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In this paper, we concern with the split feasibility problem (SFP) whenever the convex sets involved are composed of level sets. By
applying Gradient-projection algorithm which is used to solve constrained convex minimization problem of a real valued convex
function, we construct two new algorithms for the split feasibility problem and prove that both of them are convergent weakly to a
solution of the feasibility problem. In the end, as an application, we obtain a new algorithm for solving the split equality problem.

1. Introduction

The split feasibility problem (SFP) was first introduced by
Censor and Elfving [1]. And it is formulated as finding a
point x satisfying the property:

x ∈C and Ax ∈Q, ð1Þ

where C and Q are nonempty, closed, and convex subsets of
real Hilbert spaces H 1 and H 2, respectively, and A is a
bounded linear operator from H 1 to H 2.

Many inverse problems arising from real world can be
summarized as SFP. So, the SFP has attracted many scholars
to study it. Of course, various algorithms by far have been
invented to solve the SFP (see, e.g., [2–9]). And one of the
most famous methods for solving the SFP is CQ algorithm
which is introduced by Byrne. Take an initial guess x0 ∈
H 1 and define a recursively equation as

xn+1 = PC I − αA∗ I − PQð ÞA½ �xn, ð2Þ

where 0 < α < 2/L and L denotes the largest eigenvalue of the
matrix ATA. Later, Byrne introduced another recursively
equation as

xn+1 = PC I − αnA
∗ I − PQð ÞA½ �xn, ð3Þ

where 0 < αn < 2/∥A∥2. Byrne has shown that the sequence
fxng produced by (2) or (3) is convergent weakly to a solu-
tion of the SFP (1). From (2) and (3), we know that we have
first to compute or estimate the largest eigenvalue of the
matrix ATA and the operator norm ∥A∥2 before imple-
menting algorithms. However, computing or estimating the
matrix norm is in general not an easy work in practice. So
the conditions that Byrne put on his proposed two algo-
rithms seem restrictive. Recently, Lopez et al. [10] proposed
a novel way to construct another stepsize which has no con-
nection with eigenvalue and matrix norm. And Lopez et al.
suggested the following stepsize:

αn =
∥ I − PQð ÞAxn∥2

∥A∗ I − PQð ÞAxn∥2
, ð4Þ

and showed the weak convergence of the CQ algorithm (3).
In this paper, we consider the SFP whenever both C and

Q are level sets for given strongly convex function, that is,

C = x ∈H1 c xð Þ ≤ 0jf g, ð5Þ

Q = y ∈H2 q yð Þ ≤ 0jf g, ð6Þ

Hindawi
Journal of Function Spaces
Volume 2022, Article ID 9991466, 6 pages
https://doi.org/10.1155/2022/9991466

https://orcid.org/0000-0003-4478-7135
https://orcid.org/0000-0002-4817-5227
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9991466


where c : H 1⟶ð−∞,+∞� is an α-strongly convex lower
semicontinuous function and q : H 2⟶ð−∞,+∞� is a β
-strongly convex lower semicontinuous function. However,
in general, computing the orthogonal projections onto C

and Q is not an easy task. To overcome this difficulty, Yu
et al. [11] have considered the case when fCng and fQng
are two sequences of balls defined, respectively, by

Cn = x ∈H 1 c xnð Þ ≤ ξn, xn − xh i − α

2
��� x − xnk k2

n o
, ξn ∈ ∂c xnð Þ,

ð7Þ

Qn = y ∈H 2 q Axnð Þ ≤ ηn, Axn − yh i − β

2

���� y − Axnk k2
� �

, ηn ∈ ∂q Axnð Þ,

ð8Þ

where c and q are strongly convex functions with constant α
and β, respectively. Yu et al. [11] have shown that Cn is a
ball whose centre is xn − ð1/αÞξn and radius isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1/α2Þkξnk2 − ð2/αÞcðxnÞ
q

. And Qn is also a ball whose cen-

tre is Axn − ð1/βÞηn and radius isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1/β2Þkηnk2 − ð2/βÞqðAxnÞ

q
. It is easy to see that C ⊆Cn

and Q ⊆Qn for any n ≥ 0. Since Cn and Qn are balls, the
associated projections can be easily calculated.

The rest of this paper is organized as follows. In Section
2, we review some basic definitions and lemmas that we will
use in the remaining sections. In Section 3, we introduce two
new ball-relaxed gradient-projection algorithms for solving
the SFP and prove the weak convergence of our algorithms.
In Section 4, according to the algorithms that we suggest in
Section 3, we obtain a new iterative algorithm for solving the
split equality problem and establish its weak convergence.

2. Preliminaries

Throughout this paper, we always assume thatH iði = 1, 2Þ is
a real Hilbert space with the inner product h⋅ , ⋅i and norm
∥⋅ ∥. We denote by I the identity operator on H iði = 1, 2Þ
and by wwðxnÞ the set of all cluster points of fxng. The nota-
tion “⟶”stands for strong convergence, and “⇀ ” stands
for weak convergence.

Definition 1 ([12]). Let D be a nonempty subset of H 1, and
let T : D⟶H 1. Then, T is

(1) Nonexpansive if it is Lipschitz continuous with con-
stant 1, i.e.,

∥Tx − Ty∥≤∥x − y∥, ∀x, y ∈D: ð9Þ

(2) Firmly nonexpansive if

∥Tx − Ty∥2+∥ I − Tð Þx − I − Tð Þy∥2 ≤ ∥x − y∥2, ∀x ∈D, y ∈D:

ð10Þ

(3) v-inverse strongly monotone (v-ism, v > 0) if

Tx − Ty, x − yh i ≥ v∥Tx − Ty∥2, ∀x ∈D, y ∈D: ð11Þ

Definition 2. Let C be a nonempty closed convex subset of
H 1. Then, an orthogonal projection PC : H 1 ⟶C is
defined by

PCx = arg min
y∈C

∥x − y∥2, x ∈H 1: ð12Þ

Lemma 3. Let C be a nonempty closed convex subset of H 1;
then,

(1) For every x and p in H 1

p = PCx⇔ p ∈C and  ∀y ∈Cð Þ  x − p, y − ph i ≤ 0f g:
ð13Þ

(2) PC and I − PC both are nonexpansive

Definition 4 (see [12]). Let λ ∈ ð0, 1Þ and f : H 1⟶ð−∞,+
∞� be a proper function.

(1) f is convex if

f λx + 1 − λð Þyð Þ ≤ λf xð Þ + 1 − λð Þf yð Þ,∀x, y ∈H1: ð14Þ

(2) f is strongly convex with constant α where α > 0 if

f λx + 1 − λð Þyð Þ + α

2 λ 1 − λð Þ x − yk k2 ≤ λf xð Þ + 1 − λð Þf yð Þ,∀x, y ∈H 1:

ð15Þ

(3) A vector u ∈H 1 is a subgradient of a point x if

y − x, uh i + f xð Þ ≤ f yð Þ,∀y ∈H 1: ð16Þ

(4) The subdifferential of f is the set-valued operator
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∂f : H ⟶ 2H
: x⟶ u ∈H ∀y ∈Hð Þ y − x, uh i + f xð Þ ≤ f yð Þjf g: ð17Þ

(5) f is subdifferentiable at x ∈H if ∂f ðxÞ ≠∅; the ele-
ments of ∂f ðxÞ are the subgradients f at x

Definition 5. Let f : H1⟶ð−∞,+∞� be a proper function;
then, we can obtain the following:

(1) f is lower semicontinuous at a point x if xn ⟶ x
implies

f xð Þ ≤ liminf
n⟶∞

f xnð Þ: ð18Þ

(2) f is weakly lower semicontinuous at a point x if xn
⇀ x implies

f xð Þ ≤ liminf
n⟶∞

f xnð Þ: ð19Þ

(3) f is lower semicontinuous on H 1 if it is lower semi-
continuous at any point x ∈H 1

(4) f is weakly lower semicontinuous on H 1 if it is
weakly lower semicontinuous at any point x ∈H 1

Lemma 6 (see [12]). Assume that f : H 1⟶ð−∞,+∞� is a
proper convex function; then, f is a lower semicontinuous
function if and only if it is a weakly lower semicontinuous
function.

Definition 7. Let C be a nonempty closed convex subset in
H 1, and fxng is a sequence in H 1, if for any n ≥ 0 and z ∈
C , we have

∥xn+1 − z∥≤∥xn − z∥, ð20Þ

and then, we say that the sequence fxng is Fejér-monotone
with respect to C .

Lemma 8 (see [12]). Assume that a sequence fxng in H 1 is
Fejér-monotone with respect to C which is a nonempty closed
convex subset of H 1; then, fxng is weakly convergent to a
point of C if and only if its any weak cluster point belongs
to C .

3. The Algorithm Proposed and Proved

In this section, we still concern with the case the involved
subsets are composed of level sets, that is, the case whenever
C and Q are given by (5) and (6). In this case, we shall

assume that problem (1) is consistent, namely, its solution
set, denoted by S , is nonempty. Besides, we need to assume
that ∂c and ∂q are bounded on bounded sets.

We know that, in H 1, when consider the constrained
convex minimization problem of a real valued convex func-
tion f : C ⟶ R, one of the most famous methods is the gra-
dient projection algorithm (GPA) that generates a sequence
fxng according to the recursive formula

xn+1 = PC xn − αn∇f xnð Þð Þ, n ≥ 0, ð21Þ

where the parameter fαng is a sequence of positive real num-
bers. And if ∇f is Lipschitz continuous with constant L ≥ 0
and the parameter sequence fαng satisfies 0 < liminf

n⟶∞
αn ≤

limsup
n⟶∞

αn < 2/L, Xu [13] showed that the sequence fxng gen-

erated by the GPA converges weakly to a minimizer of f .
We know that the solution of the SFP amounts to

unconstrained minimization of

f xð Þ = 1
2 ∥ I − PCð Þx∥2 + 1

2 ∥ I − PQð ÞAx∥2, ð22Þ

and ∇f = I − PC + A∗ðI − PQÞA. By a simple calculation, we
have ∇f is Lipschitz continuous with 2+∥A∥2. In this case,
method (21) is reduced to

xn+1 = PC xn − αn I − PCð Þxn + A∗ I − PQð ÞAxn½ �f g: ð23Þ

From the above equation, we know that the implementa-
tion of the above iterative algorithm needs to calculate the pro-
jections onto C and Q first. Since C and Q are both level sets
defined by (5) and (6), it is very difficult to calculate the projec-
tion onto the level set at each step. To facilitate the computa-
tion of the projection onto C and Q, we will compute the
projections onto Cn and Qn which were defined by (7) and
(8) instead of C and Q. Now, we give our ball-relaxed
gradient-projection algorithm for solving the SFP (1).

Algorithm 1. Let x0 be arbitrary, and generate fxng accord-
ing to the following iterative formula.

xn+1 = PCn
xn − αn I − PCn

� �
xn + A∗ I − PQn

� �
Axn

� 	
 �
, ð24Þ

where Cn and Qn are defined by (7) and (8), and the param-
eter sequence fαng satisfies 0 < a ≤ αn ≤ b < 2/L, where a and
b are two positive real numbers and L = 2+∥A∥2.

Theorem 9. Let fxng be the sequence generated by Algo-
rithm 1; then, fxng converges weakly to a solution of the
SFP (1).

Proof. On the one hand, we will show that the sequence fxng
is Fejér-monotone with respect to S.

Now, denoted ðI − PCn
Þxn + A∗ðI − PQn

ÞAxn by un; then,
(24) is equivalent to xn+1 = PCn

ðxn − αnunÞ. For any z ∈ S ,
that is, z ∈C ⊆Cn, and Az ∈Q ⊆Qn, we have
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∥xn+1 − z∥2 = ∥PCn
xn − αnunð Þ − z∥2 ≤ ∥xn − z − αnun∥

2

= ∥xn − z∥2 − 2αn xn − z, unh i + α2n∥un∥
2:

ð25Þ

From Lemma 3, we obtain

xn − z, unh i = xn − z, I − PCn

� �
xn + A∗ I − PQn

� �
Axn

� 

= xn − z, xn − PCn

xn
� 


+ Axn − Az, Axn − PQn
Axn

� 

≥ ∥xn − PCn

xn∥
2+∥Axn − PQn

Axn∥
2:

ð26Þ

Besides,

∥un∥
2 = ∥xn − PCn

xn + A∗ I − PQn
Axn

� �
∥2

≤ 1+∥A∥2
� �

∥xn − PCn
xn∥

2 + 1 + 1
∥A∥2

� �
∥A∗ I − PQn

� �
Axn∥

2

≤ 1+∥A∥2
� �

∥xn − PCn
xn∥

2+∥ I − PQn

� �
Axn∥

2� �
:

ð27Þ

Substituting (26) and (27) into (25), we have

∥xn+1 − z∥2 ≤ ∥xn − z∥2 − 2αn ∥xn − PCn
xn∥

2+∥ I − PQn

� �
Axn∥

2� �
+ α2n 1+∥A∥2

� �
∥xn − PCn

xn∥
2+∥ I − PQn

� �
Axn∥

2� �
= ∥xn − z∥2 − αn 2 − αn 1+∥A∥2

� �� 	
� ∥xn − PCn

xn∥
2+∥ I − PQn

� �
Axn∥

2� �
:

ð28Þ

Since 0 < a ≤ αn ≤ b < 2/2+∥A∥2, we can obtain αn½2 − αn
ð1+∥A∥2Þ� > 0. The above inequality (28) implies that fxng
is Fejér-monotone with respect to S.

On the other hand, we will show that any weak cluster
point of the sequence fxng belongs to the solution set S ,
i.e., wwðxnÞ ⊆ S .

The inequality (28) implies that the sequence f∥xn − z∥g
is bounded and converges to some finite limit. Passing to the
limit in (28), we have

lim
n⟶∞

∥xn − PCn
xn∥

2+∥Axn − PQn
Axn∥

2� �
= 0, ð29Þ

that is,

lim
n⟶∞

∥xn − PCn
xn∥ = 0,  lim

n⟶∞
∥Axn − PQn

Axn∥ = 0: ð30Þ

Besides, since the sequence fxng is Fejér-monotone with
respect to S , it is bounded, and so is the sequence fAxng.
Then, there exists a subsequence fxnkg of fxng convergent
weakly to �x ð�x ∈wwðxnÞÞ. What is more, due to ∂c and ∂q
are bounded on bounded sets, there are two constants β >
0 and δ > 0, such that ∥ξn∥≤β and ∥ζn∥≤δ for all ξn ∈ ∂cðxn
Þ, ζn ∈ ∂qðAxnÞ with n ≥ 0.

From (7) and the fact that PCnk
xnk ∈Cnk

, we obtain

c xnk
� �

≤ ξnk , xnk − PCnk
xnk

D E
−
α

2 ∥xnk − PCnk
xnk∥

2

≤ ξnk , xnk − PCnk
xnk

D E
≤ ∥ξnk∥ ⋅ ∥xnk − PCnk

xnk∥

≤β∥xnk − PCnk
xnk∥⟶0,  k⟶∞ð Þ:

ð31Þ

Since c is convex and lower semicontinuous, then it is
also weakly lower semicontinuous by Lemma 6. This
together with (31) implies that

c �xð Þ ≤ liminf
n⟶∞

c xnk
� �

≤ 0: ð32Þ

It turns out that �x ∈C .
Similarly, from (8) and the fact that PQnk

Axnk ∈Qnk
, we

obtain

q Axnk
� �

≤ ηnk , Axnk − PQnk
Axnk

D E
−
β

2 ∥Axnk − PQnk
Axnk∥

2

≤ ηnk , Axnk − PQnk
Axnk

D E
≤ ∥ηnk∥ ⋅ ∥Axnk − PQnk

Axnk∥

≤δ∥Axnk − PQnk
Axnk∥⟶0,  k⟶∞ð Þ:

ð33Þ

Since q is convex and lower semicontinuous, then it is
also weakly lower semicontinuous by Lemma 6. This
together with (33) implies that

q A�xð Þ ≤ liminf
n⟶∞

q Axnk
� �

≤ 0: ð34Þ

It turns out that A�x ∈Q. Then, �x ∈ S which implies that
wwðxnÞ ⊆ S . From Lemma 8, we can get fxng converges
weakly to �x as n⟶∞. This completes the proof.

From Algorithm 1, we know that we have first to esti-
mate the operator norm ∥A∥2 so that we can select appropri-
ate parameters to implement Algorithm 1. However,
computing or estimating the matrix norm ∥A∥2 is not an
easy work in practice. To overcome this difficulty, we con-
struct a variable stepsize that does not require the matrix
norm.

Algorithm 2. Let x0 be arbitrary, and generate fxng accord-
ing to the following iterative formula.

xn+1 = PCn
xn − αn I − PCn

� �
xn + A∗ I − PQn

� �
Axn

� 	
 �
, ð35Þ

where Cn and Qn are defined by (7) and (8), and the param-
eter sequence fαng is given by

αn =
λn
a

∥ I − PCn

� �
xn∥

2+∥ I − PQn

� �
Axn∥

2

∥ I − PCn

� �
xn + A∗ I − PQn

� �
Axn∥

2 , ð36Þ

where fλng is a sequence of positive real numbers and a is
any positive real number.

4 Journal of Function Spaces



Theorem 10. Let fxng be the sequence generated by Algo-
rithm 2; if 0 < ε ≤ λn ≤ 2a − ε, then fxng converges weakly to
a solution of the SFP (1).

Proof. For any z ∈ S, that is, z ∈C ⊆Cn, and Az ∈Q ⊆Qn, we
have

∥xn+1 − z∥2 = ∥PCn
xn − αnunð Þ − z∥2 ≤ ∥xn − z − αnun∥

2

= ∥xn − z∥2 − 2αn xn − z, unh i + α2n∥un∥
2:

ð37Þ

From Lemma 8, we obtain

xn − z, unh i = xn − z, I − PCn

� �
xn + A∗ I − PQn

� �
Axn

� 

= xn − z, xn − PCn

xn
� 


+ Axn − Az, Axn − PQn
Axn

� 

≥∥xn − PCn

xn∥
2+∥Axn − PQn

Axn∥
2:

ð38Þ

Substituting (36) and (38) into (37), we have

∥xn+1 − z∥2 ≤ ∥xn − z∥2 −
λn
a

2 − λn
a

� � ∥xn − PCn
xn∥

2+∥Axn − PQn
Axn∥

2� �2
∥xn − PCn

xn + A∗ I − PQn

� �
Axn∥

2

≤ ∥xn − z∥2 −
ε2

a2
∥xn − PCn

xn∥
2+∥Axn − PQn

Axn∥
2� �2

∥xn − PCn
xn + A∗ I − PQn

� �
Axn∥

2 :

ð39Þ

The above inequality (39) implies that fxng is Fejér-
monotone with respect to S .

Nextly, we show that any weak cluster point of the
sequence fxng belongs to the solution set S, i.e., wwðxnÞ ⊆ S
. The inequality (39) implies that the sequence f∥xn − z∥g
is bounded and converges to some finite limit. Passing to
the limit in (39), we have

lim
n⟶∞

∥xn − PCn
xn∥

2+∥Axn − PQn
Axn∥

2

∥xn − PCn
xn + A∗ I − PQn

� �
Axn∥

= 0, ð40Þ

while

lim
n⟶∞

∥xn − PCn
xn∥

2+∥Axn − PQn
Axn∥

2� �

= lim
n⟶∞

∥xn − PCn
xn∥

2+∥Axn − PQn
Axn∥

2

∥xn − PCn
xn + A∗ I − PQn

� �
Axn∥

⋅ ∥xn − PCn
xn + A∗ I − PQn

� �
Axn∥ = 0,

ð41Þ

so, we obtain

lim
n⟶∞

∥xn − PCn
xn∥ = 0,  lim

n⟶∞
∥Axn − PQn

Axn∥ = 0: ð42Þ

The rest proof is similar to Theorem 9.

Remark 11. Recently, there are some new results about SFP,
such as Shehu and Gibali introduced a relaxed CQ method
with alternated inertial step for solving SFP in [14]; Shehu

et al. introduced some new computational technique for
solving proximal SFP by using a modified proximal split fea-
sibility algorithm in [15–17]. Our computational techniques
are different from theirs.

4. Application in the Split Equality Problem

The split equality (SEP) is an inverse problem that requests
to finding

x, yð Þ ∈C ×Q, s:t: Ax = By, ð43Þ

where A : H1 ⟶H 3 and B : H 2 ⟶H 3 are two linear
bounded operators, and C ⊂H 1 and Q ⊂H 2 are two non-
empty closed convex subsets.

We know that, for any X = ðx1, x2Þ and Y = ðy1, y2Þ in
H 1 ×H 2, if we defined

X ,Yh i = x1, y1h i + x2, y2h i,
∥X∥2 = ∥x1∥

2+∥x2∥2,
AX = Ax1 − Bx2,

ð44Þ

where A and B are defined as the same to (43). Then, it has
been proved that A is a bounded linear operator [11], and
the SEP can be regarded as a special SFP: find X = ðx, yÞ ∈
H 1 ×H 2, such that

X ∈C , AX ∈Q, ð45Þ

where C =C ×Q, Q = f0g. Motivated by (35), we can pro-
pose a new method for solving the SEP (43).

Algorithm 3. For any arbitrary initial guess ðx0, y0Þ, define
ðxn, ynÞ recursively by the following.

xn+1 = PCn
xn − αn xn − PCn

xn + A∗ Axn − Bynð Þ� �� 	
,

yn+1 = PQn
yn − αn yn − PQn

yn − B∗ Axn − Bynð Þ� �� 	
,

ð46Þ

where Cn and Qn are, respectively, given by (7) and (8), and
parameter sequence fαng is chosen as

αn =
λn
a

∥xn − PCn
xn∥

2+∥yn − PQn
yn∥

2+∥Axn − Byn∥
2

∥xn − PCn
xn + A∗ Axn − Bynð Þ∥2+∥yn − PQn

yn − B∗ Axn − Bynð Þ∥2 ,

ð47Þ

where fλng is a sequence of positive real numbers, and a is
any positive real number.

Theorem 11. Let fðxn, ynÞg be the sequence generated by
Algorithm 3, and if 0 < ε ≤ λn ≤ 2a − ε, then fðxn, ynÞg con-
verges weakly to a solution of the SEP (43).

Proof. Let Xn = ðxn, ynÞ, and A : H 1 ×H 2 ⟶H 3 is a
bounded linear operator which is defined by AX = Ax − By
; then, Algorithm 3 can be rewritten as
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Xn+1 = PCn
Xn − αn Xn − PCn

Xn +A∗ I − P 0f g
� �

AXn

� �h i
,

ð48Þ

where Cn =Cn ×Qn. Hence, by applying Theorem 10, we
can conclude that Xn converges weakly to a solution of the
SEP (43).
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