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Firstly, the concept of a new triangular α-orbital admissible condition is introduced, and two fixed point theorems for Sehgal-
Guseman-type mappings are investigated in the framework of rectangular b-metric spaces. Secondly, some examples are
presented to illustrate the availability of our results. At the same time, we furnished the existence and uniqueness of solution of
an integral equation.

1. Introduction

In nonlinear analysis, the most famous result is the Banach
contraction principle, which is established by Banach [1] in
1922. After that, there are a large number of excellent results
for fixed point in metric spaces. On recent development on
fixed point theory in metric spaces, one can consult [2] the
related references involved. Branciari [3] introduced a new
concept, that is, the definition of rectangular metric spaces,
and established an analogue of the Banach fixed point theo-
rem in such a space. Then, a lot of fixed point theorems for a
wide range of contractions on rectangular metric spaces had
emerged in a blowout manner. In such type space, Lakzian
and Samet [4] gave some results involving ðψ, ϕÞ weakly
contraction. Furthermore, several common fixed point
results about ðψ, ϕÞ-weakly contractions were obtained by
Bari and Vetro [5]. In [6], George and Rajagopalan consid-
ered common fixed points of a new class of ðψ, ϕÞ contrac-
tions. By use of C-functions, Budhia et al. furnished several
fixed point results in [7].

In [8], Czerwik put forward firstly the definition of b
-metric space, an extension of a metric space. Since then, this
result has been extended in different angles. In a b-metric
space, in [9], Mitrovic provided a new method to prove
Czerwik’s fixed point theorem. By using of increased range

of the Lipschitzian constants, Hussain et al. [10] provided
a proof of the Fisher contraction theorem. Mustafa et al.
[11] gave several fixed point theorems for some new classes
of T-Chatterjea-contraction and T-Kannan-contraction.
Recently, also in this type spaces, Mitrovic et al. [12] pre-
sented some new versions of existing theorems. Savanović
et al. [13] constructed some new results for multivalued qua-
sicontraction. Furthermore, in [14], Aydi et al. obtained the
existence of fixed point for α-βE-Geraghty contractions. In
[15], several fixed point theorems of set valued interpolative
Hardy-Rogers type contractions were studied. In [16],
George et al. put forward the concept of rectangular b-met-
ric mapping. Meanwhile, they gave some fixed point theo-
rems. Lately, Gulyaz-Ozyurt [17], Zheng et al. [18], and
Guan et al. [19] also studied fixed point theory in such
spaces and obtained some excellent results. In 2021, Hussain
[20] presented some fractional symmetric α-η-contractions
and built up some new fixed point theorems for these types
of contractions in F-metric spaces. Recently, Arif et al. [21]
introduced an ordered implicit relation and investigated
the existence of the fixed points of contractive mapping deal-
ing with implicit relation in a cone b-metric space. Lately, in
[22], some fixed point theorems of two new classes of multi-
valued almost contractions in a partial b-metric spaces were
established by Anwar et al.
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On the other hand, in 1969, Sehgal [23] formulated an
inequality that can be considered an extension of the
renowned Banach fixed point theorem in a metric space.
Matkowski [24] generalized some previous results of
Khazanchi [25] and Iseki [26]. In 2012, the definition of α
-admissible mappings was given by Samet et al. [27]. Later,
the notion of triangular α-admissible mappings was intro-
duced by Popescu [28]. Recently, Lang and Guan [29] studied
the common fixed point theory of αi,j-φEM,N

-Geraghty contrac-

tion and αi,j-φEN
-Geraghty contractions in a b-metric space.

In this paper, inspired by [30], we established two fixed
point theorems for Sehgal-Guseman-type mappings in a
rectangular b-metric space. Also, we present two examples
to illustrate the usability of established results.

2. Preliminaries

Definition 1 (see [8]). Suppose G is a nonempty set and
ς : G ×G⟶ ½0,+∞Þ. We call ς a b -metric if

(i) ςðϵ, ϖÞ = 0⇔ ϵ = ϖ, ∀ϵ, ϖ ∈G

(ii) ςðϵ, ϖÞ = ςðϖ, ϵÞ, ∀ϵ, ϖ ∈G

(iii) ςðϵ, ϖÞ ≤ s½ςðϵ, γÞ + ςðγ, ϖÞ�, ∀ϵ, ϖ, γ ∈G
where s ≥ 1 is constant.

It is usual that ðG, ςÞ is called a b-metric space with
parameter s ≥ 1.

Definition 2 (see [3]). Suppose G is a nonempty set and
τ : G ×G⟶ ½0,+∞Þ. We call τ a triangular metric if

(i) τðϵ, ϖÞ = 0⇔ ϵ = ϖ, ∀ϵ, ϖ ∈G

(ii) τðϵ, ϖÞ = τðϖ, ϵÞ, ∀ϵ, ϖ ∈G

(iii) τðϵ, ϖÞ ≤ τðϵ, γÞ + τðγ, ϵÞ + τðϵ, ϖÞ, ∀ϵ, ϖ ∈G, γ, ϵ
∈G − fϵ, ϖg

Usually, ðG, τÞ is called a rectangular metric space.

Definition 3 (see [16]). Suppose G is a nonempty set and
υ : G ×G⟶ ½0, +∞Þ. We call υ a rectangular b -metric if

(i) υðϵ, ϖÞ = 0⇔ ϵ = ϖ, ∀ϵ, ϖ ∈G

(ii) υðϵ, ϖÞ = υðϖ, ϵÞ, ∀ϵ, ϖ ∈G

(iii) υðϵ, ϖÞ ≤ s½υðϵ, γÞ + υðγ, εÞ + υðε, ϖÞ�, ∀ϵ, ϖ ∈G, γ, ε
∈G − fϵ, ϖg

where s ≥ 1 is constant.

In general, ðG, υÞ is called a rectangular b-metric space
with parameter s ≥ 1.

Remark 4. A rectangularmetric space is a rectangular b-metric
space, so is a b -metric space. Moreover, the converse is
not true.

Example 1. Suppose G = A ∪ B, where A = f0, 2/41, 3/61,
4/81g and B = f1/2, 1/3,⋯,1/i,⋯g. For ϵ, ϖ ∈G, define
υ : G ×G⟶ ½0,+∞Þ with υðϵ, ϖÞ = υðϖ, ϵÞ and

υ 0, 2
41

� �
= υ

2
41

, 3
61

� �
= υ

3
61

, 4
81

� �
= 0:05,

υ 0,
3
61

� �
= υ

2
41

,
4
81

� �
= 0:08,

υ 0,
4
81

� �
= 0:3,

υ ϵ, ϖð Þ =max ϵ, ϖf g, otherwise:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð1Þ

Thus, ðG, υÞ is a rectangular b-metric space with
s = 2. Furthermore, one can obtain the following:

(1) υ is not a b-metric with s = 2, since

υ 0,
4
81

� �
= 0:3 > 0:26 = 2 × 0:13

= 2 × υ 0,
2
41

� �
+ υ

2
41

,
4
81

� �� �
:

ð2Þ

(2) υ is not a rectangular metric, since

υ 0,
4
81

� �
= 0:3 > 0:15 = υ 0,

2
41

� �

+ υ
2
41

,
3
61

� �
+ υ

3
61

,
4
81

� �
:

ð3Þ

(3) υ is not a metric, since

υ 0,
4
81

� �
= 0:3 > 0:13 = υ 0,

2
41

� �
+ υ

2
41

,
4
81

� �
: ð4Þ

Definition 5 (see [16]). Suppose ðG, υÞ is a rectangular b
-metric space with s ≥ 1. Assume that fϖng in G is a
sequence and ϖ ∈G

(i) fϖng is convergent to ϖ iff limn⟶+∞υðϖn, ϖÞ = 0

(ii) fϖng is Cauchy iff υðϖi, ϖjÞ⟶ 0 as i, j⟶ +∞

(iii) ðG, υÞ is complete iff each Cauchy sequence is
convergent

Remark 6. In a rectangular b-metric space, a convergent
sequence does not possess unique limit and a convergent
sequence is not necessarily a Cauchy sequence. However,
one can find that the limit of a Cauchy sequence is unique.
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In fact, suppose the sequence fϖng is Cauchy and converges
to ϖ∗ and ϖ∗∗ with ϖ∗ ≠ ϖ∗∗. It follows that

υ ϖ∗,ϖ∗∗ð Þ ≤ s υ ϖ∗, ϖnð Þ + υ ϖn, ϖn+p
À Á

+ υ ϖn+p,ϖ∗∗À ÁÂ Ã
, ð5Þ

for all p > 0. Let n⟶∞; we get that υðϖ∗,ϖ∗∗Þ = 0: Hence,
ϖ∗ = ϖ∗∗, a contradiction.

Example 2 (see [16]). Let G = A ∪ B, where A = f1/n : n ∈
ℕg and B =ℕ. Define υ : G ×G⟶ ½0,+∞Þ with υðϵ, ϖÞ
= υðϖ, ϵÞ and

υ ϵ, ϖð Þ =

0, if ϵ = ϖ,

2α, if ϵ, ϖ ∈ A,
α

2n
, if ϵ ∈ A andϖ ∈ 2, 3f g,

α, otherwise:

8>>>>><
>>>>>:

ð6Þ

Here, α is a positive number. Thus, υ is a rectangular
b-metric with s = 2. However, we have that f1/ng is con-
vergent to 2 and 3. Moreover, limn⟶∞υð1/n, 1/ðn + pÞÞ
= 2α ≠ 0; therefore, f1/ng is not a Cauchy sequence.

Definition 7 (see [28]). Suppose G is a nonempty set and
T : G⟶G and α : G ×G⟶ℝ are two mappings. We call
Tα-orbital admissible mapping if

∀ϖ ∈G, α ϖ, Tϖð Þ ≥ 1⇒ α Tϖ, T2ϖ
À Á

≥ 1: ð7Þ

Definition 8 (see [28]). Assume that T : G⟶G and α : G
×G⟶ℝ. We call T a triangular α-orbital admissible map-
ping if

(i) αðϵ, ϖÞ ≥ 1 and αðϖ, TϖÞ ≥ 1 imply αðϵ, TϖÞ ≥ 1,
∀ϵ, ϖ ∈G

(ii) T is α-orbital admissible

Lemma 9 (see [24]). Assume Θ : ½0,+∞Þ⟶ ½0,+∞Þ is an
increasing mapping. Then, ∀t > 0, limn⟶∞ΘnðtÞ = 0⇒Θ
ðtÞ < t.

3. Main Results

In this part, two fixed point results of injective mappings will
be presented on rectangular b-metric spaces.

Definition 10. Suppose G is a nonempty set, s ≥ 1 and p > 0
are two constants, and α : G ×G⟶ ½0,+∞Þ, T : G⟶G.
We call Tαsp orbital admissible mapping if

∀ϖ ∈G, α ϖ, Tϖð Þ ≥ sp ⇒ α Tϖ, T2ϖ
À Á

≥ sp: ð8Þ

Definition 11. Suppose G is a nonempty set, s ≥ 1 and p > 0
are two constants, and α : G ×G⟶ ½0,+∞Þ, T : G⟶G.
We call T triangular αsp orbital admissible mapping if

(i) αðϵ, ϖÞ ≥ sp and αðϖ, TϖÞ ≥ sp imply αðϵ, TϖÞ ≥ sp,
∀ϵ, ϖ ∈G

(ii) T is αsp orbital admissible

Lemma 12. Suppose G is a nonempty set and T : G⟶G,
α : G ×G⟶ ½0,+∞Þ are mappings satisfying T which is
triangular αsp orbital admissible, s ≥ 1, p > 0. Suppose there
has a ϖ0 ∈G with αðϖ0, Tϖ0Þ ≥ sp. Define fϖng in G by
ϖ1 = Tnðϖ0Þϖ0,⋯, ϖn+1 = TnðϖnÞϖn,⋯. Then, ∀m ∈ℕ ∪ f0g,
αðϖm, TkϖmÞ ≥ sp, k = 0, 1, 2,⋯:

Proof. Since αðϖ0, Tϖ0Þ ≥ sp and T is triangular αsp orbital
admissible, we have

α ϖ0, Tϖ0ð Þ ≥ sp implies α Tϖ0, T2ϖ0
À Á

≥ sp and α ϖ0, T2ϖ0
À Á

≥ sp:
ð9Þ

Similarly, since αðTϖ0, T2ϖ0Þ ≥ sp, we get

α T2ϖ0, T3ϖ0
À Á

≥ sp, ð10Þ

α ϖ0, T3ϖ0
À Á

≥ sp: ð11Þ

Applying the above argument repeatedly, one can
deduce that αðϖ0, Tkϖ0Þ ≥ sp for all k ∈ℕ ∪ f0g. Since
αðϖ0, Tϖ0Þ ≥ sp implies αðTϖ0, T2ϖ0Þ ≥ sp and αðTϖ0, T2

ϖ0Þ ≥ sp implies αðT2ϖ0, T3ϖ0Þ ≥ sp,⋯, we can obtain
αðTnðϖ0Þϖ0, Tnðϖ0Þ+1ϖ0Þ = αðϖ1, Tϖ1Þ ≥ sp. Based on this
conclusion, we deduce that αðϖ1, Tkϖ1Þ ≥ sp, k = 0, 1, 2,⋯.
Repeatedly using the above discussion, we have αðϖm, Tk

ϖmÞ ≥ sp, k = 0, 1, 2,⋯ for all m ∈ℕ ∪ f0g.

Define Θ = fΦ : ℝ+3 ⟶ℝ+ is increasing and continuous
in each coordinate variableg. That is, if κð1Þ1 , κð1Þ2 , κð2Þ1 , κð2Þ2 ,
κð3Þ1 , κð3Þ2 ∈ℝ+ with κð1Þ1 ≤ κð1Þ2 , κð2Þ1 ≤ κð2Þ2 , κð3Þ1 ≤ κð3Þ2 , we have

Φ κ
1ð Þ
1 , κ 2ð Þ

1 , κ 3ð Þ
1

� �
≤Φ κ

1ð Þ
2 , κ 2ð Þ

1 , κ 3ð Þ
1

� �
,

Φ κ
1ð Þ
1 , κ 2ð Þ

1 , κ 3ð Þ
1

� �
≤Φ κ

1ð Þ
1 , κ 2ð Þ

2 , κ 3ð Þ
1

� �
,

Φ κ
1ð Þ
1 , κ 2ð Þ

1 , κ 3ð Þ
1

� �
≤Φ κ

1ð Þ
1 , κ 2ð Þ

1 , κ 3ð Þ
2

� �
:

ð12Þ

Furthermore, we set Φðϵ, ϵ, ϵÞ = φðϵÞ for ε ∈ℝ+.

Theorem 13. Suppose ðG, υÞ is a complete rectangular b
-metric space with s ≥ 1. Suppose T : G⟶G is a continuous
injectivity, α : G ×G⟶ ½0, +∞Þ and p > 0. Assume that for
any ϵ ∈G, there is a positive number nðϵÞ satisfying
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∀ϖ ∈G, α ϵ, ϖð Þ ≥ sp ⇒ α ϵ, ϖð Þυ Tn ϵð Þϵ, Tn ϵð Þϖ
� �

≤Φ υ ϵ, ϖð Þ, υ ϵ, Tn ϵð Þϵ
� �

, υ ϵ, Tn ϵð Þϖ
� �� �

,
ð13Þ

where Φ ∈Θ and

(1) limϵ⟶∞ðϵ − sφðϵÞÞ =∞

(2) ∀ϵ > 0, limm⟶∞φmðϵÞ = 0

Suppose that

(i) there has a ϵ0 in G such that αðϵ0, Tϵ0Þ ≥ sp

(ii) T is triangular αsp orbital admissible

(iii) if fϖng in G satisfies αðϖn, ϖn+1Þ ≥ spð∀n ∈ℕÞ and
ϖn ⟶ ϖ ∈Gðn⟶∞Þ, then one can choose a sub-
sequence fϖnk

g of fϖng with αðϖnk
, ϖÞ ≥ sp, ∀k ∈ℕ

(iv) ∀ϵ ∈G with TnðϵÞϵ = ϵ, we have αðϵ, ϖÞ ≥ sp for any
ϖ ∈G

Then, T possesses a unique fixed point ϵ∗ ∈G. Further,
for each ϵ ∈G, the iteration fTnϵg converges to ϵ∗

Proof. By condition (i), one can choose an ϵ0 ∈G such that
αðϵ0, Tϵ0Þ ≥ sp. If ϵ0 is a fixed point of T and ϖ0 is the other
one, then ϵ0 = Tϵ0 =⋯ = Tnðϵ0Þϵ0 =⋯ and ϖ0 = Tϖ0 =⋯
= Tnðϵ0Þϖ0 =⋯. From condition (iv), we have αðϵ0, ϖ0Þ ≥
sp. It follows from (13) that

υ ϵ0, ϖ0ð Þ ≤ α ϵ0, ϖ0ð Þυ Tn ϵ0ð Þϵ0, Tn ϵ0ð Þϖ0

� �
≤Φ υ ϵ0, ϖ0ð Þ, υ ϵ0, Tn ϵ0ð Þϵ0

� �
, υ ϵ0, Tn ϵ0ð Þϖ0

� �� �
≤ φ υ ϵ0, ϖ0ð Þð Þ:

ð14Þ

From Lemma 9, we have φðυðϵ0, ϖ0ÞÞ < υðϵ0, ϖ0Þ. Thus,

υ ϵ0, ϖ0ð Þ ≤ φ υ ϵ0, ϖ0ð Þð Þ < υ ϵ0, ϖ0ð Þ, ð15Þ

which is contradiction. From this, we get that ϵ0 is the
unique fixed point. After that, in the subsequent discussion,
we assume that Tϵ0 ≠ ϵ0. Now we define fϵng in G by
ϵ1 = Tnðϵ0Þϵ0,⋯, ϵn+1 = TnðϵnÞϵn.

First, we shall show that the orbit fTiϵ0g∞i=0 is bounded.
For this purpose, we fix an integer ℓ, 0 ≤ ℓ < nðϵ0Þ. Let

uj = υ ϵ0, T jn ϵ0ð Þ+ℓϵ0
� �

, j = 0, 1, 2,⋯, ð16Þ

h =max
n
u0, υ ϵ0, Tn ϵ0ð Þϵ0

� �
, υ ϵ0, T2n ϵ0ð Þϵ0
� �

,

υ Tn ϵ0ð Þϵ0, T2n ϵ0ð Þϵ0
� �o

:
ð17Þ

Since limϵ⟶∞ðϵ − sφðϵÞÞ =∞, there has c > h such that
ϵ − sφðϵÞ > 2sh, ϵ ≥ c. It is obvious that u0 ≤ h < c. Assume
that there has a positive number j0 with uj0

≥ c. Evidently,

one may suppose that ui < c, ∀i < j0. Let ϵ0, T
nðϵ0Þϵ0, T2nðϵ0Þ

ϵ0, T j0nðϵ0Þ+ℓϵ0 be different from each other. Otherwise, we
consider six cases.

Case 1. ϵ0 = Tnðϵ0Þϵ0: One can get that

ϵ0 = Tn ϵ0ð Þϵ0 = T2n ϵ0ð Þϵ0 = T3n ϵ0ð Þϵ0 =⋯: ð18Þ

It follows that uj = υðϵ0, Tℓϵ0Þ is a constant which

implies that fTiϵ0g∞i=0 is bounded.
Case 2. ϵ0 = T2nðϵ0Þϵ0: We deduce that

ϵ0 = T2n ϵ0ð Þϵ0 = T4n ϵ0ð Þϵ0 = T6n ϵ0ð Þϵ0 =⋯, ð19Þ

Tn ϵ0ð Þϵ0 = T3n ϵ0ð Þϵ0 = T5n ϵ0ð Þϵ0 =⋯: ð20Þ

Hence,

uj =
υ ϵ0, Tn ϵ0ð Þ+ℓϵ0
� �

, j is odd,

υ ϵ0, Tℓϵ0
À Á

, j is even:

8<
: : ð21Þ

It follows that fTiϵ0g∞i=0 is bounded.
Case 3. Tnðϵ0Þϵ0 = T2nðϵ0Þϵ0. Obviously,

Tn ϵ0ð Þϵ0 = T2n ϵ0ð Þϵ0 = T3n ϵ0ð Þϵ0 = T4n ϵ0ð Þϵ0 =⋯: ð22Þ

As the argument of Case 1, we get that fTiϵ0g∞i=0 is
bounded.

Case 4. ϵ0 = T j0nðϵ0Þ+ℓϵ0. In this case, we obtain that
uj0

= 0, a contradiction.
Case 5. Tnðϵ0Þϵ0 = T j0nðϵ0Þ+ℓϵ0. It follows that

uj0
= υ ϵ0, T j0n ϵ0ð Þ+ℓϵ0

� �
= υ ϵ0, Tn ϵ0ð Þϵ0

� �
≤ h < c: ð23Þ

It is a contradiction.
Case 6. T2nðϵ0Þϵ0 = T j0nðϵ0Þ+ℓϵ0. It is obvious that

uj0
= υ ϵ0, T j0n ϵ0ð Þ+ℓϵ0

� �
= υ ϵ0, T2n ϵ0ð Þϵ0

� �
≤ h < c, ð24Þ

a contradiction.
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It is easy to get αðϵ0, Tkϵ0Þ ≥ sp, ∀k ∈ℕ from Lemma 12.
By using triangle inequality and (16), we have

υ ϵ0, T j0n ϵ0ð Þ+ℓϵ0
� �
≤ s

h
υ ϵ0, T2n ϵ0ð Þϵ0
� �

+ υ T2n ϵ0ð Þϵ0, Tn ϵ0ð Þϵ0
� �

+ υ Tn ϵ0ð Þϵ0, T j0 ϵ0ð Þ+ℓϵ0
� i

≤ 2sh + sα ϵ0, T j0−1ð Þn ϵ0ð Þ+ℓϵ0
� �

υ Tn ϵ0ð Þϵ0, T j0n ϵ0ð Þ+ℓϵ0
� �

≤ 2sh + sΦ
�
υ ϵ0, T j0−1ð Þn ϵ0ð Þ+ℓϵ0
� �

,

υ ϵ0, Tn ϵ0ð Þϵ0
� �

, υ ϵ0, T j0n ϵ0ð Þ+ℓϵ0
� ��

≤ 2sh + sΦ uj0
, uj0

, uj0

� �
= 2sh + sφ uj0

� �
:

ð25Þ

That is, uj0
− sφðuj0

Þ ≤ 2sh, which is impossible. There-

fore, uj < c for j = 0, 1, 2,⋯. It follows that fTiϵ0g∞i=0 is
bounded.

If there exists some n0 ∈ℕ satisfying ϵn0 = ϵn0+1 =
Tnðϵn0 Þϵn0 , then ϵn0 is a fixed point of Tnðϵn0 Þ. Assume there

is ϖ ∈G such that ϖ = Tnðϵn0 Þϖ and ϖ ≠ ϵn0 , by condition
(iv), we have αðϵn0 , ϖÞ ≥ sp and

υ ϵn0 , ϖ
À Á

≤ α ϵn0 , ϖ
À Á

υ Tn ϵn0ð Þϵn0 , T
n ϵn0ð Þϖ

� �
≤Φ υ ϵn0 , ϖ

À Á
, υ ϵn0 , T

n ϵn0ð Þϵn0
� �

, υ ϵn0 , T
n ϵn0ð Þϖ

� �� �
≤ φ υ ϵn0 , ϖ

À ÁÀ Á
< υ ϵn0 , ϖ

À Á
,

ð26Þ

which is contradiction. From this, Tnðϵn0 Þ possesses the
unique fixed point ϵn0 . Since Tϵn0 = TTnðϵn0 Þϵn0 = Tnðϵn0 ÞT
ϵn0 , we have Tϵn0 = ϵn0 because of the uniqueness of

Tnðϵn0 Þ. Subsequently, we assume that ϵn ≠ ϵn+1, ∀n ∈ℕ.
Next, we show that fϵng is Cauchy. Suppose n and i

are two positive numbers. It is obvious that αðϵn−1, Tk

ϵn−1Þ ≥ sp, ∀k ∈ℕ. Then,

υ ϵn, ϵn+ið Þ ≤ α ϵn−1, Tn ϵn+i−1ð Þ+n ϵn+i−2ð Þ+⋯+n ϵnð Þϵn−1
� �

· υ Tn ϵn−1ð Þϵn−1, Tn ϵn+i−1ð Þ+⋯+n ϵn−1ð Þϵn−1
� �

≤Φ υ ϵn−1, Tn ϵn+i−1ð Þ+n ϵn+i−2ð Þ+⋯+n ϵnð Þϵn−1
� �

,
�

υ ϵn−1, Tn ϵn−1ð Þϵn−1
� �

, υ ϵn−1, Tn ϵn+i−1ð Þ+⋯+n ϵn−1ð Þϵn−1
� ��

≤ φ sup υ ϵn−1, qð Þjq ∈ Tmϵn−1f g∞m=0
È ÉÀ Á

:

ð27Þ

For each q ∈ fTmϵn−1g∞m=0, we have

υ ϵn−1, qð Þ = υ ϵn−1, Tmϵn−1ð Þ
≤ α ϵn−2, Tmϵn−2ð Þυ Tn ϵn−2ð Þϵn−2, Tm+n ϵn−2ð Þϵn−2

� �
≤Φ υ ϵn−2, Tmϵn−2ð Þ, υ ϵn−2, Tn ϵn−2ð Þϵn−2

� �
,

�
υ ϵn−2, Tn ϵn−2ð Þ+mϵn−2
� ��

≤ φ sup υ ϵn−2, qð Þjq ∈ Tmϵn−2f g∞m=0
È ÉÀ

:

ð28Þ

According to (27) and (28), we deduce

υ ϵn, ϵn+ið Þ ≤ φ sup υ ϵn−1, qð Þjq ∈ Tmϵn−1f g∞m=0
ÈÀ Á

≤⋯≤ φn sup υ ϵ0, qð Þjq ∈ Tmϵ0f g∞m=0
È ÉÀ Á

⟶ 0  n⟶∞ð Þ:
ð29Þ

That is, fϵng is Cauchy. In light of the completeness of
ðG, υÞ, one can find an ϵ∗ ∈G with limn⟶∞ϵn = ϵ∗. We
might as well let ϵn ≠ ϵ∗ and ϵn ≠ Tnðϵ∗Þϵn. Otherwise, we
have ϵ∗ = Tnðϵ∗Þϵ∗ according to the continuity of T . In
view of triangle inequality, one deduce

υ ϵ∗, Tn ϵ∗ð Þϵ∗
� �
≤ s υ ϵ∗, ϵnð Þ + υ ϵn, Tn ϵ∗ð Þϵn

� �
+ υ Tn ϵ∗ð Þϵn, Tn ϵ∗ð Þϵ∗

� �h i
:

ð30Þ

On the other hand,

υ ϵn, Tn ϵ∗ð Þϵn
� �
≤ α ϵn−1, Tn ϵ∗ð Þϵn−1

� �
υ Tn ϵn−1ð Þϵn−1, Tn ϵ∗ð Þ+n ϵn−1ð Þϵn−1
� �

≤Φ υ ϵn−1, Tn ϵ∗ð Þϵn−1
� �

, υ ϵn−1, Tn ϵn−1ð Þϵn−1
� �

,
�

υ ϵn−1, Tn ϵ∗ð Þ+n ϵn−1ð Þϵn−1
� ��

≤ φ sup υ ϵn−1, qð Þjq ∈ Tmϵn−1f g∞m=0
È ÉÀ Á

≤⋯≤ φn sup υ ϵ0, qð Þjq ∈ Tmϵ0f g∞m=0
È ÉÀ Á

⟶ 0  n⟶∞ð Þ:
ð31Þ

From the continuity of T , limn⟶∞υðTnðϵ∗Þϵn, Tnðϵ∗Þϵ∗
Þ = 0. Thereupon, by the use of (30) and (31), one can
obtain υðϵ∗, Tnðϵ∗Þϵ∗Þ = 0 as n⟶∞. Assume there exists
ϖ∗ ≠ ϵ∗ satisfying ϖ∗ = Tnðϵ∗Þϖ∗ and we have αðϵ∗, ϖ∗Þ ≥
sp according to the condition (iv). Then,

υ ϵ∗, ϖ∗ð Þ ≤ α ϵ∗, ϖ∗ð Þυ Tn ϵ∗ð Þϵ∗, Tn ϵ∗ð Þϖ∗
� �

≤Φ υ ϵ∗, ϖ∗ð Þ, υ ϵ∗, Tn ϵ∗ð Þϵ∗
� �

, υ ϵ∗, Tn ϵ∗ð Þϖ∗
� �� �

≤ φ υ ϵ∗, ϖ∗ð Þð Þ < υ ϵ∗, ϖ∗ð Þ,
ð32Þ

5Journal of Function Spaces



impossible. After that, Tnðϵ∗Þ has the unique fixed
point ϵ∗. Since Tϵ∗ = TTnðϵ∗Þϵ∗ = Tnðϵ∗ÞTϵ∗, we deduce T
ϵ∗ = ϵ∗. That is, T has a fixed point.

Now we show that if condition (iv) is met. So T possesses
a unique fixed point. Assume ϖ∗ is another one; from condi-
tion (iv), one can obtain αðϵ∗, ϖ∗Þ ≥ sp. In view of (13), we
have

υ ϵ∗, ϖ∗ð Þ ≤ α ϵ∗, ϖ∗ð Þυ Tn ϵ∗ð Þϵ∗, Tn ϵ∗ð Þϖ∗
� �

≤Φ υ ϵ∗, ϖ∗ð Þ, υ ϵ∗, Tn ϵ∗ð Þϵ∗
� �

, υ ϵ∗, Tn ϵ∗ð Þϖ∗
� �� �

≤ φ υ ϵ∗, ϖ∗ð Þð Þ:
ð33Þ

Lemma 9 ensures that φðυðϵ∗, ϖ∗ÞÞ < υðϵ∗, ϖ∗Þ. Thus,

υ ϵ∗, ϖ∗ð Þ ≤ φ υ ϵ∗, ϖ∗ð Þð Þ < υ ϵ∗, ϖ∗ð Þ, ð34Þ

which is impossible. It follows that ϵ∗ is the unique fixed
point of T .

Finally, we prove the last part. To show this statement,
we fix an integer ℓ, 0 ≤ ℓ < nðϵ∗Þ, and let υk = υðϵ∗, Tknðϵ∗Þ+ℓ

ϵÞ, k = 0, 1, 2,⋯ for ϵ ∈G. If there exists k ∈ℕ satisfying
υk = 0, we have

υk+1 = υ ϵ∗, T k+1ð Þn ϵ∗ð Þ+ℓϵ
� �

= υ Tn ϵ∗ð Þϵ∗, Tn ϵ∗ð ÞTkn ϵ∗ð Þ+ℓϵ
� �

≤ α ϵ∗, Tkn ϵ∗ð Þ+ℓϵ
� �

υ Tn ϵ∗ð Þϵ∗, Tn ϵ∗ð ÞTkn ϵ∗ð Þ+ℓϵ
� �

≤Φ υk, 0, υk+1ð Þ:
ð35Þ

If υk+1 > 0, one can obtain that υk+1 ≤Φðυk+1, υk+1, υk+1Þ
= φðυk+1Þ < υk+1, which is a contradiction. Hence, υk+1 = 0.
It follows that υk+2 = υk+3 =⋯ = 0.

Now we suppose that υk ≠ 0, ∀n ∈ℕ. Therefore, we
obtain

υ ϵ∗, Tkn ϵ∗ð Þ+ℓϵ
� �

≤ α ϵ∗, T k−1ð Þn ϵ∗ð Þ+ℓϵ
� �

υ Tn ϵ∗ð Þϵ∗, Tkn ϵ∗ð Þ+ℓϵ
� �

≤Φ υ ϵ∗, T k−1ð Þn ϵ∗ð Þ+ℓϵ
� �

, υ ϵ∗, Tn ϵ∗ð Þϵ∗
� �

, υ ϵ∗, Tkn ϵ∗ð Þ+ℓϵ
� �� �

=Φ υk−1, 0, υkð Þ:
ð36Þ

If for some k ∈ℕ, υk ≥ υk−1, we deduce υk ≤Φðυk, υk,
υkÞ = φðυkÞ < υk, which is a contradiction. Hence, we get
υk ≤ φðυk−1Þ ≤⋯ ≤ φkðυ0Þ⟶ 0 ðk⟶∞Þ. That is, for
ℓ, the sequence fTknðϵ∗Þ+ℓϵg converges to ϵ∗ for any ϵ ∈
G. Consequently, one can obtain that the sequences
fTknðϵ∗Þϵg, fTknðϵ∗Þ+1ϵg, fTknðϵ∗Þ+2ϵg,⋯, fTknðϵ∗Þ+nðϵ∗Þ−1ϵg
are convergent to the point ϵ∗. It follows that we get
fTnϵg converges to the point ϵ∗ for ϵ ∈G.

Example 3. Let ðG, υÞ be the same as it is in Example 1.
Define T : G⟶G as

Tϵ =

0, ϵ = 0,
2
41

, ϵ =
1
2
,

3
61

, ϵ =
1
3
,

4
81

, ϵ =
1
4
,

1
22 · 2

, ϵ =
2
41

,

1
22 · 3

, ϵ =
3
61

,

1
22 · 4

, ϵ =
4
81

,

1
22 · χ

, ϵ =
1
χ
, χ ≥ 5:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð37Þ

Define mapping α : G ×G⟶ ½0,+∞Þ by

α ϵ, ϖð Þ =
sp, ϵ, ϖ ∈ 0f g ∪ 1

χ
, χ ≥ 5

� �
,

0, otherwise:

8><
>: ð38Þ

Define Φðκ1, κ2, κ3Þ = ð1/12Þðκ1 + κ2 + κ3Þ for all κi ∈ ½0,
+∞Þði = 1, 2, 3Þ, and it follows that φðtÞ = ð1/4Þt: Let nðϵÞ
= 3 for all ϵ ∈G. For ϵ, ϖ ∈G such that αðϵ, ϖÞ ≥ sp, we get
that ϵ, ϖ ∈ f0g ∪ f1/χ, χ ≥ 5g. It follows that we consider
the following two cases:

(i) ϵ = 0 and ϖ ∈ f1/χ, χ ≥ 5g

α ϵ, ϖð Þυ Tn ϵð Þϵ, Tn ϵð Þϖ
� �

= 4 · υ T3 0ð Þ, T3 1
χ

� �� �
=

1
16χ

,

Φ υ ϵ, ϖð Þ, υ ϵ, Tn ϵð Þϵ
� �

, υ ϵ, Tn ϵð Þϖ
� �� �

=
1
12

·
�
υ 0,

1
χ

� �
+ υ 0, T3 0ð ÞÀ Á

+ υ 0, T3 1
χ

� �� ��

=
1
12

·
1
χ
+

1
64χ

� �
>

1
12χ

:

ð39Þ

That is, αðϵ, ϖÞυðTnðϵÞϵ, TnðϵÞϖÞ ≤Φðυðϵ, ϖÞ, υðϵ,
TnðϵÞϵÞ, υðϵ, TnðϵÞϖÞÞ.
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(ii) ϵ, ϖ ∈ f1/χ, r ≥ 5g. Let ϵ = 1/χ and ϖ = 1/l with l ≥ χ:
One can obtain that

α ϵ, ϖð Þυ Tn ϵð Þϵ, Tn ϵð Þϖ
� �

= 4 · υ T3 1
χ

� �
, T3 1

l

� �� �
=

1
16χ

,

Φ υ ϵ, ϖð Þ, υ ϵ, Tn ϵð Þϵ
� �

, υ ϵ, Tn ϵð Þϖ
� �� �

=
1
12

·
�
υ

1
χ
,
1
l

� �
+ υ

1
χ
, T3 1

χ

� �� �

+ υ
1
χ
, T3 1

l

� �� ��
=

1
4χ

:

ð40Þ

The above inequalities imply that

α ϵ, ϖð Þυ Tn ϵð Þϵ, Tn ϵð Þϖ
� �

≤Φ υ ϵ, ϖð Þ, υ ϵ, Tn ϵð Þϵ
� �

, υ ϵ, Tn ϵð Þϖ
� �� �

:
ð41Þ

Thus, all conditions of Theorem 13 are fulfilled with p
= s = 2. As a result, T possesses a unique fixed point 0.
Meanwhile, for each ϵ ∈G, fTnϵg converges to the point 0.

Remark 14.

(1) Since rectangularmetric spaces can be seen as rectangu-
lar b -metric spaces with parameter s = 1, one can get
the corresponding conclusions of Sehgal-Guseman-
type mappings in rectangular metric spaces

(2) Since b-metric spaces with parameter s can be seen
as rectangular b-metric spaces with parameter s2,
one can obtain the corresponding conclusions of
Sehgal-Guseman-type mappings in b-metric spaces

(3) If αðx, yÞ = sp, one can get the generalized Φ-Sehgal-
Guseman-type contractive mappings in rectangular
b-metric spaces

Theorem 15. Suppose ðG, υÞ is a complete rectangular b
-metric space with s ≥ 1. Suppose T : G⟶G is a continuous
injectivity and ψ : ½0, +∞Þ⟶ ½0, 1/2sÞ satisfying that for
any ϵ ∈G; there is a positive number nðϵÞ satisfying

υ Tn ϵð Þϵ, Tn ϵð Þϖ
� �

≤ ψ M ϵ, ϖð Þð ÞM ϵ, ϖð Þ,∀ϖ ∈G, ð42Þ

where

M ϵ, ϖð Þ =max υ ϵ, ϖð Þ, υ ϵ, Tn ϵð Þϵ
� �

, υ ϵ, Tn ϵð Þϖ
� �n o

:

ð43Þ
Then, T possesses a unique fixed point ϵ∗. Furthermore,

for each ϵ ∈G, the iteration fTnϵg is convergent to ϵ∗.

Proof. Let ϵ0 ∈G. Consider a sequence fϵng in G by ϵ1 =
Tnðϵ0Þϵ0,⋯, ϵn+1 = TnðϵnÞϵn. If ϵn0 = ϵn0+1 = Tnðϵn0 Þϵn0 for an

n0 ∈ℕ, then ϵn0 becomes to a fixed point of Tnðϵn0 Þ. Assume

there exists ϖ ∈G with ϖ = Tnðϵn0 Þϖ and ϖ ≠ ϵn0 ; then,

υ ϵn0 , ϖ
À Á

= υ Tn ϵn0ð Þϵn0 , T
n ϵn0ð Þϖ

� �
≤ ψ M ϵn0 , ϖ

À ÁÀ Á
M ϵn0 , ϖ
À Á

,

ð44Þ

where

M ϵn0 , ϖ
À Á

=max υ ϵn0 , ϖ
À Á

, υ ϵn0 , T
n ϵn0ð Þϵn0

� �
,

n
υ ϵn0 , T

n ϵn0ð Þϖ
� �o

= υ ϵn0 , ϖ
À Á

> 0:
ð45Þ

From this, we get υðϵn0 , ϖÞ < ð1/2sÞυðϵn0 , ϖÞ which is
impossible. Therefore, ϵn0 is the unique fixed point of

Tnðϵn0 Þ. Since Tϵn0 = Tnðϵn0 ÞTϵn0 , we have Tϵn0 = ϵn0 because

of the uniqueness of Tnðϵn0 Þ. Subsequently, we assume that
ϵn ≠ ϵn+1, ∀n ∈ℕ.

For ϵ ∈G, set zðϵÞ =max fυðϵ, TkϵÞ, k = 1, 2,⋯,nðϵÞ, n
ðϵÞ + 1,⋯,2nðϵÞg. We first prove that rðϵÞ = sup υðϵ, TnϵÞ
<∞ for all n ∈ℕ. Assume n > nðϵÞ is a positive number
satisfying n = rnðϵÞ + ℓ, r ≥ 1, 0 ≤ ℓ < nðϵÞ and δrðϵÞ = υðϵ,
TrnðϵÞ+ℓϵÞ, r = 0, 1, 2,⋯. We suppose that ϵ, TnðϵÞϵ, T2nðϵÞ

ϵ, Tðr−1ÞnðϵÞ+ℓϵ are four distinct elements. Otherwise, the
conclusion is true. Thus,

υ ϵ, Tnϵð Þ = υ ϵ, Trn ϵð Þ+ℓϵ
� �

≤ s υ ϵ, T2n ϵð Þϵ
� �

+ υ T2n ϵð Þϵ, Tn ϵð Þϵ
� �h

+ υ Tn ϵð Þϵ, Trn ϵð Þ+ℓϵ
� �i

≤ s z ϵð Þ + ψ M ϵ, Tn ϵð Þϵ
� �� �

M ϵ, Tn ϵð Þϵ
� �h

+ ψ M ϵ, T r−1ð Þn ϵð Þ+ℓϵ
� �� �

M ϵ, T r−1ð Þn ϵð Þ+ℓϵ
� �i

,

ð46Þ

where

M ϵ, Tn ϵð Þϵ
� �
=max υ ϵ, Tn ϵð Þϵ

� �
, υ ϵ, Tn ϵð Þϵ
� �

, υ ϵ, T2n ϵð Þϵ
� �n o

= z ϵð Þ,
ð47Þ

M ϵ, T r−1ð Þn ϵð Þ+ℓϵ
� �
=max υ ϵ, T r−1ð Þn ϵð Þ+ℓϵ

� �
, υ ϵ, Tn ϵð Þϵ
� �

, υ ϵ, Trn ϵð Þ+ℓϵ
� �n o

≤max δr−1 ϵð Þ, z ϵð Þ, δr ϵð Þf g:
ð48Þ
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By (46), (47), and (48), we deduce

δr ϵð Þ ≤ s z ϵð Þ + 1
2s
z ϵð Þ + 1

2s
max δr−1 ϵð Þ, z ϵð Þ, δr ϵð Þf g

� �
:

ð49Þ

Hence, one can conclude that ð1/ð1 + 2sÞÞδrðϵÞ ≤ zðϵÞ
by induction. Indeed, when r = 1, we have δ1ðϵÞ ≤ ðð1 + 2
sÞ/2ÞzðϵÞ + ð1/2Þ max fzðϵÞ, δ1ðϵÞg. If δ1ðϵÞ ≥ zðϵÞ, we get
δ1ðϵÞ ≤ ð1 + 2sÞzðϵÞ. If δ1ðϵÞ < zðϵÞ, we get δ1ðϵÞ ≤ ð1 + sÞ
zðϵÞ < ð1 + 2sÞzðϵÞ. We assume δrðϵÞ ≤ ð1 + 2sÞzðϵÞ; then,
δr+1ðϵÞ ≤ ðð1 + 2sÞ/2ÞzðϵÞ + ð1/2Þ max fð1 + 2sÞzðϵÞ, zðϵÞ,
δr+1ðϵÞg ≤ ð1 + 2sÞzðϵÞ. Hence, rðϵÞ = sup dðTnϵ, ϵÞ <∞.

Next, we prove that limn⟶∞υðϵn, ϵn+1Þ = 0. By con-
tractive condition (42), we have

υ ϵn, ϵn+1ð Þ = υ Tn ϵn−1ð Þϵn−1, Tn ϵnð Þ+n ϵn−1ð Þϵn−1
� �

≤ ψ M ϵn−1, Tn ϵnð Þϵn−1
� �� �

M ϵn−1, Tn ϵnð Þϵn−1
� �

,

ð50Þ

where

M ϵn−1, Tn ϵnð Þϵn−1
� �
=max υ ϵn−1, Tn ϵnð Þϵn−1

� �
, υ ϵn−1, Tn ϵn−1ð Þϵn−1
� �

,
n

υ ϵn−1, Tn ϵnð Þ+n ϵn−1ð Þϵn−1
� �o

≤ sup υ ϵn−1, qð Þjq ∈ Tmϵn−1f g∞m=1
È É

:

ð51Þ

It is obvious that Mðϵn−1, TnðϵnÞϵn−1Þ > 0, so

υ ϵn, ϵn+1ð Þ < 1
2s

sup υ ϵn−1, qð Þjq ∈ Tmϵn−1f g∞m=1
È É

: ð52Þ

For each q ∈ fTmϵn−1g∞m=1, we have

υ ϵn−1, qð Þ = υ ϵn−1, Tmϵn−1ð Þ
= υ Tn ϵn−2ð Þϵn−2, Tm+n ϵn−2ð Þϵn−2

� �
≤ ψ M ϵn−2, Tmϵn−2ð Þð ÞM ϵn−2, Tmϵn−2ð Þ,

ð53Þ

where

M ϵn−2, Tmϵn−2ð Þ
=max υ ϵn−2, Tmϵn−2ð Þ, υ ϵn−2, Tn ϵn−2ð Þϵn−2

� �
,

n
υ ϵn−2, Tm+n ϵn−2ð Þϵn−2
� �o

≤ sup υ ϵn−2, qð Þjq ∈ Tmϵn−2f g∞m=1
È É

> 0:

ð54Þ

It means υðϵn−1, qÞ < ð1/2sÞ sup fυðϵn−2, qÞjq ∈ fTmϵn−2g∞m=1g.
So we deduce

υ ϵn, ϵn+1ð Þ < 1
2s

sup υ ϵn−1, qð Þjq ∈ Tmϵn−1f g∞m=1
È É

<⋯ <
1
2sð Þn sup υ ϵ0, qð Þjq ∈ Tmϵ0f g∞m=1

È É
⟶ 0  n⟶∞ð Þ:

ð55Þ

That is, limn⟶∞υðϵn, ϵn+1Þ = 0.
For the sequence fϵng, we consider υðϵn, ϵn+pÞ by the

following cases. For the sake of convenience, set r0 = sup
fυðϵ0, qÞjq ∈ fTmϵ0g∞m=1g.

If p is odd, assume p = 2m + 1,

υ ϵn, ϵn+2m+1ð Þ
≤ s υ ϵn, ϵn+1ð Þ + υ ϵn+1, ϵn+2ð Þ + υ ϵn+2, ϵn+2m+1ð Þ½ �

< s
1
2sð Þn r0 +

1
2sð Þn+1 r0

" #
+ s2 υ ϵn+2, ϵn+3ð Þ½

+ υ ϵn+3, ϵn+4ð Þ + υ ϵn+4, ϵn+2m+1ð Þ�
<⋯ < s

1
2sð Þn r0 + s

1
2sð Þn+1 r0 + s2

1
2sð Þn+2 r0

+ s2
1

2sð Þn+3 r0+⋯+sm
1

2sð Þn+2m r0

≤
s
2sð Þn 1 + s

1
2sð Þ2 +⋯

" #
r0 + s

1
2sð Þn+1 1 + s

1
2sð Þ2 +⋯

" #
r0

≤
s
2sð Þn ·

1 + 1/2sð Þ
1 − 1/4sð Þ r0 ⟶ 0  n⟶∞ð Þ:

ð56Þ

If p is even, assume p = 2m,

υ ϵn, ϵn+2mð Þ ≤ s υ ϵn, ϵn+1ð Þ + υ ϵn+1, ϵn+2ð Þ + υ ϵn+2, ϵn+2mð Þ½ �

< s
1
2sð Þn r0 +

1
2sð Þn+1 r0

" #
+ s2

1
2sð Þn+2 r0 +

1
2sð Þn+3 r0

" #

+⋯+sm−1 1
2sð Þn+2m−4 r0 +

1
2sð Þn+2m−3 r0

" #

+ sm−1υ ϵn+2m−2, ϵn+2mð Þ

≤ s
1
2sð Þn 1 + s

1
2sð Þ2 +⋯

" #
r0 + s

1
2sð Þn+1 1 + s

1
2sð Þ2 +⋯

" #
r0

+ sm−1 1
2sð Þn+2m−2 r0

≤ s
1
2sð Þn ·

1
2m

1
2sð Þn−2 r0 ⟶ 0  n⟶∞ð Þ:

ð57Þ

In view of (56) and (57), one can get that fϵng is Cauchy.
By the completeness of ðG, υÞ, one can choose a point ϵ∗ ∈G
with limn⟶∞ϵn = ϵ∗. We might as well let ϵn ≠ ϵ∗ and ϵn
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≠ Tnðϵ∗Þϵn. Otherwise, we have ϵ∗ = Tnðϵ∗Þϵ∗ according to
the continuity of T . And from that, one can deduce

υ ϵn, Tn ϵ∗ð Þϵn
� �

= υ Tϵn−1ϵn−1, Tn ϵ∗ð Þ+n ϵn−1ð Þϵn−1
� �

≤ ψ M ϵn−1, Tn ϵ∗ð Þϵn−1
� �� �

M ϵn−1, Tn ϵ∗ð Þϵn−1
� �

,
ð58Þ

where

M ϵn−1, Tn ϵ∗ð Þϵn−1
� �

=max υ ϵn−1, Tn ϵ∗ð Þϵn−1
� �

,
n

υ ϵn−1, Tn ϵn−1ð Þϵn−1
� �

, υ ϵn−1, Tn ϵ∗ð Þϵn
� �o

> 0:
ð59Þ

It follows that

υ ϵn, Tn ϵ∗ð Þϵn
� �

< 1
2s

sup υ ϵn−1, qð Þjq ∈ Tmϵn−1f g∞m=1
È É

<⋯ <
1
2sð Þn sup υ ϵ0, qð Þjq ∈ Tmϵ0f g∞m=1

È É
⟶ 0  n⟶∞ð Þ:

ð60Þ

Since T is a continuous mapping, limn⟶∞dðTnðϵ∗Þϵ∗,
Tnðϵ∗ÞϵnÞ = 0. Therefore,

υ ϵ∗, Tn ϵ∗ð Þϵ∗
� �

≤ s υ ϵ∗, ϵnð Þ + υ ϵn, Tn ϵ∗ð Þϵn
� �h

+ υ Tn ϵ∗ð Þϵ∗, Tn ϵ∗ð Þϵn
� �i

⟶ 0 n⟶∞ð Þ:
ð61Þ

This means that ϵ∗ = Tnðϵ∗Þϵ∗ . Now,

υ ϵ∗, Tϵ∗ð Þ = υ Tn ϵ∗ð Þϵ∗, TTn ϵ∗ð Þϵ∗
� �

≤ ψ M ϵ∗, Tϵ∗ð Þð ÞM ϵ∗, Tϵ∗ð Þ,
ð62Þ

where

M ϵ∗, Tϵ∗ð Þ =max υ ϵ∗, Tϵ∗ð Þ, υ ϵ∗, Tn ϵ∗ð Þϵ∗
� �

,
n

υ ϵ∗, Tn ϵ∗ð ÞTϵ∗
� �o

= υ ϵ∗, Tϵ∗ð Þ:
ð63Þ

Hence, we get υðϵ∗, Tϵ∗Þ ≤ ð1/2sÞυðϵ∗, Tϵ∗Þ, i.e., ϵ∗ = T
ϵ∗. Assume there has a ϖ∗ satisfying ϖ∗ = Tϖ∗ and ϵ∗ ≠ ϖ∗

; then, ϖ∗ = Tϖ∗ =⋯ = Tnðϵ∗Þϖ∗ and

υ ϵ∗, ϖ∗ð Þ = υ Tn ϵ∗ð Þϵ∗, Tn ϵ∗ð Þϖ∗
� �

≤ ψ M ϵ∗, ϖ∗ð Þð ÞM ϵ∗, ϖ∗ð Þ < 1
2s
d ϵ∗, ϖ∗ð Þ,

ð64Þ

which is impossible. So T possesses the unique fixed
point ε∗.

At the end, we prove the last part. To do this, we fix an
integer ℓ, 0 ≤ ℓ < nðϵ∗Þ, and ∀n > nðϵ∗Þ; we put n = inðϵ∗Þ
+ ℓ, i ≥ 1. Then, ∀ϵ ∈G; we have

υ ϵ∗, Tnϵð Þ = υ Tn ϵ∗ð Þϵ∗, T in ϵ∗ð Þ+ℓϵ
� �

≤ ψ M ϵ∗, T i−1ð Þn ϵ∗ð Þ+ℓϵ
� �� �

M ϵ∗, T i−1ð Þn ϵ∗ð Þ+ℓϵ
� �

,

ð65Þ

where

M ϵ∗, T i−1ð Þn ϵ∗ð Þ+ℓϵ
� �
=max υ ϵ∗, T i−1ð Þn ϵ∗ð Þ+ℓϵ

� �
, υ ϵ∗, Tn ϵ∗ð Þϵ∗
� �

, υ ϵ∗, Tnϵð Þ
n o

:

ð66Þ

If υðϵ∗, TnϵÞ ≥ υðϵ∗, Tði−1Þnðϵ∗Þ+ℓϵÞ, then Mðϵ∗,
Tði−1Þnðϵ∗Þ+ℓϵÞ = υðϵ∗, TnϵÞ. According to (65), we have

υ ϵ∗, Tnϵð Þ ≤ 1
2s
υ ϵ∗, Tnϵð Þ, i:e:,ϵ∗ = Tnϵ: ð67Þ

It follows that Tnϵ ⟶ ϵ∗ as n⟶∞: If υðϵ∗, TnϵÞ < υ
ðϵ∗, Tði−1Þnðϵ∗Þ+ℓϵÞ, one can get that

υ ϵ∗, Tnϵð Þ ≤ 1
2s
υ ϵ∗, T i−1ð Þn ϵ∗ð Þ+ℓϵ
� �

: ð68Þ

Similarly,

υ ϵ∗, T i−1ð Þn ϵ∗ð Þ+ℓϵ
� �

= υ Tn ϵ∗ð Þϵ∗, T i−1ð Þn ϵ∗ð Þ+ℓϵ
� �

≤ ψ M ϵ∗, T i−2ð Þn ϵ∗ð Þ+ℓϵ
� �� �

M ϵ∗, T i−2ð Þn ϵ∗ð Þ+ℓϵ
� �

,
ð69Þ

where

M ϵ∗, T i−2ð Þn ϵ∗ð Þ+ℓϵ
� �
=max υ ϵ∗, T i−2ð Þn ϵ∗ð Þ+ℓϵ

� �
, υ ϵ∗, Tn ϵ∗ð Þϵ∗
� �

,
n

υ ϵ∗, T i−1ð Þn ϵ∗ð Þ+ℓϵ
� �o

:

ð70Þ

If υðϵ∗, Tði−1Þnðϵ∗Þ+ℓϵÞ ≥ υðϵ∗, Tði−2Þnðϵ∗Þ+ℓϵÞ, then

M ϵ∗, T i−2ð Þn ϵ∗ð Þ+ℓϵ
� �

= υ ϵ∗, T i−1ð Þn ϵ∗ð Þ+ℓϵ
� �

, ð71Þ

that is,

υ ϵ∗, T i−1ð Þn ϵ∗ð Þ+ℓϵ
� �

≤
1
2s
υ ϵ∗, T i−1ð Þn ϵ∗ð Þ+ℓϵ
� �

, i:e:,ϵ∗

= T i−1ð Þn ϵ∗ð Þ+ℓϵ:
ð72Þ

Since ϵ∗ is a fixed point of T , one get ϵ∗ = Tnðϵ∗Þϵ∗ =
Tnðϵ∗ÞTði−1Þnðϵ∗Þ+ℓϵ. Consequently, Tnϵ ⟶ ϵ∗ as n⟶∞:
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If υðϵ∗, Tði−1Þnðϵ∗Þ+ℓϵÞ < υðϵ∗, Tði−2Þnðϵ∗Þ+ℓϵÞ, then

υ ϵ∗, T i−1ð Þn ϵ∗ð Þ+ℓϵ
� �

≤
1
2s
υ ϵ∗, T i−2ð Þn ϵ∗ð Þ+ℓϵ
� �

: ð73Þ

We continue to calculate according to this method; if
there exists i0 ≤ i satisfying ϵ∗ = Tði−i0Þnðϵ∗Þ+ℓϵ, then Tnϵ
⟶ ϵ∗ as n⟶∞: Otherwise, one can conclude that

υ ϵ∗, Tnϵð Þ ≤⋯≤
1
2sð Þi

υ ϵ∗, Tℓϵ
À Á

⟶ 0 i⟶∞ð Þ: ð74Þ

Therefore, for each ϵ ∈G, the iteration fTnϵg is conver-
gent to ϵ∗.

Example 4. Let G = ½0,+∞Þ and υðϵ, ϖÞ = ðϵ − ϖÞ2: Obvi-
ously, ðG, υÞ is a complete rectangular b -metric space with
s = 3. Define T : G⟶G with

Tϵ =
ϵ

2
, ϵ ∈ 0,+∞½ Þ: ð75Þ

Define mappings ψðϵÞ = 1/3s and nðϵÞ = 3, ∀ϵ ∈ ½0,+∞Þ.
One has

υ Tn ϵð Þϵ, Tn ϵð Þϖ
� �

= υ T3ϵ, T3ϖ
À Á

=
1
64

ϵ − ϖð Þ2, ð76Þ

ψ M ϵ, ϖð Þð ÞM ϵ, ϖð Þ
= 1
9
max υ ϵ, ϖð Þ, υ ϵ, T3ϵ

À Á
, υ ϵ, T3ϖ
À ÁÈ É

≥
1
9
υ ϵ, ϖð Þ = 1

9
ϵ − ϖð Þ2:

ð77Þ

That is, υðTnðϵÞϵ, TnðϵÞϖÞ ≤ ψðMðϵ, ϖÞÞMðϵ, ϖÞ.

Thus, all hypotheses of Theorem 15 are fulfilled. So T
possesses the unique common fixed point 0. Furthermore,
for each ϵ ∈G, the iteration fTnϵg is convergent to 0.

4. Application

In this part, we will prove the solvability of this initial value
problem:

m
d2ϵ
dε2

+ c
dϵ
dε

−mF ε, ϵ εð Þð Þ = 0,

ϵ 0ð Þ = 0,

ϵ ′ 0ð Þ = 0,

8>>><
>>>:

ð78Þ

where m and c > 0 are constants and F : ½0,H� ×ℝ+

⟶ℝ is a continuous mapping.
Obviously, problem (78) is related to the integral equa-

tion:

ϵ εð Þ =
ðH
0
Y ε, νð ÞF ν, ϵ νð Þð Þdν, ε ∈ 0,H½ �, ð79Þ

where Yðε, rÞ is defined as

Y ε, ρð Þ =
1 − eω ε−νð Þ

ω
, 0 ≤ ϱ ≤ ε ≤H,

0, 0 ≤ ε ≤ ϱ ≤H,

8<
: ð80Þ

where ω = c/m is a constant.
Next, by using Theorem 13 and Theorem 15, we shall

present the solvability of the integral equation:

ϵ εð Þ =
ðH
0
Γ ε, ϱ, ϵ ϱð Þð Þdϱ: ð81Þ

Let G = Cð½0,H�Þ. For p ≥ 2, ε, ϖ ∈G, define

υ ϵ, ϖð Þ = sup
ε∈ 0,H½ �

ϵ εð Þ − ϖ εð Þj jp: ð82Þ

Hence, ðG, υÞ is a complete rectangular b-metric space
with s = 3p−1.

In the following, define T : G⟶G by

Tϵ εð Þ =
ðH
0
Γ ε, ϱ, ϵ ϱð Þð Þdϱ: ð83Þ

Suppose Ξ : ℝ ×ℝ⟶ℝ is a given function that sat-
isfies the following condition:

Ξ ϵ εð Þ, ϖ εð Þð Þ ≥ 0 andΞ ϖ εð Þ, Tϖ εð Þð Þ
≥ 0 impliesΞ ϵ εð Þ, Tϖ εð Þð Þ
≥ 0,∀ϵ, ϖ ∈G:

ð84Þ

Theorem 16. Assume that

(i) Γ : ½0,H� × ½0,H� ×ℝ⟶ℝ+ is continuous

(ii) there has an ϵ0 ∈G satisfying Ξðϵ0ðεÞ, Tϵ0ðεÞÞ ≥ 0
for all ε ∈ ½0,H�

(iii) ∀ε ∈ ½0,H� and ϵ, y ∈G, ΞðϵðεÞ, ϖðεÞÞ ≥ 0 imply Ξ
ðTϵðεÞ, TϖðεÞÞ ≥ 0

(iv) if fϵng ⊂G satisfies ΞðϵnðεÞ, ϵn+1ðεÞÞ ≥ 0, ∀n ∈ℕ,
and limn⟶∞ϵn = ϵ, then we can choose a subse-
quence fϵnkg of fϵng such that ΞðϵnkðεÞ, ϵðεÞÞ ≥ 0,
∀k ∈ℕ

(v) for each ϵ ∈G with TnðεÞϵ = ϵ, we have ΞðϵðεÞ,
ϖðεÞÞ ≥ 0 for any ϖ ∈G

(vi) there is a continuous mapping Y : ½0,H� × ½0,H�
⟶ℝ+ satisfying

sup
ε∈ 0,H½ �

ðH
0
Y ε, ϱð Þdϱ ≤

ffiffiffiffiffiffiffiffiffi
1

3p2+1
p

r
, ð85Þ
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Γ ε, ϱ, ϵ ϱð Þð Þ − Γ ε, ρ, ϖ ϱð Þð Þj j ≤ Y ε, ϱð Þ ϵ ϱð Þ − ϖ ϱð Þj j:
ð86Þ

Then, (81) possesses a unique solution ϵ ∈G.

Proof. Set α : G ×G⟶ ½0,+∞Þ by

α ϵ, ϖð Þ =
sp, if Ξ ϵ εð Þ, ϖ εð Þð Þ ≥ 0,

0, otherwise:

(
ð87Þ

One can check that T is triangular αsp orbital admissible.
In view of (i)-(vi), for ϵ, ϖ ∈G, we obtain

spυ Tϵ εð Þ, Tϖ εð Þð Þ
= sp sup

ε∈ 0,H½ �
Tϵ εð Þ − Tϖ εð Þj jp

= sp sup
ε∈ 0,H½ �

ðH
0
Γ ε, ϱ, ϵ ϱð Þð Þdϱ −

ðH
0
Γ ε, ϱ, ϖ ϱð Þð Þdϱ

����
����
p

≤ sp sup
ε∈ 0,H½ �

ðH
0
Γ ε, ϱ, ϵ ϱð Þð Þ − Γ ε, ϱ, ϖ ϱð Þð Þj jdϱ

� �p

≤ sp sup
ε∈ 0,H½ �

ðH
0
Y ε, ϱð Þ ϵ ϱð Þ − ϖ ϱð Þj jdϱ

� �p

≤ sp sup
ε∈ 0,H½ �

ðH
0
Y ε, ϱð Þdϱ

� �p

sup
ε∈ 0,H½ �

ϵ tð Þ − ϖ εð Þj jp

≤ sp ·
1

3p2+1
sup

ε∈ 0,H½ �
ϵ εð Þ − ϖ εð Þj jp

≤
υ ϵ εð Þ, ϖ εð Þð Þ

3p+1
,

ð88Þ

which implies that

α ϵ εð Þ, ϖ εð Þð Þυ Tn ϵð Þϵ εð Þ, Tn ϵð Þϖ εð Þ
� �

≤Φ υ ϵ εð Þ, ϖ εð Þð Þ, υ ϵ εð Þ, Tn ϵð Þϵ εð Þ
� �

, υ ϵ εð Þ, Tn ϵð Þϖ εð Þ
� �� �

,

ð89Þ

where Φðϵ1, ϵ2, ϵ3Þ = ðϵ1 + ϵ2 + ϵ3Þ/3p+1, s = 3p−1, and
nðϵÞ = 1. After that, all hypotheses of Theorem 13 are ful-
filled. Hence, T has a unique fixed point ϵ ∈G. That is, ϵ is
the unique solution of integral equation (81).

Remark 17. If Γðε, ϱ, ϵðϱÞÞ = Yðε, ϱÞFðϱ, ϵðϱÞÞ, jFðϱ, ϵðϱÞÞ
− Fðϱ, ϖðϱÞÞj ≤ jϵðϱÞ − ϖðϱÞj; then, (78) has a unique solu-
tion by Theorem 16.

Theorem 18. Suppose that

(i) Γ : ½0,H� × ½0,H� ×ℝ⟶ℝ+ is continuous

(ii) there is a continuous mapping Y : ½0,H� × ½0,H�
⟶ℝ+ satisfying

Γ ε, ϱ, ϵ ϱð Þð Þ − Γ ε, ϱ, ϖ ϱð Þð Þj j

≤ Y ε, ϱð Þ ϵ εð Þ + ϖ εð Þ −
ðH
0
Γ ε, ϱ, ϵ ϱð Þð Þdϱ +

ðH
0
Γ ε, ϱ, ϖ ϱð Þð Þdϱ

� �����
����,

ð90Þ

sup
ε∈ 0,H½ �

ðH
0
Y ε, ϱð Þdϱ ≤ 1

32
: ð91Þ

Then, (81) possesses a unique solution ϵ ∈G.

Proof. For ϵ, ϖ ∈G, according to the conditions (i)-(ii), one
can get

υ Tϵ εð Þ, Tϖ εð Þð Þ
= sup

ε∈ 0,H½ �
Tϵ εð Þ − Tϖ εð Þj jp

= sup
ε∈ 0,H½ �

ðH
0
Γ ε, ϱ, ϵ ϱð Þð Þdϱ −

ðH
0
Γ ε, ϱ, ϖ ϱð Þð Þdϱ

����
����
p

≤ sup
ε∈ 0,H½ �

ðH
0
Y ε, ϱð Þ ϵ εð Þ + ϖ εð Þj

�

−
ðH
0
Γ ε, ϱ, ϵ ϱð Þð Þdϱ +

ðH
0
Γ ε, ϱ, ϖ ϱð Þð Þdϱ

� �����dϱÞ
p

≤ sup
ε∈ 0,H½ �

ðH
0
Y ε, ϱð Þ ϵ εð Þ − Tϖ εð Þj j + ϖ εð Þ − Tϵ εð Þj jð Þdϱ

� �p

≤ sup
ε∈ 0,H½ �

ðH
0
Y ε, ϱð Þ ϵ εð Þ − Tϖ εð Þj j + ϖ εð Þ − ϵ εð Þj j + ϵ εð Þ − Tϵ εð Þj jð Þdϱ

� �p

≤ sup
ε∈ 0,H½ �

ðH
0
Y ε, ϱð Þdϱ

� �p

· sup
ε∈ 0,H½ �

ϵ εð Þ − Tϖ εð Þj j + ϖ εð Þ − ϵ εð Þj j + ϵ εð Þ − Tϵ εð Þj jð Þp

≤
1
32p

· 3p ·
sup
ε∈ 0,H½ �

ϵ εð Þ − Tϖ εð Þj jp + sup
ε∈ 0,H½ �

ϖ εð Þ − ϵ εð Þj jp + sup
ε∈ 0,H½ �

ϵ εð Þ − Tϵ εð Þj jp

3

≤
1
3s
M ϵ, ϖð Þ,

ð92Þ

where Mðε, ϖÞ is the same as in Theorem 15. Thus, all
the hypotheses of Theorem 15 are fulfilled with ψðεÞ = 1/3s
and nðεÞ = 1. It follows that T possesses a unique fixed point
ϵ ∈G, and so is a solution of (81).

5. Conclusions

In rectangular b-metric spaces, we introduced a new triangu-
lar α-orbital admissible condition and established two fixed
point results for mappings with a contractive iterate at a
point. Further, we provided two examples that elaborated
the usability of presented results. At the same time, we
proved the existence and uniqueness of solution of an inte-
gral equation.
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