uk k22
� �

Δu + α tð Þ
ðt
0
g t − sð ÞΔu sð Þds + μ1 utj jp xð Þ−2ut + μ2 z 1, tð Þj jp xð Þ−2z 1, tð Þ = 0, inΩ ×ℝ+,

τzt ρ, tð Þ + zρ ρ, tð Þ = 0, in 0, 1ð Þ × 0,∞ð Þ,
z 0, tð Þ = ut , in 0,+∞ð Þ,

z ρ, 0ð Þ = j0 −ρ τ + 1ð Þð Þ, in 0, 1ð Þ,
u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ, x ∈Ω:

ð25Þ
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Lemma 5. If u is a solution of problem (25). Then,

E′ tð Þ ≤ −σ
1
2
d
dt

∇uk k22
� �2

+ 1
2
α tð Þ g′∘∇u

	 

tð Þ

−
1
2
α′ tð Þ ∇uk k22

ðt
0
g sð Þds − 1

2
α tð Þg tð Þ ∇uk k22 +

1
2
α′ tð Þ g∘∇uð Þ tð Þ

− μ1 −
ξ

p−
−

μ2j j
p−

� �ð
Ω

utj jp xð Þdx

−
ξ

p+
e−λτ − μ2j j p

+ − 1
p−

� �ð
Ω

z 1, tð Þj jp xð Þdx

− λξ
ð
Ω

1
p xð Þ

ðt
t−τ

eλ s−tð Þ ut x, sð Þj jp xð Þdsdx:

ð30Þ

Proof. Using the same idea as in [50], multiply the first equa-
tion in (25) by ut and then integrate in Ω. Similarly, multiply
the second equation in (25) by ξze−λτρ and integrate in ð0,
1Þ ×Ω. Summarizing the above, we can obtain

E′ tð Þ = −σ
1
2
d
dt

∇uk k22
� �2

+ α tð Þ
2 g′∘∇u
	 


tð Þ

−
1
2 α

′ tð Þ ∇uk k22
ðt
0
g sð Þds − α tð Þ

2 g tð Þ ∇uk k22

+ α′ tð Þ
2 g∘∇uð Þ tð Þ − μ1

ð
Ω

utj jp xð Þdx

− ξ
ð
Ω

1
p xð Þ e

−λτ ut x, t − τð Þj jp xð Þdx

− μ2

ð
Ω

z 1, tð Þj jp xð Þ−2z 1, tð Þutdx

+ ξ
ð
Ω


1

p xð Þ ut x, tð Þj jp xð Þdx

− λξ
ð
Ω

1
p xð Þ

ðt
t−τ

eλ s−tð Þ ut x, sð Þj jp xð Þdsdx:

ð31Þ

By zð1, tÞ = utðt − τÞ and the Young inequality, we get

−μ2
ð
Ω

z 1, tð Þj jp xð Þ−2z 1, tð Þutdx

≤ μ2j j p
+ − 1
p−

ð
Ω

z 1, tð Þj jp xð Þdx + μ2j j
p−

ð
Ω

utj jp xð Þdx:
ð32Þ

From (23), we have

−ξ
ð
Ω

1
p xð Þ e

−λτ ut x, t − τð Þj jp xð Þdx

≤ −
ξ

p+
e−λτ

ð
Ω

z 1, tð Þj jp xð Þdx:
ð33Þ

Comparing (31) and (32), we obtain

E′ tð Þ ≤ −σ
1
2
d
dt

∇uk k22
� �2

+ α tð Þ
2 g′∘∇u
	 


tð Þ

−
1
2 α

′ tð Þ ∇uk k22
ðt
0
g sð Þds − α tð Þ

2 g tð Þ ∇uk k22

+ α′ tð Þ
2 g∘∇uð Þ tð Þ − μ1 −

ξ

p−
−

μ2j j
p−

� �ð
Ω

utj jp xð Þdx

−
ξ

p+
e−λτ − μ2j j p

+ − 1
p−

� �ð
Ω

z 1, tð Þj jp xð Þdx

− λξ
ð
Ω

1
p xð Þ

ðt
t−τ

eλ s−tð Þ ut x, sð Þj jp xð Þdsdx:

ð34Þ

Setting

c0 = μ1 −
ξ

p−
−

μ2j j
p−

,

c1 =
ξ

p+
e−λτ − μ2j j p

+ − 1
p−

,
ð35Þ

by condition (28), we derived the desired inequality (30).

Remark 6. If

−
1
2 α

′ tð Þ ∇u tð Þk k22
ðt
0
g sð Þds ≥ 0 ð36Þ

holds, EðtÞ may not be nonincreasing.

Lemma 7. Assume that u be a solution of problem (25). Then,

∇uk k22 ≤
2E 0ð Þ

l
e l0/lð Þα 0ð Þ, t ≥ 0, ð37Þ

where l0 and l as in (17).

Proof. From (27) and (30), we have

E′ tð Þ ≤ −
1
2 α

′ tð Þ ∇uk k22
ðt
0
g sð Þds ≤ −

1
2 l0α

′ tð Þ ∇uk k22 ≤ −
l0
l
α′ tð ÞE tð Þ:

ð38Þ

Integrating the above inequality in ð0, tÞ, we get

E tð Þ ≤ E 0ð Þe− l0/lð Þα tð Þ+ l0/lð Þα 0ð Þ ≤ E 0ð Þe l0/lð Þα 0ð Þ: ð39Þ

From (27), we see that

∇uk k22 ≤
2
l
E tð Þ: ð40Þ

Combining it with (39), it gives (37).
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Now, we give a modified functional:

L tð Þ =NE tð Þ + ε1α tð Þφ tð Þ + ε2α tð Þψ tð Þ, ð41Þ

φ tð Þ =
ð
Ω

u tð Þut tð Þdx +
σ

4 ∇uk k42, ð42Þ

ψ tð Þ = −
ð
Ω

ut tð Þ
ðt
0
g t − sð Þ u tð Þ − u sð Þð Þdsdx, ð43Þ

where ε1, ε2, and N are positive constants. In fact, L is equiv-
alent to E by the following lemma.

Lemma 8. There exists C1, C2 > 0 such that

C1E tð Þ ≤ L tð Þ ≤ C2E tð Þ, t ≥ 0: ð44Þ

Proof. By the Poincaré theorem and Young inequality, we
have the following results through integrating by parts:

L tð Þ −NE tð Þj j = ε1α tð Þ
ð
Ω

u tð Þut tð Þdx + ε1α tð Þσ4 ∇uk k42 + ε2α tð Þψ tð Þ
����

����
≤ ε1 α tð Þj j

ð
Ω

u tð Þj j ut tð Þj jdx + ε1
σ

4 α tð Þj j ∇uk k42 + ε2
1
2 α tð Þj j utk k22

+ ε2
1
2 α tð Þj jc2∗ a − lð Þ g∘∇ uð Þð Þ tð Þ ≤ ε1

α 0ð Þ
2 c2∗ ∇uk k22 + ε1

α 0ð Þ
2 utk k22

+ ε1σ
α 0ð Þ
4 ∇uk k42 + ε2

1
2 α 0ð Þ utk k22 + ε2

1
2 α 0ð Þc2∗ a − lð Þ g∘∇ uð Þð Þ tð Þ

≤ C ε1 + ε2ð ÞE tð Þ,
ð45Þ

where c∗ as in Lemma 1, taking C1 =N − Cðε1 + ε2Þ and C2
=N + Cðε1 + ε2Þ, provided ε1 and ε2 are sufficiently small,
and the proof is completed.

Lemma 9. There exists cε, Cε > 0 fulfilling

φ′ tð Þ ≤ utk k22 −
l
2

∇uk k22 − b ∇uk k42 + α tð Þ a
2l

g∘∇uð Þ tð Þ

+ cε

ð
Ω

utj jp xð Þdx +
ð
Ω

z 1, tð Þj jp xð Þdx
� �

+ Cε

ð
Ω

uj jp xð Þdx:

ð46Þ

Proof. By the first equation of (25), we differentiate (42), and
then we have

φ′ tð Þ = utk k22 +
ð
Ω

v + σ ∇uk k22
ð
Ω

∇u∇utdx

= utk k22 − a ∇uk k22 − b ∇uk k42 + α tð Þ
ð
Ω

ðt
0
g t − sð Þ∇u sð Þds∇u tð Þdx

− μ1

ð
Ω

utj jp xð Þ−2utudx − μ2

ð
Ω

z 1, tð Þj jp xð Þ−2z 1, tð Þudx = utk k22
− a ∇uk k22 − bv42 + I1 + I2 + I3:

ð47Þ

By the Hölder inequality, Sobolev-Poincaré inequalities,

and (17), we estimate the second part of the right-hand side
in (47).

I1 = α tð Þ
ð
Ω

ðt
0
g t − sð Þ∇u sð Þds∇u tð Þdx

≤ α tð Þ
ð
Ω

∇uj j2dx
� �1/2 ð

Ω

ðt
0
g t − sð Þ∇u sð Þds

����
����
2
dx

 !1/2

≤ α tð Þ
ð
Ω

∇uj j2dx
� �1/2 ð

Ω

ðt
0
g sð Þds

ðt
0
g t − sð Þ ∇u sð Þj j2dsdx

� �1/2

≤ α tð Þ
ð
Ω

∇uj j2dx
ðt
0
g sð Þds

� �1/2 ð
Ω

ðt
0
g t − sð Þ ∇u sð Þj j2dsdx

� �1/2

≤
α tð Þ
2

ð
Ω

∇uj j2dx
ðt
0
g sð Þds + α tð Þ

2

ð
Ω

ðt
0
g t − sð Þ ∇u sð Þj j2dsdx

≤
α tð Þ
2

ð
Ω

∇uj j2dx
ðt
0
g sð Þds + α tð Þ

2

ð
Ω

ðt
0
g t − sð Þ ∇u sð Þj

−∇u tð Þ+∇u tð Þj

2dsdx:

ð48Þ

For every η > 0, using the Young inequality and (17), we
deduce

α tð Þ
2

ð
Ω

ðt
0
g t − sð Þ ∇u sð Þ−∇u tð Þ+∇u tð Þ½ �2dsdx

≤
α tð Þ
2

ð
Ω

ðt
0
g t − sð Þ ∇u sð Þ−∇u tð Þð Þ2 + 2 ∇u sð Þ−∇u tð Þ ∇ukj j + ∇uj j2� �

dsdx ≤ α tð Þ
2

ð
Ω

ðt
0
g t − sð Þ ∇u sð Þ−∇u tð Þj j2dsdx

+ α tð Þ
2

ð
Ω

ðt
0
g t − sð Þ ∇uj j2dsdx

+ α tð Þ
ð
Ω

ðt
0
g t − sð Þ ∇u sð Þ−∇u tð Þj j ∇uj jdsdx

≤
α tð Þ
2 g∘∇uð Þ tð Þ + α tð Þ

2

ðt
0
g sð Þds

ð
Ω

∇uj j2dx

+ η
α tð Þ
2

ðt
0
g sð Þds

ð
Ω

∇uj j2dx + α tð Þ
2η g∘∇uð Þ tð Þ

≤
α tð Þ
2 1 + ηð Þ

ðt
0
g sð Þds

ð
Ω

∇uj j2dx + α tð Þ
2 1 + 1

η

� �
g∘∇uð Þ tð Þ

≤ 1 + ηð Þ a − lð Þ
2

ð
Ω

∇uj j2dx + α tð Þ
2 1 + 1

η

� �
g∘∇uð Þ tð Þ:

ð49Þ

Summarizing the above estimates, (48) and (49), we
obtain

α tð Þ
ð
Ω

ðt
0
g t − sð Þ∇u sð Þds∇udx ≤ a − lð Þ

2

ð
Ω

∇uj j2dx

+ a − lð Þ
2 1 + ηð Þ

ð
Ω

∇uj j2dx + α tð Þ
2 1 + 1

η

� �
g∘∇uð Þ tð Þ

= 2 + ηð Þ a − lð Þ
2 ∇uk k2 + α tð Þ

2 1 + 1
η

� �
g∘∇uð Þ tð Þ:

ð50Þ
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Setting η = l/ða − lÞ, it is easy to obtain

I1j j ≤ α tð Þ
ð
Ω

ðt
0
g t − sð Þ∇u sð Þds∇udx

≤ a −
l
2

� �
∇uk k22 +

a
2l α tð Þ g∘∇uð Þ tð Þ,

ð51Þ

and by means of the Young inequality, we have

I2j j ≤ cε

ð
Ω

utj jp xð Þdx + ε max μp
−

1 , μp
+

1

	 
ð
Ω

uj jp xð Þdx≔ cε

ð
Ω

utj jp xð Þdx

+ εc2

ð
Ω

uj jp xð Þdx,

ð52Þ

I3j j ≤ cε

ð
Ω

z 1, tð Þj jp xð Þdx

+ ε max μp
−

1 , μp
+

1
	 
ð

Ω

uj jp xð Þdx≔ cε

ð
Ω

z 1, tð Þj jp xð Þdx

+ εc3

ð
Ω

uj jp xð Þdx:

ð53Þ

Substituting (51)–(53) into (47), we deduce

φ′ tð Þ ≤ utk k22 −
l
2 ∇uk k22 + Cε

ð
Ω

uj jp xð Þdx − b ∇uk k42

+ a
2l α tð Þ g∘∇uð Þ tð Þ + cε

ð
Ω

utj jp xð Þdx +
ð
Ω

z 1, tð Þj jp xð Þdx
� �

,

ð54Þ

set Cε = εðc2 + c3Þ > 0, for ε sufficiently small.

Lemma 10. There exists positive constants δ and cδ satisfying

ψ′ tð Þ ≤ −
ðt
0
g sð Þds

� �
− δ

� �
utk k22 + δ a + 2 a − lð Þ2α tð Þ �

∇uk k22

+ δb ∇uk k42 + δ
2σE 0ð Þ

l
e l0/lð Þα 0ð Þ 1

2
d
dt

∇uk k22
� �2

+ Cδ + 2δ + 1
4δ

� �
a − lð Þα tð Þ

� �
g∘∇uð Þ tð Þ

+ cδ

ð
Ω

utj jp xð Þdx +
ð
Ω

z 1, tð Þj jp xð Þdx
� �

−
g 0ð Þc2∗
4δ

g′∘∇u
	 


tð Þ:
ð55Þ

Proof. Similar to Lemma,9 by the first equation (25), we dif-

ferentiate (43), and it yields

ψ′ tð Þ = −
ð
Ω

utt

ðt
0
g t − sð Þ u tð Þ − u sð Þð Þdsdx

−
ð
Ω

ut

ðt
0
g′ t − sð Þ u tð Þ − u sð Þð Þdsdx

−
ðt
0
g sð Þds

� �
utk k22

= a + b ∇uk k22
� �ð

Ω

∇u
ðt
0
g t − sð Þ ∇u tð Þ−∇u sð Þð Þdsdx

+ σ
ð
Ω

∇u∇utdx
ð
Ω

∇u
ðt
0
g t − sð Þ ∇u tð Þ−∇u sð Þð Þdsdx

− α tð Þ
ð
Ω

ðt
0
g t − sð Þ∇u sð Þds

� � ðt
0
g t − sð Þ ∇u tð Þ−∇u sð Þð Þds

� �
dx

+ μ1

ð
Ω

utj jp xð Þ−2ut

ðt
0
g t − sð Þ u tð Þ − u sð Þð Þdsdx

+ μ2

ð
Ω

z 1, tð Þj jp xð Þ−2z 1, tð Þ
ðt
0
g t − sð Þ u tð Þ − u sð Þð Þdsdx

−
ð
Ω

ut

ðt
0
g′ t − sð Þ u tð Þ − u sð Þð Þdsdx −

ðt
0
g sð Þds

� �
utk k22

= 〠
6

i=1
Ii −

ðt
0
g sð Þds

� �
utk k22:

ð56Þ

By the Hölder inequality, Sobolev-Poincaré inequalities,
and (17), we estimate the second part of the right-hand side
in (56).

I1j j ≤ a + b ∇uk k22
� �

δ ∇uk k22 +
l0
4δ g∘∇uð Þ tð Þ

� �

≤ δa ∇uk k22 + δb ∇uk k42 +
al0
4δ + bl0E 0ð Þ

2δl e l0/lð Þα 0ð Þ
� �

g∘∇uð Þ tð Þ,

ð57Þ

I2j j ≤ δσ
ð
Ω

∇u∇utdx
� �2

∇uk k22 +
σl0
4δ g∘∇uð Þ tð Þ

≤ δ
2σE 0ð Þ

l
e l0/lð Þα 0ð Þ 1

2
d
dt ∇uk k22

� �2
+ σl0

4δ g∘∇uð Þ tð Þ,

ð58Þ

I3j j ≤ δα tð Þ
ð
Ω

ðt
0
g t − sð Þ ∇u tð Þ−∇u sð Þj j + ∇u tð Þj jð Þds

� �2
dx

+ 1
4δ α tð Þ

ð
Ω

ðt
0
g t − sð Þ ∇u tð Þ−∇u sð Þj jds

� �2
dx

≤ 2δl20α tð Þ ∇uk k22 + 2δ + 1
4δ

� �
l0α tð Þ g∘∇uð Þ tð Þ,

ð59Þ
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I4j j ≤ cδ

ð
Ω

utj jp xð Þdx + δ max μp
−

1 , μp
+

1

	 
ð
Ω

ðt
0
g t − sð Þ u tð Þ − u sð Þð Þds

� �p xð Þ
dx

≤ cδ

ð
Ω

utj jp xð Þdx + δ max μp
−

1 , μp
+

1
	 


max lp
+−1
0 , lp

−−1
0

	 

max cp

+

∗ , cp−∗
	 
n

ðt
0
g t − sð Þ ∇u tð Þ−∇u sð Þk kp xð Þ

2 ds
�

≤ cδ

ð
Ω

utj jp xð Þdx + δ max μp
−

1 , μp
+

1
	 


max cp
+

∗ , cp−∗
	 


max
n

2E 0ð Þ
l

e l0/lð Þα 0ð Þ
� � p+−2ð Þ/2

, 2E 0ð Þ
l

e l0/lð Þα 0ð Þ
� � p−−2ð Þ/2 !

g∘∇uð Þ tð Þg≔ cδ

ð
Ω

utj jp xð Þdx + δc4 g∘∇uð Þ tð Þ:

ð60Þ

Similarly,

I5j j ≤ cδ

ð
Ω

z 1, tð Þj jp xð Þdx + δc5 g∘∇uð Þ tð Þ,

I6j j ≤ δ utk k22 −
g 0ð Þc2∗
4δ g′∘∇u

	 

tð Þ:

ð61Þ

Comparing these above estimates (57)–(61), we have

ψ′ tð Þ ≤ −
ðt
0
g sð Þds − δ

� �
utk k22 + δ a + 2l20α tð Þ �

∇uk k22

+ δb ∇uk k42 + δ
2σE 0ð Þ

l
e l0/lð Þα 0ð Þ 1

2
d
dt ∇uk k22

� �2

+ Cδ + 2δ + 1
4δ

� �
l0α tð Þ

� �
g∘∇uð Þ tð Þ

+ cδ

ð
Ω

utj jp xð Þdx +
ð
Ω

z 1, tð Þj jp xð Þdx
� �

−
g 0ð Þc2∗
4δ g′∘∇u

	 

tð Þ,

ð62Þ

where Cδ = fal0/4δ + ðbl0Eð0Þ/2δlÞeðl0/lÞαð0Þ + σl0/4δ + δðc4
+ c5Þg:

Lemma 11. There exists positive constants C3,C4, and t0 sat-
isfying

L′ tð Þ ≤ −C3α tð ÞE tð Þ + C4α tð Þ g∘∇uð Þ tð Þ, t > t0: ð63Þ

Proof. Since g > 0 and is continuous, then for any t ≥ t0 > 0,
we get

ðt
0
g sð Þds ≥

ðt0
0
g sð Þds = g0 > 0: ð64Þ

Differentiate (41), and using Lemmas 9 and 10, we get

L′ tð Þ =NE′ tð Þ + ε1α′ tð Þφ tð Þ + ε1α tð Þφ′ tð Þ + ε2α′ tð Þψ tð Þ + ε2α tð Þψ′ tð Þ
≤ −α tð Þ ε2 g0 − δð Þ − ε1f g utk k22
− α tð Þ ε1Cε − ε2δ a + 2l20

� �
α tð Þ �

∇uk k22
− α tð Þ b ε1 − ε2δð Þð Þ utk k42
− α tð Þ σ − ε2δ

σE 0ð Þ
l

e l0/lð Þα 0ð Þ
� � 1

2
d
dt

∇uk k22
� �2

+ α tð Þ ε1
α tð Þ
4 + ε2Cδ + ε2 2δ + 1

4δ

� �
l0α tð Þ

� �
g∘∇uð Þ tð Þ

+ α tð Þ N
2 − ε2

g 0ð Þc2∗
4δ

� �
g′∘∇u
	 


tð Þ

− α tð Þ c0
α 0ð Þ − ε1cε − ε2cδ

� �ð
Ω

utj jp xð Þdx

− α tð Þ c1
α 0ð Þ − ε1cε − ε2cδ

� �ð
Ω

z 1, tð Þj jp xð Þdx

−
Nα′ tð Þ

2

ðt
0
g sð Þds

� �
∇uk k22 + ε1α′ tð Þ

ð
Ω

uutdx

+ ε2α′ tð Þ
ð
Ω

ut

ðt
0
g t − sð Þ u tð Þ − u sð Þð Þdsdx:

ð65Þ

Indeed,

α′ tð Þ
ð
Ω

uutdx + α′ tð Þ
ð
Ω

ut

ðt
0
g t − sð Þ u tð Þ − u sð Þð Þdsdx

≤ −α′ tð Þ c
2
∗
2 ∇uk k22 − α′ tð Þ utk k22 − α′ tð Þ c

2
∗
2

ðt
0
g sð Þds

� �
g∘∇uð Þ tð Þ:

ð66Þ

Thus,

L′ tð Þ ≤ −α tð Þ ε2 g0 − δð Þ − ε1 +
α′ tð Þ
α tð Þ

( )
utk k22

− α tð Þ ε1Cε − ε2δ a + 2l20
� �

α 0ð Þ + Nα′ tð Þ
2α tð Þ

ðt
0
g sð Þds

� �
+ c2∗α′ tð Þ

2α tð Þ

( )

∇uk k22 − α tð Þb ε1 − ε2δð Þ ∇uk k42 − α tð Þ σε1 − ε2δ
σE 0ð Þ

l
e l0/lð Þα 0ð Þ

� �
1
2
d
dt ∇uk k22

� �2

+ α tð Þ ε1
α tð Þ
4 + ε2Cδ + ε2 2δ + 1

4δ

� �
l0α tð Þ − c2∗α′ tð Þ

2α tð Þ
ðt
0
g sð Þds

� �( )

g∘∇uð Þ tð Þ + α tð Þ N
2 − ε2

g 0ð Þc2∗
4δ

� �
g′∘∇u
	 


tð Þ − α tð Þ
c0

α 0ð Þ − ε1cε − ε2cδ

� �ð
Ω

utj jp xð Þdx − α tð Þ c1
α 0ð Þ − ε1cε − ε2cδ

� �
ð
Ω

z 1, tð Þj jp xð Þdx:

ð67Þ

Fix δ > 0 such that

g0 − δ > 1
2g0,

δ

Cε

a + 2l20
� �

α 0ð Þ < 1
4g0, ð68Þ
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and take ε1 and ε2 small enough to satisfy

g0
4 ε2 < ε1 < ε2

g0
2 ,

c5 = ε2 g0 − δð Þ − ε1 > 0,
c6 = ε1Cε − ε2δ a + 2l20

� �
α 0ð Þ > 0:

ð69Þ

Select ε1 and ε2 small enough to make (44) and (67)
hold, and moreover

b ε1 − ε2δð Þ > 0, σε1 − ε2δ
σE 0ð Þ

l
e l0/lð Þα 0ð Þ > 0, N2 − ε2

g 0ð Þc2∗
4δ > 0

c0
α 0ð Þ − ε1cε − ε2cδ > 0, c1

α 0ð Þ − ε1cε − ε2cδ > 0:

ð70Þ

Hence, for a generic positive constant c, (67) is equal to
the following results:

L′ tð Þ ≤ −α tð Þ c + α′ tð Þ
α tð Þ

( )
utk k22

− α tð Þ c + α′ tð Þ
2α tð Þ

ðt
0
g sð Þds

� �
+ c2∗

2

� �( )
∇uk k22

+ α tð Þ c −
c2∗g0α′ tð Þ
2α tð Þ

( )
g∘∇uð Þ tð Þ,∀t ≥ t0:

ð71Þ

Noticing that limt⟶∞ − α′ðtÞ/ξðtÞαðtÞ = 0, so choose t1
> t0, we see

L′ tð Þ ≤ −α tð Þ c utk k22 + C ∇uk k22
� �

+ c g∘∇uð Þ tð Þ
≤ −C3α tð ÞE tð Þ + C4α tð Þ g∘∇uð Þ tð Þ,∀t ≥ t1,

ð72Þ

where C3 and C4 are positive constants.

Now, we are in the position to prove Theorem 4.

Proof of Theorem 4. According to Lemma 5, Lemma 11, and
(17), we have

ζ tð ÞL′ tð Þ ≤ −C3α tð Þζ tð ÞE tð Þ + C4α tð Þζ tð Þ g∘∇uð Þ tð Þ
≤ −C3α tð Þζ tð ÞE tð Þ − C4α tð Þ g′∘∇u

	 

tð Þ

≤ −C3α tð Þζ tð ÞE tð Þ
− C4 2E′ tð Þ + α′ tð Þ

ðt
0
g sð Þds

� �
∇uk k22

� �
:

ð73Þ

Since ζðtÞ is nonincreasing, by assumption (17) and the

definition of EðtÞ, we get

l
2 ∇uk k22 ≤ E tð Þ,

d
dt ζ tð ÞL tð Þ + 2C4E tð Þð Þ ≤ −C3α tð Þζ tð ÞE tð Þ

− C4α′ tð Þ
ðs
0
g sð Þds

� �
∇uk k22,

ð74Þ

which leads to

d
dt ζ tð ÞF tð Þ + 2C4E tð Þð Þ ≤ −C3α tð Þζ tð ÞE tð Þ

− C4α′ tð Þ
ðt
0
g sð Þds

� �
∇uk k22 ≤ −C3α tð Þζ tð ÞE tð Þ

−
2C4E tð Þ

l
α′ tð Þ

ðt
0
g sð Þds ≤ −α tð Þζ tð Þ C3 +

2C4l0α′ tð Þ
lα tð Þζ tð Þ

 !
E tð Þ:

ð75Þ

Since limt⟶∞ − α′ðtÞ/αðtÞζðtÞ = 0, we can choose t1 ≥ t0
such that C3 + 2C4l0α′ðtÞ/lαðtÞζðtÞ > 0 for t ≥ t1: Hence, if
we let

L tð Þ = ζ tð ÞL tð Þ + 2C4E tð Þ, ð76Þ

then it is obvious thatLðtÞ is equivalent to EðtÞ and satisfies

L ′ tð Þ ≤ −kζ tð Þα tð ÞL tð Þ for t ≥ t1: ð77Þ

Consequently, to integrate (77) over ðt1, tÞ, it yields

L tð Þ ≤L t1ð Þe−C
Ð t

t1
ζ sð Þα sð Þds

t ≥ t0: ð78Þ

Thus, the desired result yields from the equivalence relations
of LðtÞ,LðtÞ, and EðtÞ.
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