
Research Article
Couple Stress Sodium Alginate-Based Casson Nanofluid
Analysis through Fick’s and Fourier’s Laws with
Inclined Microchannel

Dolat Khan ,1 Musawa Yahya Almusawa ,2 Waleed Hamali,2 and M. Ali Akbar 3

1Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru,
Bangkok 10140, Thailand
2Department of Mathematics, Faculty of Science, Jazan University, Saudi Arabia
3Department of Applied Mathematics, University of Rajshahi, Bangladesh

Correspondence should be addressed to M. Ali Akbar; ali.akbar@ru.ac.bd

Received 22 October 2022; Revised 3 December 2022; Accepted 24 March 2023; Published 19 April 2023

Academic Editor: Yusuf Gurefe

Copyright © 2023 Dolat Khan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Casson nanofluid plays a vital role in food industries with sodium alginate nanoparticles. That is why many researchers used
Casson nanofluid in their study. Due to this, the main objective of this study is to investigate the inclined microchannel flow of
a Casson nanofluid based on sodium alginate (SA) under a few stresses. Because the plate at y = d is stationary and the plate at
y = 0 is in motion, the fluid flows. Physically existent things utilize partial differential equations as a method of derivation. By
using dimensionless variables, the underlying PDEs are dimensionless. Applying Fourier’s and Fick’s laws to the time-fractional
model makes the classical model dimensionally stable by generalization. A generalized fractional model is solved using the
Laplace and Fourier integral transformations. In addition, the parametric influence of other physical elements, such as the
Casson parameter, coupling velocity, temperature, and stress parameters, is considered (Grashof, Schmidt, and Prandtl
numbers). Concentration distributions are shown using graphs and discussed with accompanying text. We compute and
describe the Sherwood number, rate of heat transfer, and skin friction. It is concluded that skin friction and Nusselt number
can be enhanced by adding nanoparticle. Also, the fractional derivative makes the study more realistic by incorporating Fick’s
and Fourier’s laws as compared to the classical one.

1. Introduction

The term “nanomaterials” means materials that have a size
of 100 nanometers or less, while nanotechnology refers to
the kind of technology that produces these materials. The
structure of nanomaterials as well as their characteristics is
taken into consideration when classifying them into one of
four groups [1]. Choi [2] was the first researcher to investi-
gate the terminology associated with nanofluids. He came
up with the term “nanofluid” to describe the fluids that
included particles with diameters of less than 100 nanome-
ters. Karthik et al. explained the rationale behind why nano-
sized particles are favored over microsized particles in a
variety of applications [3]. Significant improvements in

thermophysical characteristics have been seen when com-
paring nanoparticles to microparticles. Nanofluids may be
used for a variety of purposes, including the cooling of air
conditioning systems, the cooling of power plants, and the
improvement of diesel generator efficiency [4]. Normally,
water and ethylene glycol are used as the basis fluids in heat
transfer systems. The manufacturing of nanoparticles
involves the use of a variety of components, which may be
generally classified as metallic, such as copper [5], metal
oxide, such as iron oxide, and carbon-based, such as graph-
ite. CuO [6], chalcogenide sulfides, selenides, and tellurides,
all of which were discussed [7], along with several other par-
ticles, such as carbon nanotubes [8]. According to the avail-
able research, the average size of a single particle ranges from
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20 to 100 nm [9, 10]. A type of nanofluid flow in a porous
media with Newtonian heating and magnetohydrodynamic
flow of Casson-type fluid is studied by Khan et al. [11].

In 1959, Casson came out with the first Casson fluid
model. Oka [12] was the first person to look at fluids from
Casson in tubes. Honey, blood, soup, jelly, stuff, slurries,
and artificial fluids are all types of Casson fluids. Ahmad
et al. [13] wrote about Casson nanofluid that was heated in
a Newtonian way. Khan et al. [14] investigated the effects
of a magnetic field, a chemical reaction, heat generation,
and Newton cooling law, on the flow of Casson fluid over
a moving stretched surface in a porous medium. Further-
more, Mackolil and Mahanthesh [15] examined the exact
and statistical analysis of Casson nanofluid. Statistical tech-
niques like probable error and regression are used to exam-
ine the rate of heat transfer and skin friction. Besides, many
studies are reported to investigate the statistical analysis for
various nanofluids [16–18]. Recently, Satya Narayana et al.
[19] report a 3D flow for Casson-type couple stress nano-
fluid. It is discovered that the non-Newtonian pair stress
fluid’s temperature is greater than that of the viscous case.
For increased heat transmission, it may be proposed that
the matching viscous fluid in industrial applications be
switched out for the Casson couple stress nanofluid.

Couple stress fluids (CSF) are different from standard
viscous fluids in that they have a specific material constant.
These fluids’ (CSFs) rheological characteristics have a wide
range of applications such as the crude oil extraction pro-
cess, the solidification of liquid crystals, electrostatic precip-
itations, aerodynamic heating phenomena, and colloidal and
suspension solutions [20]. Stokes [21] developed the idea of
CSF theory, where he incorporated CSFs into account in
addition to the classical Cauchy stress. It is the most straight-
forward modification of the theory of the conventional fluid
that takes into account polar effects like the presence of CSs
and body couples. Stokes provides a thorough explanation of
CSF theory in his work Theories of Fluids with Microstruc-
ture [22], where he also lists a variety of issues that scholars
have examined in relation to couple stress theory. The phe-
nomena of pumping fluids, the synthesis of lubricants and
biological processes, the solidification of liquid crystals, and
the solidification of animal blood are only a few illustrations
of the extraordinary applications of CSF models in our
everyday life. Researchers have taken the CSF model into
consideration for a variety of scientific and physical prob-
lems. Many fascinating problems involving CSFs or micro-
polar fluids may be found in the references [23, 24]. Khan
et al. [25] used the time-fractional derivative definitions of
Caputo-Fabrizio to find the solutions to the two phase CS
fluid channel flow. Ali et al. [26] have looked at the flow of
laminar and unstable pair stress fluid between infinite num-
bers of plates. Using lubricant as the base fluid, Laplace and
Fourier transforms were used to find exact solutions. They
found that adding nanoparticles to engine oil made the oil
12.8% more effective.

Fractional calculus [27] is the study of the many ways
that differentiation and integration can be used to find the
power of real and complex numbers. Ross [28] explained
how fractional calculus changed from 1695 to 1900. Many

physical and natural problems cannot be shown by the clas-
sical derivative, so fractional calculus is used to solve these
problems. Scientists have been very interested in fractional
derivatives for the past 30 years. In response to this interest,
many scientists have come up with different ways to explain
what a fractional derivative is. Riemann-Liouville [29] was
the most typical approach to describing things in the 18th
century. Despite the fact that the R-L formulation of the
fractional derivative has been shown to perform effectively
in many physical contexts, there are two basic approaches
to applying this concept. Differentiating the constant term
may not result in zero, and certain aspects of the Laplace
transform are irrelevant in practice. Caputo fractional deriv-
atives are utilized in physics, chemistry, economics, and
other fields of research. They may also be employed in
everyday situations. CFD is used to investigate processes
such as diffusion, signal processing, material mechanical
characteristics, image processing, pharmacokinetics, damp-
ing, and bioengineering. CFD [30] is a modified version of
fractional calculus that corrects the issues produced by the
R-L formulation. However, since the CFD kernel contains
a singularity, CFD cannot be utilized to represent certain
materials with large differences [31]. It cannot give a good
description of what happened. Caputo-Fabrizio [32]
suggests a new definition with a kernel that is not singular
to get around the singularity problem in CFD. Several
researchers [33–37] looked at this new idea as part of their
work. CF fractional derivative is used by a number of studies
to look at the effect on memory. Akhtar [38] used time-
fractional Caputo and CF derivatives to study the flow of
couple stress fluids (CSFs) between two parallel plates.

The existing literature does not take into consideration
the fact that by utilizing Fick’s and Fourier’s laws, closed-
form solutions for the flow of Casson fluid down a micro-
channel may be discovered. In terms of pair stress, we
focused on the plate’s motion at y = 0, which generates a
flow SA-based Casson nanofluid through an inclined micro-
channel. The governing partial differential equations are
nondimensionalized by employing dimensionless variables,
and the energy and mass equations are fractionalized using
Fick’s and Fourier’s laws. Caputo’s definition is applied to
the fractional model, and the resulting partial differential
equations (PDEs) are solved by combining Laplace and Fou-
rier transforms. Tables and figures are used to graphically
present the data. It is possible to calculate the effect of vari-
ous parameters on the skin friction, Nusselt number, and
Sherwood number.

2. Mathematical Formulation

Consider the flow of CS SA-based Casson nanofluid along
with the inclined microchannel. The flow is considered in
the x-direction. Initially ðt ≤ 0Þ, both the fluid and the plates
are at rest with the same concentration Cd and temperature
Td . After some time ðt > 0Þ, the plate at y = 0 is carried with
constant velocity u0HðtÞ, where u0 is the characteristic
velocity, while the second plate stays static. The moving
plate’s temperature and concentration rise to T1 and C1,
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respectively, and then remain constant, as illustrated in
Figure 1.

The continuity and momentum equation of the CSNF
and energy equation are given by

∇ ⋅ V
!
= 0,

ρnf
∂V
!

∂t
= −∇p − μnf∇ × ∇ ×V

!
− λ∇ × ∇ × ∇ × ∇ × V

!

+ g ρβTð Þnf T − T∞ð Þ + ρnf b
!
1,

ρCpð Þnf
∂T
!

∂t
= knf∇ × ∇ × T

!
,

Dnf
∂C
!

∂t
= knf∇ × ∇ × C

!
: ð1Þ

Since unidirectional flow has been taken into consider-
ation, the provided flow’s velocity, temperature, and concen-
tration fields are as follows:

V
!
= u ζ, tð Þ, 0, 0ð Þ,

T
!
= T ζ, tð Þ, 0, 0ð Þ,

C
!
= C ζ, tð Þ, 0, 0ð Þ:

9>>>>=
>>>>;

ð2Þ

Equation for an incompressible Casson fluid flow

τ = τ0 + μnfγ
·,

τ =
2 μn +

Pλffiffiffiffiffiffi
2π

p
� �

eab, π > πc,

2 μn +
Pλffiffiffiffiffiffiffi
2πc

p
� �

eab, π < πc:

8>>><
>>>:

ð3Þ

Under these, we get the final problem formulation as
follows:

ρnf
∂u ζ, tð Þ

∂t
= μnf 1 +

1
β

� �
∂2u ζ, tð Þ

∂ζ2
− λ

∂4u ζ, tð Þ
∂ζ4

+ ρβTð Þnfg cos γð Þ T − Tdð Þ
+ ρβCð Þnfg cos γð Þ C − Cdð Þ,

ð4Þ

∂T ζ, tð Þ
∂t

= −
1

ρCPð Þnf
∂q ζ, tð Þ

∂ζ
: ð5Þ

Fourier’s law:

1
knf

q ζ, tð Þ = −
∂T ζ, tð Þ

∂ζ
: ð6Þ

The thermal balance equation:

∂C ζ, tð Þ
∂t

= −
∂S ζ, tð Þ
∂ζ

: ð7Þ

Fick’s law:

1
Dnf

S ζ, tð Þ = −
∂C ζ, tð Þ

∂ζ
: ð8Þ

These are the physical conditions:

u ζ, tð Þjt−0 = 0, u ζ, tð Þjζ=0 = u0H tð Þ, u ζ, tð Þjζ=d = 0,

T ζ, tð Þ = Td , C ζ, tð Þ = Cd , t = 0,

T ζ, tð Þ = T1, C ζ, tð Þ = C1, ζ = 0,

T ζ, tð Þ = Td , C ζ, tð Þ = Cd , ζ = d,

∂2u 0, tð Þ
∂ζ2

=
∂2u d, tð Þ

∂ζ2
= 0:

9>>>>>>>>>>=
>>>>>>>>>>;

ð9Þ

Terms for ðρCpÞnf , ðρβTÞnf , ðρβCÞnf , μnf , ρnf ,Dnf , knf are
given by Khan et al. [11].

μnf = μf
1

1 − ϕð Þ2:5 ,

ρnf = ρf 1 − ϕð Þ + ρsϕ,

ρnf = ρf 1 − ϕð Þ + ρsϕ,

ρCp

À Á
nf = ρCp

À Á
f
1 − ϕð Þ + ρCp

À Á
s
ϕ,

ρβTð Þnf = ρβTð Þf 1 − ϕð Þ + ρβTð Þsϕ,
ρβCð Þnf = ρβCð Þf 1 − ϕð Þ + ρβCð Þsϕ,

Dnf =Df
1

1 + ϕ
:

ð10Þ
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Figure 1: Geometry of the flow.
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To get a PDE system without dimensions, we define the
following variables without dimensions:

u∗ =
u
u0

,

ζ∗ =
ζ

d
,

T∗ =
T − Td

T1 − Td
,

t∗ =
υt

d2
,

C∗ =
C − Cd

C1 − Cd
,

q∗ =
qd

kf T1 − Tdð Þ ,

S∗ =
Sd

kf C1 − Cdð Þ :

ð11Þ

By eliminating the ∗ signs and replacing them with these
dimensionless variables, Equations (4)–(9) become

∂u ζ, tð Þ
∂t

= b2
b1

β1
∂2u ζ, tð Þ

∂ζ2
−

1
b1

λ
∂4u ζ, tð Þ

∂ζ4

+
b3
b1

T ζ, tð ÞGr cos γð Þ

+ b4
b1

C ζ, tð ÞGm cos γð Þ,

ð12Þ

∂T ζ, tð Þ
∂t

= −
b6
Prb5

∂q ζ, tð Þ
∂ζ

, ð13Þ

q ζ, tð Þ = −
∂T ζ, tð Þ

∂ζ
, ð14Þ

Sc
∂C ζ, tð Þ

∂t
= −

1
b7

∂S ζ, tð Þ
∂ζ

, ð15Þ

S ζ, tð Þ = −
∂C ζ, tð Þ

∂ζ
, ð16Þ

u ζ, tð Þjt−0 = 0, u ζ, tð Þjy=0 = 1, u d, tð Þjζ=d = 0,

T ζ, tð Þ = Td , C ζ, tð Þ = 0, t = 0,

T ζ, tð Þ = 1, C ζ, tð Þ = 1, ζ = 0,

T ζ, tð Þ = 0, C ζ, tð Þ = 0, ζ = d,

∂2u 0, tð Þ
∂ζ2

=
∂2u d, tð Þ

∂ζ2
= 0,

9>>>>>>>>>>=
>>>>>>>>>>;

ð17Þ

b1 = 1 − ϕ + ϕ
ρs
ρf

,

b2 =
1

1 − ϕð Þ2:5 ,

b3 = 1 − ϕ + ϕ
ρβTð Þs
ρβTð Þf

,

b4 = 1 − ϕ + ϕ
ρβCð Þs
ρβCð Þf

,

b5 = 1 − ϕ + ϕ
ρCp

À Á
s

ρCp

À Á
f

,

b6 =
ks + 2kf − 2ϕ kf − ks

À Á
ks + 2kf + ϕ kf − ks

À Á ,

b7 =
1

1 + ϕ
,

β1 = 1 +
1
β
:

ð18Þ

The general FAFL are used in the following ways:

q ζ, tð Þ = −CD
1−α
t

∂T ζ, tð Þ
∂ζ

� �
, 0 < α ≤ 1, ð19Þ

S ζ, tð Þ = −CD
1−α
t

∂C ζ, tð Þ
∂ζ

� �
, 0 < α ≤ 1: ð20Þ

In this equation, CD1−α
t ð:Þ stands for the Caputo time-

fractional operator, and its definition is as follows:

CD
α
t K1 ζ, tð Þð Þ = 1

Γ 1 − αð Þ
ðt
0
t − sð Þ−αK1 ζ, tð Þds = K ζ, tð Þ ∗ ξα tð Þ:

ð21Þ

In this case, ξαðtÞ = t−α/Γð1 − αÞ is the singular power
law kernel. Moreover,

L ξα tð Þð Þ = 1
s 1−αð Þ ,

ξ1−α tð Þ ∗ ξα tð Þð Þ = 1,

ξ0 tð Þ = L−1
1
s

� �
= 1,

ξ1 tð Þ = L−1 1ð Þ = δ tð Þ:

ð22Þ

In this instance, δðtÞ is for a Dirac delta function. It is
possible to write using Equation (21) and the properties
mentioned in (22):

CD
0
t K1 ζ, tð Þð Þ = K1 ζ, tð Þ − K1 ζ, 0ð Þ,

CD
1
t K1 ζ, tð Þð Þ = ∂C ζ, tð Þ

∂t
:

9>=
>; ð23Þ
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Equations (19) and (20) may be written using the
Caputo fractional derivative.

∂T ζ, tð Þ
∂t

=
b6
b5Pr

CD
1−α
t

∂2T ζ, tð Þ
∂ζ2

, ð24Þ

Sc
∂C ζ, tð Þ

∂t
=

1
b7

CD
1−α
t

∂2C ζ, tð Þ
∂ζ2

 !
: ð25Þ

In order to derive the simplified form of Equations (24)
and (25), we consider the time-fractional integral operator:

vαt K1 ζ, tð Þð Þ = ξ1−α
∗K1

À Á
tð Þ = 1

Γ αð Þ
ðt
0
t − sð Þα−1K1 ζ, sð Þds:

ð26Þ

The inverse operator of the fractional derivative CDα
t

described in Equation (26) is Equation (21). Equations (24)
and (25) may be expressed using the properties described
in [39] as follows:

CD
α
t T ζ, tð Þ = b6

b5Pr
∂2T ζ, tð Þ

∂ζ2

 !
, ð27Þ

CD
α
t C ζ, tð Þ = 1

b7Sc
∂2C ζ, tð Þ

∂ζ2

 !
: ð28Þ

3. Solution of the Problem

3.1. Solution of Energy Field. When we apply the LT to
Equation (27), we obtain

Prsα�T ζ, sð Þ = b6
b5

d2�T ζ, sð Þ
dζ2

 !
, ð29Þ

and the transformed ICs and BCs are given by

�u ζ, tð Þ = �T ζ, tð Þ = ,�C ζ, 0ð Þ = 0, t = 0,

�u ζ, sð Þ = �T ζ, sð Þ = �C ζ, sð Þ = 1
s
,
∂2�u ζ, sð Þ

∂ζ2
= 0, ζ = 0,

�T ζ, sð Þ = �C ζ, sð Þ = �u ζ, sð Þ = ∂2�u ζ, sð Þ
∂ζ2

= 0, ζ = 1:

9>>>>>>>=
>>>>>>>;

ð30Þ

Now, using the conditions in Equation (30), we apply the
FSFT to Equation (29), and we get

�T k, sð Þ = kπb6
b5Pr

1
s sα + Lð Þ
� �

, ð31Þ

where L = ðkπÞ2ðb6/Prb5Þ.

u
(𝜁

,t)

𝜁

𝛼 = 0.1

0

0.5

1.0

0.5 1.0

𝛼 = 0.4
𝛼 = 0.7
𝛼 = 1.0

Figure 2: Influence of several values of α on velocity profile.

u
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Figure 3: Impact of different values of β on velocity profile.
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Figure 4: Impact of different values of ϕ on velocity profile.
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When inverse transformations are used, Equation (31)
looks like this:

T ζ, tð Þ = 1 − ζð Þ − 2〠
∞

k=1

1
kπ

⋅ Eα

− kπð Þ2tα
Pr

b6
b5

 !
sin kπζð Þ:

ð32Þ

3.2. Solution of Concentration Field. Applying the LT to
Equation (28), we get the following:

sα�C ζ, sð Þ = 1
Scb7

d2�C ζ, sð Þ
dζ2

 !
: ð33Þ

Now, using the conditions in Equation (30), we apply the
FSFT to Equation (33), and we get

�C k, sð Þ = kπ
b7Sc

1

s sα + L′
� �

0
@

1
A, ð34Þ

where L′ = ðkπÞ2/Sc.
When inverse LT and FSFT are used, Equation (31)

looks like this:

C ζ, tð Þ = 1 − ζð Þ − 2〠
∞

k=1

1
kπ

⋅ Eα

− kπð Þ2tα
b7Sc

 !
sin kπζð Þ, ð35Þ

when the Mittag-Leffler function Eαð−αtαÞ =∑∞
k=0ð−αtÞk/

Γðαk + 1Þ is used.

u
(𝜁

,t)

0.5

0.3

1.0

0.8

1.6

1.3

𝜁

Gr = 10

0 0.5 1.0

Gr = 15
Gr = 20
Gr = 25

Figure 5: Impact of different values of Gr on velocity profile.
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Figure 6: Impact of different values of Gm on velocity profile.
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Figure 7: Impact of different values of λ on velocity profile.
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Figure 8: Impact of α on temperature distribution.
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3.3. Solution of Momentum Equation. LT applied to Equa-
tion (12) allows us to write

�u ζ, sð Þ = b2
b1

1 +
1
β

� �
d2�u ζ, sð Þ

dζ2
−

λ

b1

d4�u ζ, sð Þ
dζ4

+
b4
b1

Gm cos γð Þ�C ζ, sð Þ + 1
b1

b3Gr cos γð Þ�T ζ, sð Þ:

ð36Þ

Using Equation (36), the finite Fourier sine transform,
and the substitution of Equations (31) and (34), we obtain

�u k, sð Þ = R1
R2s

+
R1

R2 s + R2ð Þ
+
b6
b5

Grkπ
PrR2

b3
b1

cos γð Þ 1
s sα + Lð Þ −

1
s + R2ð Þ sα + Lð Þ

� �

+
Gmkπ
b7ScR2

b4
b1

cos γð Þ 1

s sα + L′
� � −

1

s + R2ð Þ sα + L′
� �

0
@

1
A:

ð37Þ

Applying the inverse LT, we get the following expression
for Equation (37).

�u k, tð Þ = R1
R2

1 + e−R2t
À Á

+ Gr
kπ

b3
b1

cos γð Þ 1 − Eα

b6
b5

− kπð Þ2
Pr

tα
 ! !

+
Gm
kπ

b4
b1

cos γð Þ 1 − Eα

− kπð Þ2
b7Sc

tα
 ! !

−
b6
b5

Grkπ
PrR2

b3
b1

cos αð Þ
ðτ
0
tα−1Eα,α −Ltαð Þ ∗ e−R2 t−τð Þdτ

−
Gmkπ
Scb7R2

b4
b1

cos αð Þ
ðτ
0
tα−1Eα,α −L′tα

� �
∗ e−R2 t−τð Þdτ:

ð38Þ

The final accurate solution to Equation (36) is obtained
by transforming Equation (36) using inverse FSFT.

where R = ðb2/b1Þð1 + ð1/βÞÞ,R1 = RðkπÞ + ðλ/b1ÞðkπÞ3,
and R2 = kπR1.
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Figure 9: Impact of ϕ on temperature distribution.
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Figure 10: Impact of α on concentration distribution.

u ζ, tð Þ =

1 − ζð Þ + 2〠
∞

k=1

1
kπ

exp −kπR2tð Þ sin kπζð Þ + 2Gr
b3
b1

cos γð Þ〠
∞

k=1

1
kπ

1 − Eα

b6
b5

− kπð Þ2
Pr

tα
 ! !

sin kπζð Þ

+2Gm
b4
b1

cos γð Þ〠
∞

k=1

1
kπ

1 − Eα

− kπð Þ2
b7Sc

tα
 ! !

sin kπζð Þ − 2
b6
b5

Gr
Pr

b3
b1

cos γð Þ〠
∞

k=1

kπ
R2

sin kπζð Þ

ðτ
0
tα−1Eα,α −Ltαð Þ × e−R2 t−τð Þdτ − 2

Gm
b7Sc

b4
b1

cos γð Þ〠
∞

k=1

kπ
R2

sin kπζð Þ
ðτ
0
tα−1Eα,α −L′tα

� �
× e−R2 t−τð Þdτ

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

, ð39Þ
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3.4. Skin Friction and Nusselt Number. The comparative
from Ahmad et al. [39] obtains skin friction terms from
Equation (39) and Nusselt number expressions from Equa-
tion (32).

Cf =
1

1 − ϕð Þ2:5 1 +
1
β

� �
∂u ζ, tð Þ

∂ζ

����
ζ=0

− λ
∂3u ζ, tð Þ

∂ζ3

�����
ζ=0

,

Nu = −b6
∂T ζ, tð Þ

∂ζ

����
ζ=0

:

ð40Þ

4. Result and Discussion

An investigation of the unsteady, unidirectional, and incom-
pressible flow of couple stress SA-based Casson nanofluid
through inclined microchannel is worked out in this article.
A fractional model is developed by using the laws of Fourier
and Fick, respectively. By combining the Laplace and Fourier
finite sine transforms, it is possible to find closed-form
solutions. After being calculated and put into a table, the
skin friction, Sherwood number, and Nusselt number of
the boundary layer flow are each given as a number.
Figures 2–12 show how the distributions of speed, tempera-
ture, and concentration change when different embedded
parameters are changed.

Figures 2, 8, and 10 demonstrate how the fractional
parameter α impacts the profile of fluid velocity, the distri-
bution of temperatures, and the distribution of concentra-
tions. Different integral velocity profiles are created, which
is different from the classical model. The easiest way to fit
these many integral profiles might be to use real data or
results from experiments.

Figure 3 shows what happens to the speed profile when
the Casson parameter β is changed. When the value of the
Casson parameter β rises, the flow decelerates, as shown by
the graphs. The science behind this is that when the value
of β is raised, the viscous forces that provide resistance and
slow the flow are also raised.

The effects of volume friction ϕ on velocity profile, tem-
perature distribution, and concentration distribution are
depicted in Figures 4, 9, and 11. As a result of sedimentation,
the range is between 0 and 0.04 when it reaches 0.08 when it
is measured. A rise in the nanoparticle volume friction per-
centage will, in either scenario, result in a lower temperature,
as well as a change in the concentration distribution and the
velocity profile.

Figures 5 and 6 show how Gr and Gm influence the
velocity of the SA-based Casson nanofluid under CS. These
pictures show that a function of these values that rises
implies that the velocity goes up. Because they are going
up, the buoyancy forces are going up, which causes the vis-
cosity of the fluid to move down, which makes the fluid
move faster. There is evidence that this statement is true.

The velocity profile flattens out when the couple stress
parameter λ drops, as seen in Figure 7, which shows how
λ affects velocity. Physics-wise, this behavior happens

because increasing λ also increases the viscosity, which slows
the Casson nanofluid based on SA.

The concentration is shown in Figure 12 for various
Schmidt number Sc values. As the Schmidt number rises,
the concentration boundary layer thickness falls. The
Schmidt number decreased both the consecration and the

Table 1: Thermophysical properties.

Material
Base fluids Nanoparticles

SA Al2O3 Cu TiO2 Ag
ρ kg/m3À Á

989 3970 8933 4250 10500

cp J/kgKð Þ 4175 765 385 686.2 235

K W/mKð Þ 0.613 40 401 8.9528 429

β × 10−5 K−1À Á
0.99 0.85 1.67 0.9 1.89

C
(y

,t)
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1
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0 0.5 1
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Figure 12: Impact of Sc on concentration distribution.

C
(𝜁

,t) 0.5

1

𝜁

𝜙 = 0.01

0
0

0.5 1

𝜙 = 0.02
𝜙 = 0.03
𝜙 = 0.04

Figure 11: Impact of ϕ on concentration distribution.
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velocity profile since it measures the proportion of viscous
forces to mass diffusivity. Physically, the velocity of the
SA-based Casson nanofluid decreases as viscous forces rise.

Table 1 displays the thermophysical characteristics of
nanoparticles for your review. Table 2 displays the variation
in skin friction caused by different parameter values. Skin
friction is significant in several engineering areas, especially
civil engineering. The viscous forces and, consequently, the
surface friction increase as β raises. Skin friction is decreased
by raising Gr and Gm. By raising Gr and Gm, the buoyancy
forces rise, the viscosity drops, and the surface friction goes
down as a result. Table 2 clearly illustrates how skin friction
reduces as volume friction ϕ increases.

The Nusselt number is shown in Table 3. An increase in
momentum diffusivity leads to a decrease in the thickness of

the thermal boundary layer, which in turn decreases the
Nusselt number since the Prandtl number Pr measures the
relationship between momentum and thermal diffusivity.
By putting α = 1,M = 0, Gr = Gm = 0, t = 1, β⟶∞, and
ϕ = 0, our solution is reduced to the solution of Akhtar
and Shah [40], which is presented in Figure 13, which val-
idates our solution.

5. Conclusion

This article describes how the classical model is now turned
into a time-fractional model utilizing Fick’s and Fourier’s
equations in line with Caputo’s definition. Laplace and Fou-
rier integral transforms are used to get accurate solutions.
Visual illustrations and physical descriptions are used to
show how different embedded elements affect the distribu-
tions of velocity, temperature, and concentration. The pres-
ent work’s main conclusions are as follows:

(1) Using Fick’s and Fourier’s laws, the time derivative is
adapted into a time-fractional model

(2) The fractional models offer a wider range of answers
since they are more realistic. Considering the rele-
vant data, these solutions could be the best

(3) In accordance with the concept of skin friction, the
impact of different variables on skin friction is
completely different from the impact of velocity

(4) By increasing the volume friction, as a result, the tem-
perature profile, concentration profile, and velocity
profile decrease

Nomenclature

V
!
: Velocity vector

knf : Thermal conductivity of the nanofluid
Td : Embedded temperature
Cd : Embedded concentration

b
!

1:
Body force vector

ρnf : Density of nanofluid
g: Gravitational acceleration
ðβTÞnf : Coefficient of thermal expansion of nanofluid
ðCpÞnf : Heat capacitance of the nanofluid

C
!
: Concentration vector

T
!
: Temperature vector

p: Pressure
μnf : Dynamic viscosity of nanofluid
λ: Couple stress parameter
β: Casson fluid parameter
γ: Inclination angle
π = eab: Factor of the deformation rate
μn: Plastic dynamic viscosity
Pλ: Yield stress of fluid
Nu: Nusselt number
Cf : Skin friction
Gr: Grashof number
Gm: Mass Grashof number

u
(𝜁

,t) 0.5

1.0

𝜁

Present solution

0.0
0.0

0.5 1.0

Solution by Akhtar and Shah [40]

Figure 13: Comparison of the current solution with Akhtar and
Shah [40].

Table 2: The effect of different parameters onCf .

t α β λ ϕ Gm Gr Cf
0.9 0.5 2 2 0.01 5 2 1.06033

0.9 0.6 2 2 0.01 5 2 1.00032

0.9 0.5 3 2 0.01 5 2 4.00632

0.9 0.5 2 4 0.01 5 2 5.23687

0.9 0.5 2 2 0.03 5 2 1.71032

0.9 0.5 2 2 0.01 10 2 0.23124

0.9 0.5 2 2 0.01 5 3 0.91119

Table 3: The effect of different parameters on Nu.

t α ϕ Nu
1 0.5 0.01 2.32203

1.5 0.5 0.01 2.92772

1 0.6 0.01 2.00024

1 0.5 0.03 3.94575
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Pr: Prandtl number
Sc: Schmidt number
ϕ: Volume friction of nanofluid
Cðζ, tÞ: Concentration
Tðζ, tÞ: Temperature
Vðζ, tÞ: Velocity
d: Distance between parallel plates
Dnf : Thermal diffusivity of nanofluid.
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