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In this article, a new version of the generalized F-expansion method is proposed enabling to obtain the exact solutions of the
Biswas-Arshed equation and Boussinesq equation defined by Atangana’s beta-derivative. First, the new version generalized F-
expansion method is introduced, and then, the exact solutions of the nonlinear fractional differential equations expressed with
Atangana’s beta-derivative are given. When the results are examined, it is seen that single, combined, and mixed Jacobi elliptic
function solutions are obtained. From the point of view, it is understood that the new version generalized F-expansion method
can give significant results in finding the exact solutions of equations containing beta-derivatives.

1. Introduction

In recent years, many articles have been published on
obtaining numerical and exact solutions of some physical
phenomena that can be mathematically modeled using frac-
tional derivatives [1-4]. Many physical phenomena are usu-
ally expressed in nonlinear fractional partial differential
equations. These equations have application areas such as
biology, engineering, dynamics, control theory, signal pro-
cessing, chemistry, continuum mechanics, and physics,
respectively. There are different types of fractional derivative
operators defined in the literature. Examples of these deriva-
tive operators are Riemann-Liouville derivative [5], Jumarie’s
modified Riemann-Liouville derivative [6], Caputo derivative
[7], Caputo-Fabrizio [8], and Atangana-Baleanu derivative
[9]. It is very substantial to find the exact solutions of the non-
linear fractional differential equations. Different methods aim-
ing to find analytical, numerical, and exact solutions of the
nonlinear partial differential equations including these deriva-
tive operators have been improved as follows: unified method
[10], modified trial equation method [11], extended trial equa-
tion method [12], fractional local homotopy perturbation

transformation method [13], Fourier spectral method [14],
variational iteration method [15], Laplace transforms [16],
Chebyshev-Tau method [17], finite difference method [18],
finite element method [19], etc.

A new definition of the fractional derivative called as
conformable derivative has been given, and the exact solu-
tions of the time-heat differential equation created by using
this derivative are obtained [20, 21]. In later years, Atangana
et al. [22] gave some new features and definitions about the
conformable derivative. By using these definitions and prop-
erties, some methods have been applied [23, 24]. In the next
year, a new definition of fractional derivative called as beta-
derivative was given by Atangana et al. [25]. In that article,
they obtained the analytical solution of the Hunter-Saxton
equation. Exact solutions of the Hunter-Saxton, Sharma-
Tasso-Olver, space-time fractional modified Benjamin-
Bona-Mahony, and time fractional Schrédinger equations
expressed by Atangana’s beta-derivative are obtained by
using the first integral method [26]. They applied the frac-
tional subequation method to obtain the exact solutions of
the space-time conformable generalized Hirota-Satsuma
coupled KdV equation, coupled mKdV equation, and
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space-time resonance nonlinear Schrodinger equations cre-
ated with Atangana’s beta-derivative [27, 28]. Ghanbari
and Gomez-Aguilar attained the exact solutions by applying
the generalized exponential rational function method to the
Radhakrishnan-Kundu-Lakshmanan equation with Atanga-
na’s beta-derivative [29]. Like the problems discussed in this
article, it is very difficult to find analytical and numerical
solutions for nonlinear partial differential equations involv-
ing fractional order derivative, especially problems with
complex coeflicients and absolute value functions. For this
reason, the motivation to research the exact solutions of
these problems has occurred. From this point of view, it is
considered to apply the new version generalized F-
expansion method in order to determine solutions such as
rational forms of Jacobi elliptic functions that are not in
the literature. The double-period Jacobi elliptic functions
and their rational combinations, which cannot be found by
every method in the literature, can be reached with a new
generalized F-expansion method. This method can be suc-
cessfully applied to a wide variety of equations.

In this article, for the first time, the new version general-
ized F-expansion method has been investigated in order to
find the exact solutions of the differential equations consisting
of Atangana’s beta-derivative. With this offered method, it is
aimed at finding new and several exact solutions of fractional
order differential equations that are not actual in the literature.
This method, which has been discussed in some studies in the
literature, has been applied to various nonlinear partial differ-
ential equations [30-32]. There are different F-expansion
methods that allow procuring the elliptic function solutions,
which are among these exact solutions [33-36].

Firstly we will investigate the exact solutions of the
Biswas-Arshed equation with Atangana’s beta-derivative:

ADf% + ki + kit DL (9,) +i(h g + 1D (9,0))
—i(e(|o’¢), +ug(1¢"), +61¢I°4,) =0, (0<B=1),
(1)

where ¢ = ¢(x, t) is a complex function [37-40]; k, and k,
are the parameters of the group velocity dispersion and the
spatiotemporal dispersion, respectively; I, and I, are the
parameters of the third-order dispersion and the spatiotem-
poral third-order dispersion, respectively; ¢ is the parameter
of the self-steepening effect; and p and 6 present the param-
eters of the nonlinear dispersions. Also, we will research the
exact solutions of the Boussinesq equation with the beta-
derivative [41]

ADPW + bDPPW + <D (V2) +yD¥W =0, (0<B<1),
(2)

where b, ¢, and y are constants. Also, c is the parameter con-
trolling nonlinearity, and y is the dispersion parameter
depending on the rigidity characteristics of the material
and compression.

Journal of Function Spaces

The remaining lines of the article are regulated as fol-
lows: in Section 2, Atangana’s conformable fractional deriv-
ative and its properties are given. In Section 3, the new
version generalized F-expansion method is explained in detail.
Applications of the method are given in Sections 4 and 5. This
article is completed with conclusions in Section 6.

2. The Properties and Definition of Beta-
Derivative

There are different definitions of the conformable fractional
derivatives in literature. One of them is given by Khalil et al.
in the paper [20]. Then, Abdeljawad developed the basic
concepts in this conformable fractional calculus [42]. The
conformable derivative of the function g : [0,00) of the order
a from type t >0, a € (0, 1) is as follows:

Di{g(0) = lim ILFE) 290,

e—0 &

(3)

When g which is a-differentiable in the interval of (0, a),
a>0and lirr})+ g\ (t) exists, then it can be defined as g(® (0)
= lim g¥(t).

e—0"
The other conformable fractional derivative called as the
beta-derivative is defined in [22] as

3D {g(1)) = tim 2L WI@)T) ~0(t)

e—0 &

(4)

The mathematical model considered in the study that
depends on Atangana’s conformable fractional derivative is
selected because it provides some properties of the basic
derivative rules. According to all these cases, the various fea-
tures of Atangana’s conformable fractional derivative are as
follows:

(i) If h # 0 and g functions are differentiable according
to beta in the range f3 € (0, 1], then the equation that
the functions f and g can satisfy for all the real
numbers g and r is as follows:

0D, {4g(x) + rh(x)} = 43D {g(x)} + g Di{h(x)}.  (5)

(ii) Let us take any constant p. It can be easily seen that
it satisfies the following equality:

oDi{p} =0. (6)

(i) 4D {g(x)h(x)} = h(x)EDS{g(x)} + gD {h(x)}

(i) o D{g(x)/h(x)} = (h(x)g Di{g(x)} - g(x)g D{h(x
)}/ (x)

If A= (x+ (1/I(a)))*'v is substituted instead of A in

Equation (4) and v — 0, when A — 0, it is observed as
follows:
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1 ) i dg(x) )

DM = (x4 1)

with

i)

where & is any constant. Therefore, the relation between
Atangana’s conformable fractional derivative and the clas-
sical derivative is determined as follows:

040} =0 50 ©)

3. Definition of the New Version of
Generalized F-Expansion Method

In this section, the application steps of the new version of the
generalized F-expansion method to obtain the combined
and mixed Jacobi elliptic function solutions of differential
equations will be given [30-32]. With this new method, dif-
ferent and new results can be acquired from the results
obtained from other methods.

Let us consider the partial differential equation with the
Atangana (beta) fractional derivative as

) =0,

~ 2 2,
$(¢40/6.006. 009 4D 6. ) =0, (0<ps)

(10)
where ¢(x, t, -++) is an unknown function, x, ¢, -+ is the inde-
pendent variables, and S is a polynomial of ¢ and its frac-
tional derivatives, in which the highest-order derivatives
and the nonlinear terms are contained. When we imple-
mented the wave transform to Equation (10),

$(x. 1) = o(n),

i) )

where 7 and A are constants that will be determined later; we
can diminish Equation (10) to nonlinear ordinary differen-
tial equation

H(¢’¢”¢”,¢"',...) =0, (12)

where the prime demonstrates differentiation pursuant to #.
Suppose that the solution function of Equation (12) is as fol-
lows:

(b E\' F\'
’1):“0+;<“1‘F+ﬁ+ci - +di(F> , (13)

where ay, bl ¢, d;(i=1,2,3,---,M) are constants, F = F()
,and F' = F '(). ( ) and F' () functions in Equation (13)
provide the following equation:

12

F" (1) = PF'(17) + QF* (1) + R, (14)

and using Equation (14), the related derivatives are found as
follows:

F"(§) =2PF(§) + QF(%),
F'(§) = (6PF*(§) + Q) F' (§),
FW (&) =24P*F° (&) + 20PQF’ (&) + (Q2 +12PR) F(§),
O)(

() = (120P* F*(£) + 60PQEF?(£) + Q* + 12PR) F' (£),

(15)

where P,Q, and R are all coefficients. To determine the value
of M in Equation (13), we use the derivatives in Equation
(15). The process of finding the number M is called the bal-
ancing process. The number M is a positive number and is
determined by balancing the highest-order derivative terms
in Equation (12) with the highest-power nonlinear terms.

When finding this number in terms of FM, 1/FM, (F'/F)M

and (F/F ’)M in the solution function (12) are considered
with respect to Equation (14) in conjunction with the degree
of derivatives. Therefore, proposed solution function (13)
arranged and requisite terms in place of Equation (12) are

attached to (F')kFl(k =0,1;1=0,x1,%2,---) function; then,
the polynomial is attained. When this polynomial equation
is set to zero, then a system of algebraic equations is attained
with the coefficients with respect to zero. When the algebraic
equation system is solved according to the specified algo-
rithm, the necessary 7, A, and ay, a;, b, ¢;, d;(i=1,2,3,--- .M
) coefficients for the solution function are found. Thence,
the new combined and mixed Jacobi elliptic function solu-
tions are gained. If different values of P,Q, and R are taken,
diverse Jacobi elliptic function solutions F(#) can be attained
from Equation (14).

4. Application of the New Version Method to
the Biswas-Arshed Equation

In this section, the new version generalized F-expansion
method is implemented to the Biswas-Arshed equation with
Atangana’s beta-derivative. The Biswas-Arshed equation
with Atangana’s beta-derivative defines pulse propagation
through optical fiber. Optical fibers are the main element
of data transmission in telecommunications systems. The
main aim of the researchers is to improve the quality of
transmitted signals, reduce losses, and increase transmission
speed. For this reason, it is important to obtain the solutions
of such physical equations.

Hosseini et al. found the exact solutions of Equation (1)
via the Jacobi and Kudryashov methods [37]. Akbulut and



Islam implemented modified extended auxiliary equation
mapping and improved F-expansion methods to acquire
the exact solutions of Eq. (1) in [39]. On the other hand,
Han et al. utilized the polynomial full discriminant system
method to find the exact solutions of Eq. (1) in [40]. Jacobi
elliptic function solutions can be found with the methods
in the literature, but it is very difficult to find rational func-
tion solutions containing the Jacobi elliptic functions we
obtained with the method we used in this article, because
the method we used includes not only the F function, which
expresses the Jacobi elliptic function solutions obtained from
the elliptic differential equation, but also the F'/F and F/F'
functions. Thus, the rational function solutions or combined
containing Jacobi elliptic functions are reached by this way.

Firstly, we acquaint wave transformation for this com-
plex variable equation:

B(x, £) = (1)),
e P LY
( ﬁ@+rw9’ (16)

(%, ) = —kx + % (t+ F(lﬁ)y

where p, , and w are constants which represents the speed
of the wave, frequency, and wave number, respectively. By
using the wave transformation in Equation (16), Equation
(1) reduces the real and imaginary parts as follows:

n

(2xpl, = 3xl, + wl, + pk, = k)" (1)
+ (K3ll - Kwl, + 17k, — kwk, + w) (1) (17)
+ (ke + k0)¢° (17) =0,

(L, - ll)¢m(’7) + (_K2P12 +31°1 = 2kwl, — kpk,
+2xky —wky + p)¢' () + (3 +2u +0)¢* ()9 (17) = 0.
(18)

From Equation (12), the following equations are easily
obtained:

e= R (19)

26211, + 2k, L, — Kk, + 1,
L2, + Ky)

When these obtained values are substituted in Equation
(17), the following second-order nonlinear ordinary differ-
ential equation is found:
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2211, + 26k, — kol + 1, Lk,

+ = - k1></>"(f1)

(—Kll +

2, + K, L
N K2 (2624 1 + 26k, 1, — wky 1y + 1)
2kl, + k,
ik, (2621 1, + 26k, 1, — kky 1y + 1)
L (2xl, + ky)

220 L + 26k, L, — wky 1y + 1,
L (2Kl + k) tr kl) #0n)

- <;c <_2‘l;_ 6) + xG) ¢’ (n) =0.

(20)

According to the balance procedure for the functions ¢

" (1) and ¢*(1) in Equation (20), we can find M = 1, so the
solution of Equation (1) is assumed that it provides the fol-

lowing equation:
b, c m E(n)
Hm+1<ﬂm>+*<ﬂmg'

(21)

¢(n) =ao +a,F(n) +

When the calculated ¢" () and ¢* (1) expressions from
Equation (21) are replaced in Equation (20), a zero polyno-
mial dependent on F() and F'(yj) is obtained. When the
algebraic equation system, which is found by equating the
coeflicients of this zero polynomial to zero, is resolved with
the help of the Mathematica package program, the a,, a,,
b, ¢, dy, and x coeflicients are obtained. While applying
the method, since the number of variables is more than the
number of equations in the solution of the nonlinear alge-
braic system of equations, some constants in the partial dif-
ferential equations are taken as arbitrary parameters and the
parametric solutions of the system are reached. When the
obtained coeflicients and the inverse transformation are
substituted to the solution function (21), the following exact
solutions are obtained, which depends on the elliptic func-
tions of F() and F'(r). If the elliptic function here is spe-
cially chosen as F(r) = sn(n), where P=m? Q=—(1+m?),
and R = 1, then the new combined and mixed exact solutions
are specified in the following cases.

Case 1.

ap=b,=¢,=d,=0,

a; =dy,

, , (22)
- K(60 — w)Lat (ky (k% + Q) - 2x)
! 3P ’
Lo K(G—y)af((k§+lz)(K2+Q) — 2k, + 1). (23)
! 3P
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Substituting Equation (22) into Equation (21), we attain
single Jacobi elliptic function solutions of Equation (1).

é(m) =A1ei“’lsn(111), (24)
where 1, =x— (k(0 - p)ai(k,(x* — 1 — m*) - 2x)/3m*p)
(t+(UT(B)P, A, =a,, and ¢, = —kx — (k(0 - w)a2 (1 + m?
+ 1 + 1k (1+ m? — 2))3m? ) (t + (/T (B)))P.

Case 2.
ay=a,=c¢, =d; =0,
b, =b,,
(25)
=K(0—y)lb( , (K + Q) - 2x)
! 3R ’
K = K(0— )bt (K +1,) (2 + Q) — 2Kk, + 1) . (26)

3R

If the obtained coefficients in expression (25) are subro-
gated in the solution function (21), we find the Jacobi elliptic
function solution of Equation (1).

$(11,) = Aye?ns(n,), (27)
where 17, = x — (k(0 — p)b: (ky (K2 = 1 = m?) - 2K)/3[3)(t+ (1/
r(B))F, A,=b,, and ¢, = —xx - (k (9 Wb (1+m? + 1+
sy (1+m? = 12))/3B) (¢ + (1/T(B))).
Case 3.
ay=a,=b =d, =0,
¢ =cp
(28)
- k(0 — w)Lei (ky (1% - 2Q) - 2«)
1= 3 ,
K = 1(0 — ) (k3 +1,) (1 = 2Q) — 21k, +1) - (29)

3

When the obtained coefficients in Equation (28) are set
into Equation (21), we attain new types of the combined
Jacobi elliptic function solution as follows:

$(11;) = Az es(ns)dn(ny), (30)
where 17, =x — (k(0 — p)c} (ky (K + 2(1 + m?)) = 2x)/3B) (¢ +
(UT(B))F, Ay=c,, and @, = —kx + (k(0 - p)(2 + 2m* —
12 + 1k, (2 + 2m? + 1)) 13B) (¢ + (1T (B)))F.

5
Case 4.
ap=a,=b,=¢, =0,
d, =d,,
31
- k(0 —w)l, dz( (K —ZQ) ) (31)
1~ 2 >
3(Q° - 4PR)

K = (6 - u)d%((k% +1) (K2 -2Q) - 2kk, +1) . (32)

3(Q* - 4PR)

When achieved coefficients in Equation (31) are replaced
into Equation (21), we gain new exact solution called as
combined Jacobi elliptic function solutions of Equation (1)
as follows:

$(13) = AgePsc(n)nd(n,), (33)
where 177, = x — (k(0 — u)d; (ky (kK + 2(1 + m?)) - 2x)/3(1 - 2
m® +m*)B)(¢ + (1/F(/3) )ﬁ A4—d1»and¢4 —xx + (k(0 - p
VA2 (2 +2m% — 12 + ik, (2 + 2m? +12))3(m? — 1)’ B) (¢ + (1/
L(p))".
Case 5.

R
b, = —\/;al, (34)

k(0 — u)la? (k2 (KZ +6v/PR + Q) - ZK)
- 3P

k(0 - p)a? ((k§ +1) (KZ +6v/PR + Q) — 2xk, + 1)

k =
! 3P

(35)

Substituting the coefficients in Equation (34) into Equa-
tion (21), we get the exact solutions of Equation (1).

i (mmz(ﬂs) B 1)

o) =asem LD )
where 15 =x— (k(6 — p)aj(ky(x* — 1 — m* + 6m) — 2x)/3m*
B)(t+ (UL(P))F, As=a,/m, and g; = —xx - (k(6 - u)at(1

+m? —6m+ x> + xky(1+m? —6m —«*))/3m*B)

(t+ (1T ().



Case 6.

a,=a,=b, =0,
€ =cp (37)

d, = —c,\/Q* - 4PR,

I, =x(0 — pw)lyc, (6kyc,\/ Q* — 4PR + ¢, (k, (k* — 2Q) — 2k
)13,k = (8 - )y (66, (2 + 1) /@ —4PR+ ¢, (K + L)
k* = 2Q) - 2xk, +1))/3.

When obtained coefficients in Equation (37) are replaced
into Equation (21), we get new exact solution named as
mixed Jacobi elliptic function solutions of Equation (1) as
follows:

2(1) (dn’ (15) = 1) +dn’ (1)

= Ayeirs
$(11s) = As cn(ng)dn(ng)sn(1e)

> (38)

where 7, =x— (k(6 — p)c; (6kyc; vVmt = 2m2 + 1 + ¢, (k, (k2
+242m%) - 2x))13B)(t + (/T ()P and @, = —xx + (x(0
— ) (6(m* = 1)(1 +kk,) + 2+ 2m* — k> + xk, (2 + 2m* +

K2))/3B) (¢ + (UL (B))".

Case 7.

a,=d, =0,

a, =—VPe,b, =—V/Pe,,

aQ=cp (39)
2x(0 — p)cil, (k2 (Q +6v/PR — 2;{2) - 4K)

I =

>

3

. 24(0 - p)c? (2 — 4k, — (ki+ L) (Q +6v/PR - 2;8)) |

(40)

When acquired coeflicients in Equation (39) are put into
Equation (21), we attain new exact combined Jacobi elliptic
function solution of Equation (1).

(cn(n;)dn(n,) - msn’(y,) - 1)

) D

$(17) = Ase”

where 7, =x — (2k(0 — p)cj (ky (-1 — m* + 6m — 2x*) — 2x)/3
B)(t+ (1UT(B)))F and ¢, = —iex + (2(0 — p) (1 + m? — 6m
— 26 + cky (1 + m? — 6m + 262))/3B) (t + (LT (B)))F.

Remark 1. When the literature review of the obtained results
is made, it is seen that all Jacobi elliptic function solutions
obtained by the new version generalized F-expansion
method of Equation (1) are new and different wave solu-
tions. Besides, two- and three-dimensional graphics of the
attained exact solution functions are shown in Figures 1-7
with appropriate coefficient values.
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5. Application of the New Version Method to
the Boussinesq Equation with Beta-
Derivative

In this section, the implementation of the new version of the
generalized F-expansion method to Boussinesq equation
with beta-derivative is presented. Firstly, we acquaint wave
transformation of Equation (2) as follows:

V(1) =y(9),

O

where k and o are constants. Equation (2) is reduced to a
nonlinear 4-order ordinary differential equation in the fol-
lowing form under the transformation (42):

(0® + bk*)y" + ck* (v*) "' + yk*y!™) = 0. (43)

If Equation (43) is integrated twice according to 9 and
the integration constant is assumed to be zero, then a non-
linear second-order ordinary differential equation is found
as follows:

(0% + bk )y + ck*y? + yk*y" = 0. (44)

According to the proposed new version of generalized F-
expansion method, before applying the solution function
(13) to Equation (44), the balance operation is performed.
The balance procedure is applied between the " term con-
taining the highest-order derivative and the nonlinear y*
terms of the highest order in Equation (44). Accordingly,
as a result of the transactions made between the terms pro-
viding balancing M =1 is found, thus, the solution function
of Equation (2) is as follows:

b

1 b2
F9) TP

(PO, (FOY
B F(S) ) F(S) (45)
2
F(9 F®
+d, ,( ) +d, ,( ) .
F (9) F (9)

When the computed v (9) and y?(9) terms from Equa-
tion (45) are substituted in Equation (44), a zero polynomial
dependent on F(n) and F'(y) is attained. When the alge-
braic equation system is solved with the help of the Mathe-
matica package program, the a,, a,, a,, b, b,, ¢;, ¢,, d;, d,,
k, and o coeflicients are acquired. When the obtained coeffi-
cients and the inverse transformation are substituted to the
solution function (45), the following exact solutions are

found, which depends on F(r) and F'(x). If the elliptic
function here is specially chosen as F(y) =sn(y), where P

w(9) = a, +a, F(9) + a, F2(9) +
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FIGURE 1: Three- and two-dimensional graphs of the solution ¢(,) for different $=0.01,0.55,0.98 corresponding to the values a, =m
=1/2,k=-1,0=0.3, y=0.2,and k, = 1.
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FiGURE 2: Three-dimensional graphs of the solution ¢(#,) for different $=0.01,0.55,0.98 corresponding to the values b, =1/3, m=1/2,
k=-1,0=0.3,4=0.2,and k, =1.
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F1GURE 3: Three- and two-dimensional graphs of the solution ¢(#,) for different §=0.01,0.55,0.98 corresponding to the values ¢, = 1/4,
m=1/2,k=-1,0=03,u=0.2,and k, =1.

Re [ (7,)] Re [¢ (14)]

-20 -10 0 10 20 -20 -10 0 ’ 10 20
X X X
¢ (19 ¢ (ny) ¢ (1)
04lL 05 0L
1A\ Lo LNV N, Loy ! N A b 5 A\ 4 I x
-20] |/ Yo [ 10 [\[V 20" 20 f 0’ 10 0o |2 o T\ 10
0.5k 05 [ 0>
LO': H _10L

FIGURE 4: Three- and two-dimensional graphs of the solution ¢(,) for different 8 =0.01,0.55,0.98 corresponding to the values d; = 1/5,
m=1/2,k=-1,0=0.3, 4u=0.2,and k, = 1.
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F1GURE 5: Three- and two-dimensional graphs of the solution ¢(#) for different §=0.01,0.55,0.98 corresponding to the values a, =m
=1/2,k=-1,0=0.3, 4=0.2,and k, = 1.
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FiGURE 6: Three- and two-dimensional graphs of the solution ¢(#,) for different §=0.01,0.55,0.98 corresponding to the values ¢, = 1/4,
m=1/2,k=-1,0=0.3, u=0.2,and k, = 1.
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FIGURE 7: Three- and two-dimensional graphs of the solution ¢(,) for different =0.01,0.55,0.98 corresponding to the values ¢, = 1/4,
m=1/2,k=-1,0=0.3, u=02,and k, = 1.
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F1Gure 9: Three- and two-dimensional graphs of the solution y(9,) for different $=10.01,0.50, 0.98 corresponding to the values ¢, = 1/4,
m=1/2,and c=k=y=b=1.
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Ficure 10: Three- and two-dimensional graphs of the solution y/(9;) for different f=0.01, 0.50, 0.98 corresponding to the values ¢, = 1/4,
m=1/2,and c=k=y=b=1.
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=m?, Q=—-(1+m?), and R=1, then the new exact solu-
tions are specified in the following cases.

Case 1.
4k*Qy - 8k* 2 +12PR
0= 14 Y2 Q +2Qc,,
ck
a]:blzclzdlzo’ (46)
, - (@ -4PR) (6Kk%y + cc,)
2 - 3
c

2 2 2
o0 =By 45, ) (@)

Journal of Function Spaces

6k*yp —
o= y-ce
Cc
CZ = CZ’
_96k*PRy (47)
dy=——,

o= —\/16k4y\/Q2 + 12PR - bk*.

When obtained coefficients in Equation (46) are replaced
into Equation (45), we get new exact solution named as
mixed Jacobi elliptic function solutions of Equation (2) as
follows:

B (m?sn*(9,)cn? (9,) + sn?(9,)dn* (9,) + cn? (91)dn2(91))2

sn2(9)) *en2(9,)dn?(9))

+B sn* (9, )en® (9,)dn’ (9,)°

4

sn?(9))en? (9, )dn* (9;) (48)

where B, = (4k*p(=1 — m?) — 8yk*/1 + 14m? + m* + 2ck’c,(
~1-m?)/k*c), By = (—=6k*y — cc,)/c, By = (=1 +2m* — m*)(6

K*y +cc,)lc, By=c, Bs=-96k*m’y/c, and 9, = (k/B)
(x+ (1T (B))F + (\/16k4y\/1 + 14m2 + m* — bk*/)
(t+ (LT (B))F.

Case 2.
4k*Qy - 2k* 2+ 12PR
gy WY@ TIPR
ck
a;=by=¢ =d; =d,=0, (49)
b, = (4PR-Q)cy,
6k*y —
R Y —cc, ,
c
CZ = CZ’ (50)

o= —\/4k4y\/Q2 +12PR - bk>.

Substituting Equation (49) into Equation (45), we find
mixed Jacobi elliptic function solutions of Equation (2).

”z(sz)dnz(sz) -1

s
¥(9,) =B +B; s2(9,) ,

(51)

* (m2sn2 (9, )en(9,) +sn2(9, )dn®(9;) + cn? (9, )dn* (9;))

_ Bg[By + Bygdn’(9;) — 2dn™(9;) — cn®(95) (2 + By, )dn* (9;) - 3) ]

>

where By = 2K*y(m? -2 —+/1+ 14m? + m*)/c, B, =6k>ylc,
and 9, = kiB(x+ (1T(B)))F + (

V4KV Tr Tam? 5 i — bIB) (¢ + (111(B)))F.

Case 3.
4k*Qy - 2k*y\/Q? + 12PR
0= e +2Qc,,
a,=b=c,=d, =d, =0, (52)
b= (4PR- Q%) (6Kk%y + cc,) )
[
a, =—Cy,
C) =Gy, (53)

o= \/4k4y\/Q2 + 12PR - bk>.

Using Equations (45) and (52), we obtain the following
mixed Jacobi elliptic functions of Equation (2).

v(9;) =

cen? (9;)dn’* (9;)

> (54)
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By=2k*y, By=3-3m?, B,,=m’-4, B, =
V1+14m2 + m4, and 9, = kiB(x + (1T (B)))F - (
\ 4Kty T T T i — b2 B) (¢ + (UT(B))F

where

Remark 2. When the results of Equation (2), which are
found using the new version generalized F-expansion
method, are examined, the solutions of single, combined,
and mixed Jacobi elliptic functions are new. And these solu-
tions are obtained for the first time in the literature. Further-
more, two- and three-dimensional graphics of the attained
exact solutions are drawn in Figures 8-10 according to the
selected parameter values.

6. Conclusions

In this paper, the new version generalized F-expansion
method is applied for the first time to acquire new exact
solutions of the Biswas-Arshed and Boussinesq equations
defined by Atangana’s beta-derivative. This method makes
it possible to get dissimilar states of the new Jacobi elliptic
function solutions. The new results for the Biswas-Arshed
and Boussinesq equations seem to be very diverse and sur-
prising. These exact solutions consist of single, combined,
and mixed Jacobi elliptic function solutions. Thus, none
of the solution functions obtained by the various methods
in Ref. [37-41] articles contain the solutions found by the
method used in this article. Owing to the F'/F and F/F'
terms contained in the finite series in the applied method,
various rational solution combinations of the double-
period Jacobi elliptic functions, which have not yet been
found in the literature, have been reached. Also, the
graphs (Figures 1-10) drawn for these solution functions
help us comprehend the complex wave phenomena of
the considered physical problems. It is also shown in the
Mathematica package program that all exact solutions
obtained in this study provide the fractional Biswas-
Arshed equation and Boussinesq equation with the beta-
derivative. Also, we would like to mention that all codes
were written using Mathematica 11 on an HP Z420 work-
station, with an Intel (R) Xeon(R) CPU E5-1620 3.8 GHz
processor, 32GB RAM DDR3, and 1TB storage. As a
result, we can say that the new version generalized F-
expansion method gives very effective results in obtaining
the exact solutions of the nonlinear differential equations
defined by Atangana’s beta-derivative and contributes to
the literature. In our further work, we will implement
the new version generalized F-expansion method to other
complex fractional systems defined by Atangana’s beta-
derivative. Also, the method offered in this paper can be
generalized in future work for advanced definitions like
the paper [43].
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