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Ordinary differential equations describe several phenomena in different fields of engineering and physics. Our aim is to use the
reproducing kernel Hilbert space method (RKHSM) to find a solution to some ordinary differential equations (ODEs) that are
described by using the global derivative. In this research, we used the RKHSM to construct new numerical solutions for
nonlinear ODEs with global derivative. The used method systematically produces analytic and approximate solutions in the
series’s form. We tested three applications for showing the performance of the RKHSM.

1. Introduction

In the last decades, the rate of change has been increasingly
used for understanding the instantaneous changes that arise
in widespread fields. Thinking of the derivative as repre-
senting a rate of change is very useful when solving physics
problems. The derivative plays a fundamental role in form-
ing the ordinary differential equations (ODEs) that are of
great importance because of their ability to describe numer-
ous phenomena in physics, such as electrical networks,
oscillating and vibrating systems, satellite orbits, and chem-
ical reactions. Finding the ODEs’ solutions is the key to
understanding nature, but it is hard and sometimes impos-
sible to get the exact solutions of most real-life ODEs, espe-
cially the nonlinear ones. And for such a case, one resorts
to numerical methods.

The RKHSM is a widely used numerical method for
solving nonlinear ODEs (NODEs). This method which was
proposed in 1908 [1] is an effective numerical method for
complex nonlinear problems without discretization. Many

researchers applied it to solve several types of equations
[2–14]. The principal advantages of this method are

(1) the feature that is it is easy to be applied, especially
because it is meshfree

(2) its capability to deal with diverse complex differen-
tial equations

(3) the uniform convergence between the numerical and
exact solutions as well as their derivatives

This research aims to provide a new convenient method
using the reproducing kernel (RK) theory for obtaining the
solution of some nonlinear ODEs that are described by using
the global derivative.

In this paper and for the first time, the RKHSM is used
for constructing numerical solutions for the nonlinear ODEs
with global derivative.

The next section shows some basic definitions and
theorems concerning RK theory and global derivative. The
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description of the RKHSM and its application to the pro-
posed problem are presented in the third section. The
RKHSM’s effectiveness and the solutions’ accuracy are vali-
dated through three applications in the fourth section.
Finally, the conclusion is given.

2. Preliminaries

This section covers the theory required to understand the
RKHSM we will apply to solve some important nonlinear
ODEs with global derivative.

Definition 1. A global derivative of a differentiable function f
is [15]

Dgf xð Þ = lim
x1⟶x

f x1ð Þ − f xð Þ
g x1ð Þ − g xð Þ , ð1Þ

in which the function g is an increasing nonzero.

Remark 2. If the function g is differentiable then [15]

Dgf xð Þ = lim
x1⟶x

f x1ð Þ − f xð Þð Þ/ x1 − xð Þð Þ
g x1ð Þ − g xð Þð Þ/ x1 − xð Þð Þ =

f ′ xð Þ
g′ xð Þ

: ð2Þ

Remark 3. The global derivative covers the following three
cases that we are going to deal with throughout the numer-
ical part:

(1) Case 1: let us choose gðxÞ = x :

Dgf xð Þ = f ′ xð Þ
g′ xð Þ

=
f ′ xð Þ
xð Þ′

=
f ′ xð Þ
1

= f ′ xð Þ: ð3Þ

Hence, the classical derivative is a special case of global
derivative.

(2) Case 2: let us choose gðxÞ = xα :

Dgf xð Þ = f ′ xð Þ
g′ xð Þ

=
f ′ xð Þ
xαð Þ′

=
1

αxα−1
f ′ xð Þ: ð4Þ

Hence, the fractal derivative is a special case of global
derivative.

(3) Case 3: let us choose gðxÞ = sin ðxÞ:

Dgf xð Þ = f ′ xð Þ
g′ xð Þ

=
f ′ xð Þ

sin xð Þð Þ′
=

1
cos xð Þ f ′ xð Þ: ð5Þ

Definition 4. A function K : X × X⟶ℂ which satisfies

(1) Kð·, xÞ ∈H for all x ∈ X

(2) h f , Kð·, xÞi = f ðxÞ for all f ∈H and for all x ∈ X

is called a reproducing kernel of H ;H is a Hilbert space over
X ≠∅:

Definition 5. We set [16].

An inner product on W2
2½0, T� is

f , gh iW2
2
= 〠

1

j=0
f jð Þ 0ð Þg jð Þ 0ð Þ +

ðT
0
f ″ xð Þg″ xð Þdx, ð7Þ

and its norm is denoted by

fk kW2
2
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f , fh iW2

2

q
, ð8Þ

for all f , g ∈W2
2½0, T�:

Theorem 6. The function

Sτ xð Þ =
xτ +

1
2
x2τ −

1
6
x3 , x ≤ τ,

τx +
1
2
τ2x −

1
6
τ3 , x > τ,

8>><
>>: ð9Þ

is the reproducing kernel function of W2
2½0, T�,

For the proof of this theorem, see [17].

Definition 7. We set [16].

W2
2 0, T½ � = f xð ÞjThe functions f and f ′ are absolutely continuous in 0, T½ �, f ′′ ∈ L2 0, T½ �, and f 0ð Þ = 0

n o
: ð6Þ

W1
2 0, T½ � = f xð Þjf is absolutely continuous in 0, T½ � and f ′ ∈ L2 0, T½ �

o
:

n
ð10Þ
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An inner product on W1
2½0, T� is

f , gh iW1
2
= f 0ð Þg 0ð Þ +

ðT
0
f ′ xð Þg′ xð Þdx, ð11Þ

and its norm is denoted by

fk kW1
2
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f , fh iW1

2

q
, ð12Þ

for all f , g ∈W1
2½0, T�:

Theorem 8. The function

Rτ xð Þ =
1 + x , x ≤ τ,

1 + τ , x > τ,

(
ð13Þ

is the reproducing kernel function of W1
2½0, T�:

For the proof of this theorem, see [17].

3. Solution Methodology

We now consider the 1st-order nonlinear ODE,

Dgf xð Þ = F x, f xð Þð Þ, x ∈ 0, T½ �, T ∈ℝ∗,

f 0ð Þ = λ,  

(
ð14Þ

where Dg is the global derivative, f is the unknown, F is a
function of x and f ðxÞ, and λ is a constant.

To apply the RKHSM, let us begin with making a change
of variable to homogenize the initial condition f ð0Þ = λ:

u xð Þ = f xð Þ − λ: ð15Þ

Replacing f ðxÞ by uðxÞ + λ in (14) gives

Dgu xð Þ = �F x, u xð Þð Þ, x ∈ 0, T½ �, T ∈ℝ∗,

u 0ð Þ = 0,  

(
ð16Þ

where �F is a nonlinear function of x and uðxÞ:
The second step is to define a linear operator A : W2

2½0
, T�⟶W1

2½0, T� such that

Au xð Þ =Dgu xð Þ: ð17Þ

We use this linear operator to get

Au xð Þ = �F x, u xð Þð Þ, x ∈ 0, T½ �, T ∈ℝ∗,

u 0ð Þ = 0:  

(
ð18Þ

The next step is to build an orthogonal function system

of W2
2½0, T�: Let

ψi xð Þ = A∗κi xð Þ, ð19Þ

where

(i) κiðxÞ = RxiðxÞ ; RxiðxÞ represents the RK function of

W1
2½0, T�

(ii) The set fxig∞i=1 is dense in ½0, T�
(iii) A∗ is the adjoint of A

Now, to find f�ψig∞i=1, we need to use Gram-Schmidt’s
process:

�ψi xð Þ = 〠
i

k=1
ϖikψk xð Þ, ϖii > 0, i = 1, 2,⋯: ð20Þ

where fψig∞i=1 denotes the function system in W2
2½0, T�

obtained by

ψi xð Þ = A∗κi xð Þ = A∗κi ηð Þ, Sx ηð Þh iW2
2
= κi ηð Þ, ASx ηð Þh iW1

2

= Rηi
ηð Þ, ASx ηð Þ

D E
W1

2

= AηSx ηð Þjη=xi : ð21Þ

And the coefficients ϖik can be found by

ϖij =

1
ψ1k k , for i = j = 1,

1
ei
, for i = j ≠ 1,

−
1
ei
〠
i−1

k=j
Cikϖkj, for i > j,

8>>>>>>>>><
>>>>>>>>>:

ð22Þ

where ei = ðkψik2 −∑i−1
k=1C

2
ikÞ

1/2, Cik = hψi, �ψkiW2
2
:

Theorem 9. Suppose fxig∞i=1 is dense in ½0, T�, then fψig∞i=1 is
the complete system of W2

2½0, T�:

Proof. We know that ψiðxÞ ∈W2
2½0, T�: So, for each fixed u

ðxÞ ∈W2
2½0, T�, it follows

u xð Þ, ψi xð Þh iW2
2
= 0, i = 1, 2,⋯: ð23Þ

Since

u xð Þ, ψi xð Þh iW2
2
= u xð Þ, A∗κi xð Þh iW2

2

= Au xð Þ, κi xð Þh iW1
2

= Au xið Þ = 0,

ð24Þ

and fxig∞i=1 is dense on the interval ½0, T�, we have

Au xð Þ = 0: ð25Þ
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Then,

A−1 Au xð Þð Þ = A−1 0ð Þ, ð26Þ

that gives

u xð Þ = 0: ð27Þ

Lemma 10. Assume u ∈W2
2½0, T�, then

u ið Þ xð Þ



 




C
≤C u xð Þk kW2

2
, i = 0, 1, ð28Þ

where C ≥ 0 and kuðxÞkC = max
x∈½0,T�

juðxÞj:

Proof. ∀x ∈ ½0, T� we have

u ið Þ xð Þ = u ·ð Þ, ∂ ið Þ
x Sx ·ð Þ

D E
W2

2

, i = 0, 1: ð29Þ

Using the expression of ∂ðiÞx Sxð·Þ, we can reach

∂ ið Þ
x Sx




 



W2

2

≤Ci, i = 0, 1: ð30Þ

Consequently,

u ið Þ xð Þ
��� ��� = u ·ð Þ, ∂ ið Þ

x Sx ·ð Þ
D E

W2
2

����
����

≤ ∂ ið Þ
x Sx




 



W2

2

uk kW2
2

≤Ci uk kW2
2
, i = 0, 1:

ð31Þ

where C =max
i=0,1

fCig: Then Lemma 10 follows from (31).

Theorem 11. Assume fxig∞i=1 is dense in ½0, T� and problem
(18) has a solution that should be unique onW2

2½0, T�: There-
fore, the solution of (18) is

u xð Þ = 〠
∞

i=1
〠
i

k=1
ϖik

�F xk, u xkð Þð Þ�ψi xð Þ: ð32Þ

While the solution of (14) is

f xð Þ = 〠
∞

i=1
〠
i

k=1
ϖik

�F xk, u xkð Þð Þ�ψi xð Þ + λ: ð33Þ

Proof. Firstly, the fact that f�ψiðxÞg∞i=1 is a complete ortho-
normal basis in W2

2½0, T� allows us to write

u xð Þ = 〠
∞

i=1
u xð Þ, �ψi xð Þh iW2

2
�ψi xð Þ

= 〠
∞

i=1
u xð Þ, 〠

i

k=1
ϖikψk xð Þ

* +
W2

2

�ψi xð Þ

= 〠
∞

i=1
〠
i

k=1
ϖik u xð Þ, ψk xð Þh iW2

2
�ψi xð Þ

= 〠
∞

i=1
〠
i

k=1
ϖik u xð Þ, A∗κk xð Þh iW2

2
�ψi xð Þ

= 〠
∞

i=1
〠
i

k=1
ϖik Au xð Þ, κk xð Þh iW1

2
�ψi xð Þ

= 〠
∞

i=1
〠
i

k=1
ϖik Au xð Þ, Rx xkð Þh iW1

2
�ψi xð Þ

= 〠
∞

i=1
〠
i

k=1
ϖik

�F xk, u xkð Þð Þ�ψi xð Þ,

ð34Þ

with �Fðxk, uðxkÞÞ = AuðxkÞ:
Secondly, by replacing gðςÞ by its formula (32) in the

transformation (15), we get

u xð Þ = 〠
∞

i=1
〠
i

k=1
ϖik

�F xk, u xkð Þð Þ�ψi xð Þ + λ: ð35Þ

We now write the RKHSM’s solution unðxÞ as

un xð Þ = 〠
n

i=1
〠
i

k=1
ϖik

�F xk, u xkð Þð Þ�ψi xð Þ: ð36Þ

The space W2
2½0, T� is a Hilbert space, hence

〠
∞

i=1
〠
i

k=1
ϖik

�F xk, u xkð Þð Þ�ψi xð Þ <∞, ð37Þ

which means that unðxÞ converges to uðxÞ in the norm.

Theorem 12.

(1) unðxÞ converges uniformly to uðxÞ
(2) un′ðxÞ converges uniformly to u′ðxÞ
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Proof. For the first result, we need to estimate the term on
the left below:

∀x ∈ 0, T½ �,
un xð Þ − u xð Þj j = un ·ð Þ − u ·ð Þ, Sx ·ð Þh iW2

2

��� ���
≤ Sxk kW2

2
un − uk kW2

2

≤C0 un − uk kW2
2
,

ð38Þ

where C0 is a constant.
Following the same way, we get

un′ xð Þ − u′ xð Þ�� �� ≤ ∂xSxk kW2
2
un′ − u′



 


W2

2
, ð39Þ

due to the uniform boundedness of ∂xSxð·Þ, we have

∂xSxk kW2
2
≤C1, ð40Þ

where C1 is a positive constant.
Therefore

un′ xð Þ − u′ xð Þ�� �� ≤C1 un′ − u′


 



W2
2
: ð41Þ

4. A Numerical Experiment

This section is the numerical part that assures the efficiency
of the proposed method by testing three examples. The rate
of convergence of the presented method is as follows [18]:

Ocð Þn =
−ln En/En/2ð Þ

ln 2ð Þ , ð42Þ

where

En = max
x∈ 0,1½ �

f xð Þ − f n xð Þj j: ð43Þ

Now, how to apply the RKHSM can be summarized in
the following procedure:

Step 1. Fix n:

Step 2. Set ψiðxiÞ = AηSxðηÞjη=xi .

Step 3. Calculate the orthogonalization coefficients ϖij

using (22).

Step 4. Set �ψiðxiÞ =∑i
k=1ϖikψkðxiÞ, ϖii > 0, i = 1, 2,⋯, n.

Step 5. Choose an initial guess u0ðx1Þ.

Step 6. Set i = 1.

Step 7. Set Λi =∑i
k=1ϖik

�Fðxk, uðxkÞÞ.

Step 8. uiðxiÞ =∑i
ℓ=1Λℓ�ψℓðxℓÞ.
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Figure 1: Exact and RKHSM’s solutions for Example 1 with
gðxÞ = x:
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Figure 3: Exact and RKHSM’s solutions for Example 1 with
gðxÞ = x0:9.
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Step 9. If i < n, set i = i + 1: Go to Step 7. Else stop.

where xi = i/n, i = 1, 2,⋯, n and n is the number of col-
location points.

Example 1. Taking the following linear ODE with global
derivative:

Dgf xð Þ = x, x ∈ 0, 1½ �,
f 0ð Þ = 0:  

(
ð44Þ
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Figure 8: Absolute error of the RKHSM for Example 1 with
gðxÞ = sin ðxÞ:

Table 1: Rate of convergence for Example 1 with gðxÞ = x:

n Maximum absolute error Ocð Þn
2 0.0833 ——
4 0.0250 1.74

8 0.0069 1.85

16 0.0018 1.92

32 0.0005 1.96

64 0.0001 1.98

128 0.0000 1.99
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Figure 7: Exact and RKHSM’s solutions for Example 1 with
gðxÞ = sin ðxÞ:
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Figure 4: Absolute error of the RKHSM for Example 1 with
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Figure 5: RKHSM's solutions for Example 1 with gðxÞ = xα :
α = 1, α = 0:9, and α = 0:8:
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gðxÞ = xα and α ∈ f1 ; 0:9 ; 0:8g:
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Figure 14: Absolute errors of the RKHSM for Example 2 with
gðxÞ = xα and α ∈ f1 ; 0:9 ; 0:8g:

0.1

0.2

0.3

0
0 0.2 0.4 0.6 0.8 1

x

f
n

 (
x
)

Exact solution
RKHSM’s solution
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As the initial condition is homogeneous. We can then
directly define a bounded linear operator A as

A : W2
2 0, 1½ � ⟶ W1

2 0, 1½ �
f xð Þ ⟶ A f xð Þ =Dgf xð Þ:

ð45Þ

Taking n = 100 collocation points in which xi = i/n, i =
1, 2⋯ , n: The approximate solution for Example 1 is found
using the RKHSM for different cases of the function gðxÞ in
the global derivative when gðxÞ equals x,xα, and sin ðxÞ: For
each case, the results are compared with the exact solution.
Figure 1 shows the exact solution and the RKHSM’s solution
with gðxÞ = x: The absolute error of this case is plotted in
Figure 2. In Figure 3, we compared the exact solution with
the RKHSM’s solution when gðxÞ = xα with α = 0:9, and its
absolute error is given in Figure 4, whereas in Figures 5
and 6, we depicted the obtained results for α = 1,0:9, and
0:8 together. Figures 7 and 8 are where the results of the last
case of gðxÞ are given. We can see from these figures that the
graphs’ behavior is very similar. To highlight more compar-
isons between the RKHSM and the exact solution, we gave
the rate of convergence for gðxÞ = x in Table 1, and we drew

the absolute error for each case through the figures pre-
sented. What we can observe here is that the RKHSM’s solu-
tion is very close to the exact one. And this confirms that the
proposed method is effective.

Example 2. Taking the following linear ODE with global
derivative:

Dgf xð Þ = x2, x ∈ 0, 1½ �,
f 0ð Þ = 0:  

(
ð46Þ
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Figure 17: Exact and RKHSM’s solutions for Example 3 with
gðxÞ = x:
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Figure 15: Exact and RKHSM’s solutions for Example 2 with
gðxÞ = sin ðxÞ:
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Figure 16: Absolute error of the RKHSM for Example 2 with
gðxÞ = sin ðxÞ:

Table 2: Rate of convergence for Example 2 with gðxÞ = x:

n Maximum absolute error Ocð Þn
2 0.0833 ——
4 0.0167 2.32

8 0.0035 2.26

16 0.0008 2.18

32 0.0002 2.11

64 0.0000 2.06
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As the initial condition is homogeneous. We can then
directly define a bounded linear operator A as

A : W2
2 0, 1½ � ⟶ W1

2 0, 1½ �
f xð Þ ⟶ A f xð Þ =Dgf xð Þ:

ð47Þ

Taking n = 100 collocation points in which x = i/n,
i = 1, 2⋯ , n: The approximate solution for Example 2 is
found using the RKHSM for different cases of the function
gðxÞ in the global derivative when gðxÞ equals x,xα, and sin
ðxÞ: For each case, the results are compared with the exact
solution of each case. Figure 9 shows the exact solution and
the RKHSM’s solution with gðxÞ = x: The absolute error of
this case is plotted in Figure 10. In Figure 11, we compared
the exact solution with the RKHSM’s solution when gðxÞ =
xα with α = 0:9, and its absolute error is given in Figure 12,
whereas in Figures 13 and 14, we depicted the obtained
results for α = 1,0:9, and 0:8 together. Figures 15 and 16 are
where the results of the last case of gðxÞ are given. We can

see from these figures that the graphs’ behavior is very simi-
lar. To highlight more comparisons between the RKHSM
and the exact solution, we gave the rate of convergence for
gðxÞ = x in Table 2, and we drew the absolute error for each
case through the figures presented. What we can observe here
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Figure 22: Exact and RKHSM’s solutions for Example 3 with
gðxÞ = sin ðxÞ:
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Figure 23: Absolute error of the RKHSM for Example 3 with
gðxÞ = sin ðxÞ:

0
0

0.5

1

1.5

0.2 0.4 0.6 0.8 1
x

f
n
 (x

)

Exact solution
RKHSM’s solution

Figure 21: Exact and RKHSM’s solutions for Example 3 with
gðxÞ = x0:6:
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Figure 20: Exact and RKHSM’s solutions for Example 3 with
gðxÞ = x0:8:
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Figure 19: Exact and RKHSM’s solutions for Example 3 with
gðxÞ = x0:9:
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is that the RKHSM’s solution is very close to the exact one.
And this confirms that the proposed method is effective.

Example 3. Taking the following linear ODE with global
derivative:

Dgf xð Þ = f xð Þ2 + 1, x ∈ 0, 1½ �,
f 0ð Þ = 0:  

(
ð48Þ

As the initial condition is homogeneous. We can then
directly define a bounded linear operator A as

A : W2
2 0, 1½ � ⟶ W1

2 0, 1½ �
f xð Þ ⟶ A f xð Þ =Dgf xð Þ:

ð49Þ

Takingn = 100 collocation points in which x = i/n, i = 1,
2⋯ , n: The approximate solution for Example 3 is found
using the RKHSM for different cases of the function gðxÞ in
the global derivative when gðxÞ equals x,xα, and sin ðxÞ: For
each case, the results are compared with the exact solution of
each case. Figure 17 shows the exact solution and the
RKHSM’s solution with gðxÞ = x: The absolute error of this
case is plotted in Figure 18. In Figures 19–21, we compared
the exact solution with the RKHSM’s solution when gðxÞ =
xα with α ∈ f0:9,0:8,0:6g: Figures 22 and 23 are where the
results of the last case of gðxÞ are given.We can see from these
figures that the graphs’ behavior is very similar. To highlight
more comparisons between the RKHSM and the exact solu-
tion, we gave the rate of convergence for gðxÞ = x in Table 3,
and we drew the absolute error for each case through the fig-
ures presented. What we can observe here is that the
RKHSM’s solution is very close to the exact one. And this con-
firms that the proposed method is effective.

5. Conclusion

In this paper, an efficient method, named the reproducing
kernel Hilbert space method, is applied successfully for solv-
ing nonlinear ODEs described by using the global derivative.
The accuracy and applicability of the RKHSM are validated
by computing the numerical solutions at many grid points.
The results show that the RKHSM is a powerful method
to deal with many other nonlinear problems that arise in
a large variety of physical problems with different types
of derivatives.
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