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Firstly, the concept of a new triangular a-orbital admissible condition is introduced, and two fixed point theorems for Sehgal-
Guseman-type mappings are investigated in the framework of rectangular b-metric spaces. Secondly, some examples are
presented to illustrate the availability of our results. At the same time, we furnished the existence and uniqueness of solution of

an integral equation.

1. Introduction

In nonlinear analysis, the most famous result is the Banach
contraction principle, which is established by Banach [1] in
1922. After that, there are a large number of excellent results
for fixed point in metric spaces. On recent development on
fixed point theory in metric spaces, one can consult [2] the
related references involved. Branciari [3] introduced a new
concept, that is, the definition of rectangular metric spaces,
and established an analogue of the Banach fixed point theo-
rem in such a space. Then, a lot of fixed point theorems for a
wide range of contractions on rectangular metric spaces had
emerged in a blowout manner. In such type space, Lakzian
and Samet [4] gave some results involving (v, ¢) weakly
contraction. Furthermore, several common fixed point
results about (v, ¢)-weakly contractions were obtained by
Bari and Vetro [5]. In [6], George and Rajagopalan consid-
ered common fixed points of a new class of (v, ¢) contrac-
tions. By use of C-functions, Budhia et al. furnished several
fixed point results in [7].

In [8], Czerwik put forward firstly the definition of b
-metric space, an extension of a metric space. Since then, this
result has been extended in different angles. In a b-metric
space, in [9], Mitrovic provided a new method to prove
Czerwik’s fixed point theorem. By using of increased range

of the Lipschitzian constants, Hussain et al. [10] provided
a proof of the Fisher contraction theorem. Mustafa et al.
[11] gave several fixed point theorems for some new classes
of T-Chatterjea-contraction and T-Kannan-contraction.
Recently, also in this type spaces, Mitrovic et al. [12] pre-
sented some new versions of existing theorems. Savanovi¢
et al. [13] constructed some new results for multivalued qua-
sicontraction. Furthermore, in [14], Aydi et al. obtained the
existence of fixed point for a-B;-Geraghty contractions. In
[15], several fixed point theorems of set valued interpolative
Hardy-Rogers type contractions were studied. In [16],
George et al. put forward the concept of rectangular b-met-
ric mapping. Meanwhile, they gave some fixed point theo-
rems. Lately, Gulyaz-Ozyurt [17], Zheng et al. [18], and
Guan et al. [19] also studied fixed point theory in such
spaces and obtained some excellent results. In 2021, Hussain
[20] presented some fractional symmetric a-#-contractions
and built up some new fixed point theorems for these types
of contractions in F-metric spaces. Recently, Arif et al. [21]
introduced an ordered implicit relation and investigated
the existence of the fixed points of contractive mapping deal-
ing with implicit relation in a cone b-metric space. Lately, in
[22], some fixed point theorems of two new classes of multi-
valued almost contractions in a partial b-metric spaces were
established by Anwar et al.
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On the other hand, in 1969, Sehgal [23] formulated an
inequality that can be considered an extension of the
renowned Banach fixed point theorem in a metric space.
Matkowski [24] generalized some previous results of
Khazanchi [25] and Iseki [26]. In 2012, the definition of «
-admissible mappings was given by Samet et al. [27]. Later,
the notion of triangular a-admissible mappings was intro-
duced by Popescu [28]. Recently, Lang and Guan [29] studied
the common fixed point theory of a; -¢ _-Geraghty contrac-

tion and «; -, -Geraghty contractions in a b-metric space.

In this paper, inspired by [30], we established two fixed
point theorems for Sehgal-Guseman-type mappings in a
rectangular b-metric space. Also, we present two examples
to illustrate the usability of established results.

2. Preliminaries

Definition 1 (see [8]). Suppose G is a nonempty set and
¢:GxG—[0,+00). We call ¢ a b -metric if

() ¢le,@)=0€=0,Ve,0€G
(i) ¢(e, @) =¢(@,
) <

sls(e;y) +6(y, @), Ve, @,y € G

€),Ve,eG
(iii) ¢(e,

where s> 1 is constant.

It is usual that (G,q) is called a b-metric space with
parameter s> 1.

Definition 2 (see [3]). Suppose G is a nonempty set and
7:G x G —> [0,4+00). We call 7 a triangular metric if

(i) T(€, D)=02€e=0,Ve,0€G
17(6,@) =1(®, €), Ve, € G
(iii) T(e, ?)<1(e,y)+1(p. €) +7(€, @), Ve, @€ G, p, €
€G-{e 0}

Usually, (G, 7) is called a rectangular metric space.

Definition 3 (see [16]). Suppose G is a nonempty set and
v:GxG—>[0,+00). We call v a rectangular b -metric if

() vie,@)=0€e=0,Ye,0€G
(il) v(e, @) =v(®, €), Ve, 0 € G
(ili) v(e, @) <sfv(e, p) +v(y, €) +v(e, @)], Ve, @ € G, p, €
€G- {e a0}

where s > 1 is constant.

In general, (G, v) is called a rectangular b-metric space
with parameter s> 1.

Remark 4. A rectangular metric space is a rectangular b-metric
space, so is a b -metric space. Moreover, the converse is
not true.
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Example 1. Suppose G=AUB, where A=1{0,2/41,3/61,
4/81} and B={1/2,1/3,---,1/i,»--}. For €, @€ G, define
v:GxG— [0,+00) with v(e, @) =v(®, €) and

2 3 3 4
=v|—, —=|=v|(—, =] =0.05,
41 61 61 81

v(e,

Thus, (G,v) is a rectangular b-metric space with
s=2. Furthermore, one can obtain the following:

=max {€, @}, otherwise.

(1) v is not a b-metric with s =2, since

4
v(o,—):0.3>0.26:2x0.13
81
2 2 4
=2x(v|0, —|+v|[—, =] ).
(e(057) (i ar)

(2) v is not a rectangular metric, since

4 2
v(0,—])=03>0.15=v(0, —
81 41 3)
2 3 3 4
+U(—,—= ) +tU|—> — ).
41 61 61 81

(3) v is not a metric, since
4 2 2 4

v( 0, =0.3>0.13=0( 0, — —]. (4
81 41 41 81

Definition 5 (see [16]). Suppose (G,v) is a rectangular b
-metric space with s>1. Assume that {®,} in G is a
sequence and ® € G

(2)

(i) {®@,} is convergent to @ iff lim v(@,,@)=0

(ii) {®@,} is Cauchy iff v(a@;,

(ili) (G,v) is complete iff each Cauchy sequence is
convergent

n—+00

@;) — 0 as i, j— +00

Remark 6. In a rectangular b-metric space, a convergent
sequence does not possess unique limit and a convergent
sequence is not necessarily a Cauchy sequence. However,
one can find that the limit of a Cauchy sequence is unique.



Journal of Function Spaces

In fact, suppose the sequence {®, } is Cauchy and converges
to @* and @** with @* # @**. It follows that
V(@",@") <s[V(@%, @,) + V(@,, @) + V(@@ )], (5)

for all p > 0. Let n — oc0; we get that v(@*,@**) = 0. Hence,
®* =@**, a contradiction.

Example 2 (see [16]). Let G=AUB, where A={1/n:ne€
N} and B=N. Define v: G x G — [0,+00) with v(e, @)
=v(®, €) and

0, ife=a,
20, ife, €A,

v(6,@)=¢ ¢« (6)

—, ifecAand®€{2,3},
2n

a, otherwise.

Here, a is a positive number. Thus, v is a rectangular
b-metric with s=2. However, we have that {1/n} is con-
vergent to 2 and 3. Moreover, lim,  v(1/n,1/(n+p))
=2a # 0; therefore, {1/n} is not a Cauchy sequence.

Definition 7 (see [28]). Suppose G is a nonempty set and
T:G— Gand a: GxG — R are two mappings. We call
Ta-orbital admissible mapping if

Vo €G, a(@,Td) 21 = a(To, T?0) > 1. (7)

Definition 8 (see [28]). Assume that T: G— G and a: G
x G — R. We call T a triangular a-orbital admissible map-
ping if
(i) a(e,@)>1 and a(®, T@®)>1 imply a(e, T®)>1,
Ve, 0 eG

(ii) T is a-orbital admissible

Lemma 9 (see [24]). Assume O : [0,400) — [0,+00) is an
increasing mapping. Then, Vt>0,lim, , 0O"(t)=0=06
(t) <t

3. Main Results

In this part, two fixed point results of injective mappings will
be presented on rectangular b-metric spaces.

Definition 10. Suppose G is a nonempty set, s>1 and p>0
are two constants, and a : GxG — [0,400), T: G — G.
We call Tar, orbital admissible mapping if

Vo €GB, a(@, To) > s = oc(TcD, TZ(D) >4 (8)

Definition 11. Suppose G is a nonempty set, s>1 and p>0
are two constants, and « : Gx G — [0,400), T : G — G.
We call T triangular «, orbital admissible mapping if

(i) a(e, @) > and a(®@, T®) > s imply a(e, Td) > &,
Ve, €G

(ii) T is a, orbital admissible

Lemma 12. Suppose G is a nonempty set and T : G — G,
a: GxG— [0,+00) are mappings satisfying T which is
triangular ay, orbital admissible, s> 1,p > 0. Suppose there
has a ®,€G with a(®), T®,)>s". Define {®,} in G by
@, =T"@, -, =T"a, .. Then, YmeNuU{0},

a(@,, T*@,) = ", k=0,1,2, .

Proof. Since a(@,, T@,) =" and T is triangular «, orbital
admissible, we have

(@9, T@,) = s implies ar( T@y, T*@,)

©)

>s" and a(@,, T?@y) = 5"
Similarly, since a(T@,, T>@,) > s, we get

a(T* @y, T>@y) = &, (10)

a(@y, T’ @) = 5. (11)

Applying the above argument repeatedly, one can
deduce that a(@,, T*@,) >s" for all ke NU{0}. Since
a(@y, T@,) =" implies a(T@,, T*@,) =" and «(Ta@,, T*
@,) =" implies a(T?*@,, T°®,) =s",--, we can obtain
a(T"@) @y, T"®) o) = a(@,, Td,) =s”. Based on this
conclusion, we deduce that a(@,, T"®@,) =", k=0,1,2,--.
Repeatedly using the above discussion, we have a(®,,, T
®,) =, k=0,1,2,-- for all me NU{0}. O

Define ©® = {® : R*> — R* is increasing and continuous

in each coordinate variable}. That is, if K(ll), Kgl), K<12), ng),

22 <R with K <40, 2 < 2, ) £ e have

o (k! kw7 ) <@ (), w7, 407),
o e e) so(n "), (12)

O (k77 ) 20 (k7).

Furthermore, we set O(e, €, €) = ¢(€) for € € R*.

Theorem 13. Suppose (G,v) is a complete rectangular b
-metric space with s > 1. Suppose T : G — G is a continuous
injectivity, a : G x G — [0, +00) and p > 0. Assume that for
any € € G, there is a positive number n(e) satisfying



Vo €G, a(e, @) > = ae, @)v (T”(e) €, T”(e)(D>
< (D(U(e, @), v(e, ") e) ) (e, T”<€>a>)) ,

where © € © and

(1) lim, (e sp(€)) = 00

(2) Ve>0,lim,,_, . ¢"(e)=0

Suppose that

(i) there has a €, in G such that a(e,, Te,y) > s
(ii) T is triangular oy orbital admissible

(iii) if {@,} in G satisfies a(®,,®,,;) >s"(VneN) and
®, — @ € G(n —> ©0), then one can choose a sub-
sequence {®, } of {®,} with a(@, ,®@) >, Vk e N

(iv) Ye € G with T"® e = €, we have a(e, @) > s for any
weG

Then, T possesses a unique fixed point €* € G. Further,
for each € € G, the iteration {T"e} converges to €*

Proof. By condition (i), one can choose an €, € G such that
a(ey, Tey) = . If €, is a fixed point of T and @, is the other

one, then e, =Te,=---=T"%ey=--- and @, =T@, = -
= T"%)@, = ---. From condition (iv), we have a(€y, @,) >
sP. It follows from (13) that

v(€g> Dy) < (€, wo)v(m%)eo, Tn<e0>@0)

< (D(v(eo, @), v (60, T”(EO)eO) , v(eo, T"(€°>(DO))

< p(v(€y @p))-
(14)

From Lemma 9, we have ¢(v(¢€,, @y)) < v(€y, @,). Thus,
v(€g> @) < P(v(€p> D)) < V(&> @p)s (15)

which is contradiction. From this, we get that €, is the
unique fixed point. After that, in the subsequent discussion,
we assume that Te, # €,. Now we define {¢,} in G by
€ = T”<€°)eo, € = T”<€")en

First, we shall show that the orbit {T"¢,};, is bounded.
For this purpose, we fix an integer £,0 <€ < n(e,). Let

”j:U(eo’ Tjn(eo)+€€0),]-:0’1’2’...’ (16)

h = max {uo, v(eO, T”<€°)€0> , v(eo, Tz”(€°)eo),

(17)
v (T”(eu)eo, Tzn(eo)eo) }
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Since lim,___ (e —sp(€)) = 0o, there has ¢ > h such that
€—sp(€)>2sh,e>c. It is obvious that u,<h<c. Assume
that there has a positive number j, with u; > c. Evidently,

one may suppose that u; <¢, Vi< j,. Let €, 7€) g, T?(€)

€, Th"€@)*te, be different from each other. Otherwise, we
consider six cases.

Case 1. €, = T"(%)¢,. One can get that
€ = T"(eo)eo = T2”<€°)eo = T3”(€u)€0 — (18)

It follows that u;=uv(ey, T'e,) is a constant which

implies that {T"e, };-, is bounded.
Case 2. €, = T*"(@)¢,. We deduce that

€ = T2n<€°)€0 = T4V‘(€0)€0 = T6”(€0)€0 =, (19)

T"(eo)eo = T3”(€o)€0 = Tsn(eo)eo = ..., (20)

Hence,

v(eo, T”(EOHGO), jisodd,
uj= . (21)
v(ep T'), jiseven.

It follows that {T"¢,} ", is bounded.
Case 3. T"(%) ¢, = T?"(%) ¢;. Obviously,

T"(Eo)eo = Tzﬂ(fo)eo = T3”(€0)60 = T4"(€o)€0 = (22)

As the argument of Case 1, we get that {T'¢)}., is
bounded.

Case 4. €)= Th"«)*e  In this case, we obtain that
u; =0, a contradiction.

Case 5. T"(€) ¢, = Th"(€)*te Tt follows that
w = v(eo, Tj‘)"(%)*eeo) = v(eo, T”(eﬂ)eo) <h<ce  (23)

It is a contradiction.
Case 6. T>"() ¢, = Th"(€)*te Tt is obvious that

uj, = v(eo, TjO”(e")JreeO) = v(eO, Tz”(eﬂ)eo) <h<c, (24)

a contradiction.
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It is easy to get a(ey, T¥ey) = s, Vk € N from Lemma 12.
By using triangle inequality and (16), we have

v(eo, Tjon(eo)ﬂieo)
<s {v (eo, T2”<€0)eo> + U<T2n<€0)60’ Tﬂ(€o>€0)
+ v<T”( Ve, Th(€0)*t 0}
<2sh+ soc(eo, TUU‘l)”(eo)“’eeo) v(T”<€°)eO, Tjoﬂ(€o)+ﬂeo>
SZsh+s(D( (e 701 50)

v(eo, Tn(eo>€0) % (60, Tion (en>+z€0))

<25h+s(D(u u],u> 25h+s<p( )

(25)

,) <2sh, which is impossible. There-
- Tt follows that {T'e,}r, is

That is, u; —sg(u;

fore, u;<c for j=0, 1,2, -
bounded.
If there exists some ny €N satisfying €, =€

T"(e"o)enn, then €, is a fixed point of T"(én). Assume there
is @€G such that @=T")@ and @+ €,>

ny+l =

by condition

(iv), we have a(e, , @) > s” and

v(e,, @) <afe, ,(D)U(T"(e"0>e”0, T”(%)(D)
<0(v{en @060 Te, o Ta) )
< p(o(e,0)) <0(e, @),

(26)

which is contradiction. From this, T"(n) possesses the
- TT"(€”0> = T"€) T
because of the unlqueness of

unique fixed point €, . Since Te,
0
€,, we have Te, =¢,

T"éw). Subsequently, we assume that €, #¢,,,, Vn € N.
Next, we show that {e,} is Cauchy. Suppose n and i

are two positive numbers. It is obvious that a(e, |, T*
€,1) =", Vk € N. Then,

) < a(en—l’ T”(enﬂ'fl>+”(€n+z—2)+"‘+”(en)€n71>
-V (T”(En—l ) en—l s T”(enﬂ—l )+"'+n(€n—1> en_l)
< @(U (en_p T(Ensi1 )+ 2) +--4n(e,) en_1>,
(e, ., Tn<en4>€n_l), v(en_p Tn(en+,vfl>+---+n<en4>en_l))

<o(sup {v(e,19)1g € {T" €, }sg })-
(27)

For each g€ {T™e,_,}' . we have

v(€,1,q) =v(€, 1 T"E, )
<a(€e,_p T" en_z)v(T”(E"-Z)en_z, T’”*”(E"-Z)en_g

< (D(v(en—Z’ Tmen—Z)’ U(en—z) Tn(en?Z)en—Z) > (28)

v (en—Z’ Tn(en?2)+m €n—2> )

<o(sup {v(e, DIg € {T" €, )0 }-

According to (27) and (28), we deduce

U(en’ en+i) < q)(sup {U(en—l’ q)‘q € {Tmen—l}fzo)
<< (sup {u(e q)|g € (T} }) — 0 (n—> o).
(29)

That is, {€,} is Cauchy. In light of the completeness of
(G,v), one can find an €* € G with lim €, =€". We

n—o00n
might as well let €, # €* and €, # T"(¢)e,. Otherwise, we
have €* = T"¢)e* according to the continuity of T. In
view of triangle inequality, one deduce

U(e*, Tn(e*)e*)
< s[v(e*, €,) + v(en, T"(e*)en) + v(T”(e*)en, T"(e*)e*)} .

(30)

On the other hand,

U(en_l, T”(“)*ﬂ(e,ﬂ)en_l))
< (P(Sup {U(en—l’ q)|q € {Tmen—l};f:o})
< <" (sup {v(ep q)lg € {T"ep}py}) — 0 (n— o).

(31)

From the continuity of T, limn_mv(T”(e*)en, ) e
) =0. Thereupon, by the use of (30) and (31), one can
obtain v(e*, T"¢)e*) = 0 as n —> co. Assume there exists
@* # € satisfying @* = T"¢)@* and we have a(e*, @*) >
s? according to the condition (iv). Then,

1)(6*,@*) < oc(e*,(D*)U(T"(e*)e*, Tn(e*)@*)

S@(v(e",@"),v(e*, T”(e*>e*),v(e*, T”(e*)(b*))
<o(v(e", @")) <v(e", @),
(32)



impossible. After that, T"(¢") has the unique fixed
point €*. Since Te* = TT"¢)e* = T"¢)Te*, we deduce T
e* =¢*. That is, T has a fixed point.

Now we show that if condition (iv) is met. So T possesses
a unique fixed point. Assume @* is another one; from condi-
tion (iv), one can obtain a(e*, @*) > s*. In view of (13), we
have

U(é‘*,@*) S(X(€*,(D*)U<Tn(e*)€*, Tn(e*)w*)

SCD(v(e*,(D*),v(e*, T”(€*>e*),v<e*, T”“*)a)*))

<o(v(e", @")).
(33)

Lemma 9 ensures that ¢(v(e*, ®*)) < v(e*, ®*). Thus,

v(e®, ") <p(v(e, ")) <v(e*, "), (34)
which is impossible. It follows that €* is the unique fixed
point of T.

Finally, we prove the last part. To show this statement,
we fix an integer £, 0 < ¢ < n(e*), and let vy = v(e*, TF )+
€),k=0,1,2,--- for e€G. If there exists k€ N satisfying
v, =0, we have

Ve = v(e*, T(k+1)n(e*)+(’,e)

U( € Tn €* Tkn(e )+e )
(6‘ , Tkn €* ) (Tn(e*)e*’ Tn(e*)Tkn(e*)He)

<OV, 0, vgy)-

IN
R

(35)

If vy, >0, one can obtain that vy, ; < O(Vi 1> Vi1s Vs)
= @(Vy,1) < Uy, which is a contradiction. Hence, v, = 0.
It follows that v;,, =v,;="---=0.

Now we suppose that v, #0, Vn € IN. Therefore, we
obtain

v(e*, Tkn(e*)+e€) < oc(e*, T(k—l)n(e*)ﬂ’,e)U<Tn(e*)€*) Tkn(e*)+e€)

< @(U(e’*, T(k—l)n(5*>+le), v(e*, Tn(e*>e*)) U(e*, Tkn(€'>+ee)>

= D(vy_1, 0, vy).
(36)

If for some k€N, v, >v;_;, we deduce v, < D(vy, v,
v;) =¢(v;) < vy, which is a contradiction. Hence, we get
v <@(v ;) < <¢F(v)) — 0 (k—> 00). That is, for
¢, the sequence {T*(¢)*te} converges to €* for any e ¢
G. Consequently, one can obtain that the sequences
{Tkn e* €} {Tkn €e* +1€}, {Tkn(e*)+2€} . {Tkn e*)+n( 6}
are convergent to the point e*. It follows that we get
{T"e} converges to the point €* for € €G. O
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Example 3. Let (G,v) be the same as it is in Example 1.
Define T: G— G as

0, e=0,
2 1
P 6:7)
41 2
3 1
—_, €:—,
61 3
4 1
—, 6:_’
81 4
Te= 1 2 (37)

—_, 6:7)
22.2 41
1 3
b} 627)
22.3 61
1 4
~ €=_:
22.4 81

1 1 S5

ZZ.X’ _X’X_ ’

Define mapping a : G X G — [0,+00) by
1
s, e,a)E{O}U{—,X25},
a(e, @) = X (38)

0, otherwise.

Define @(k;, &y, k5) = (1/12) (%, + K, + x5) for all «; € [0,
+00)(i=1,2,3), and it follows that ¢(t) = (1/4)t. Let n(e)
=3 for all e € G. For €, ® € G such that a(e, @) > s, we get
that €, @€ {0} U{1/x, x>5}. It follows that we consider
the following two cases:

(i) e=0and @€ {1/y, x> 5}

ale, w)v(T”<€> e T“<€>a>)
(e () e

@(v(e, @), v(e, () e), v(e, T”<€>w))

( ) oo (o))

64)() 12X
(39)

That is, a(e, @)v(T"9¢, T"90) < D(v(e, @), v(e,
T"9¢), v(e, T @)).
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(i) e, @€ {1/x,r>5}. Let e=1/y and @ = 1/l with [ > y.
One can obtain that

a(e, (D)v(T ©e, T

“o(P() 1 G)
cD(v(e, , (e,T” )v( , T 0 )) (40)
oG )G R)
o(3m()] =5

The above inequalities imply that

ale, (D)U(T”(e) €, T”(e)@)

S@(v(e, @), (e,T”(E)) (e,T<€)w)).

Thus, all conditions of Theorem 13 are fulfilled with p
=s=2. As a result, T possesses a unique fixed point 0.
Meanwhile, for each € € G, {T" €} converges to the point 0.

(41)

Remark 14.

(1) Since rectangular metric spaces can be seen as rectangu-
lar b -metric spaces with parameter s = 1, one can get
the corresponding conclusions of Sehgal-Guseman-
type mappings in rectangular metric spaces

(2) Since b-metric spaces with parameter s can be seen
as rectangular b-metric spaces with parameter s,
one can obtain the corresponding conclusions of
Sehgal-Guseman-type mappings in b-metric spaces

(3) If a(x, y) = s, one can get the generalized @-Sehgal-
Guseman-type contractive mappings in rectangular
b-metric spaces

Theorem 15. Suppose (G,v) is a complete rectangular b
-metric space with s > 1. Suppose T : G — G is a continuous
injectivity and y : [0, +00) — [0, 1/2s) satisfying that for
any € € G; there is a positive number n(e) satisfying

u(T"< Je, T"©) ) y(M(e,@))M(e, D) VO G, (42)
where
M(e, ®) = max {v(e, @), v(e, ") e), v(e, T”(€>(D) }
(43)

Then, T possesses a unique fixed point €. Furthermore,
for each € € G, the iteration {T"€} is convergent to €*.

Proof. Let €, € G. Consider a sequence {¢,} in G by €, =
T”(eo)eo) € = T”(e
ny € N, then €, becomes to a fixed point of T"(én). Assume
there exists @ € G with @ = T"n)@ and @ # €,,; then,

) = = en)
il Ve, If e, =€, ., =T"'e, foran

v(eno, a)) = v(T"(e"O)eno, T”(eno)&)) < y/(M(eno, (D))M(eno, ),
(44)
where
M(e, ,®) = w> @), n)Tn(eno)n )
(e , ) = max {v(e \ ) v(e \ € 0) )

v(eno, T"(e”ﬂ)w) } =v(e,,®@) > 0.

(1/2s)v(e, , @) which is
is the unique fixed point of

From this, we get v(e, , @) <
impossible. Therefore, €,
T"én), Since Te, = T"(€"0>Ten0,
of the uniqueness of T"»). Subsequently, we assume that
€,+€,.1, VnelN.

For e€G, set z(e) = max {v(e, Tre), k=1,2,--,n(e), n
(e) +1,---,2n(€e)}. We first prove that r(e€) =sup v(e, T"€)
< oo for all neN. Assume n>n(e) is a positive number
satisfying n=rn(e)+8r>1,0<€<n(e) and J,(e) =v(e,
™)+ e), r=0,1,2,---. We suppose that e, T"¢)¢, T2"(€)
e, TU"Une are four distinct elements. Otherwise, the
conclusion is true. Thus,

we have Te, =€, because
0 0

v(e, T"e) = v(e, T’"(€)+€€)
<s [v <e, T2(€) e) +0 <T2”(€) e, T"(© e)

+ U<Tn(e) €, Trn(e)+€€):|

<s [z(e) + w(M(e, ") e))M(e, 7€) e)
n W(M (e’ T(r—1)n(e)+e€) )M(e, T(r—l)n(e)+€€)} X

(46)
where
M(e, 7€) e)
= max {v(e, 7€) e), v(e, T"(E)e) ) v(e, 7€) e) } =z(e),
(47)

M(e, T(r—l)n(e)+€€)

=max {v(e, T(H)”(e)*ee) , v(e, T"(€) e), v (e, T’”(E)“"e) }
<max {0,_(€), z(€),5,(€) }.
(48)



By (46), (47), and (48), we deduce

0,(€e)<s|z(e) + Zisz(e) + Zis max {5,_,(€),z(€),8,.(e)}|.

(49)

Hence, one can conclude that (1/(1 +2s))d,(e) <z(e)
by induction. Indeed, when r=1, we have §,(¢) < ((1+2
$)/2)z(e) + (1/2) max {z(¢€), 8, (e)}. If §,(€) = z(€), we get
8;(e) < (1+2s)z(e). If §,(€) <z(€), we get 8;(e) < (1+5)
z(€) < (1+2s)z(e). We assume J,(€) < (1 +2s)z(e); then,
8,1(€) < ((1+25)/2)z(€) + (1/2) max {(1 + 2s)z(€), z(€),
8,,1(€)} < (1+2s)z(e). Hence, r(e) =sup d(T"e, €) < co.

Next, we prove that lim, _v(e,,€,,;) =0. By con-
tractive condition (42), we have

U(en, €n+1) =0 (T”(en—l)enil, T”‘(%)"’“(en—l)enil)

= 1//(‘]VI<€"—1’ Tﬂ(é:,,) en—l) )M(en—l’ Tn(en)Gn—l) >
(50)

where

M(en—P Tn(en)en—l)
= max {v(en_l, T”<€")en_1), v(en_l, T”(E"*I)en_l),
v(en_p Tn(en>+n<en4>en_l) }

< sup {U(en—l’ q)|q € {Tmen—l}zzozl }
It is obvious that M(e, ,, T"*)e, ) >0, so

l (o]
e i) < o sup {oley € (T7e, )50} (52)
For each g€ {T™e,_}, |, we have
U(en—l’ q) = U(en—l’ Tmen—l)

= U(T”(e"*)en,z, me(enfz)eniz) (53)
< W(M(en—Z’ Tmen—Z))M(en—Z’ Tm€n—2)’

where

M(en—z’ Tm en—Z)
— max {v(eH, T"e, ,),v (eH, T”<€n—z>en,2),

v(en—l’ Tm+n(€n_2)€n—2) }

< sup {U(en—Z’ q)|q € {Tmen—z}ﬁzl} >0.
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It means v(e,_;,q) < (1/2s) sup {v(e,» q)|q € {T" €, 2}y }-
So we deduce

1 m (]
e € < 32 s0p {0061 )0 {176, 1} )
1 m [ee]
<< (5l sup {v(ep, q)lg € {T" €}, } — 0 (n—>00).
(55)

That is, lim,_,v(e,, €,,;)=0.
For the sequence {e,}, we consider v(e,, €,,,) by the
following cases. For the sake of convenience, set r, = sup

{v(e, q)lg € {T e} }-
If p is odd, assume p=2m + 1,

U(en’ €n+2m+l)
< S[U(en’ en+1) + v(€n+1’ €n+2) + U(en+2’ €n+2m+l)]
1

1 2
<s W’b‘" Wro +57[V(€p125 €443)

+ v(€n+3’ €n+4> + U(€n+4’ €n+2m+1)}

If p is even, assume p = 2m,

U(en’ 6‘n+2m) < S[U(en’ 6‘rH-l) + U(€n+1’ €n+2) + U(6n+2’ 6n+2m)]
S IS Lol ! L]
S|—=7 —T N 4 4
(25)” 0 (25)n+1 0 (25)n+2 0 (25)n+3 0

A ! + !
(25) n+2m—4 To <25)n+2m—3 To

+ 5" 0(€s2m-2> €nram)
<s ! [+s +--~1r +s l+s ! + ]r
@ e eyt ey "
+s" (25)n1+2m—2 0
1 1 1
<s ry—0 (n—00).

(57)

In view of (56) and (57), one can get that {¢, } is Cauchy.
By the completeness of (G, v), one can choose a point €* € G
with lim €, =€". We might as well let €, # €" and ¢,

n—~oo T n
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+ T"")¢,. Otherwise, we have €* = T"(¢)e* according to
the continuity of T. And from that, one can deduce

v(en, T”<€*>en) - U(Tenfl €1 Tn<e*>+n<en,1>€n71)

. . (58)
< W(M(en—l’ Tn(e )en—l))M(en—l’ Tn(e )en—l)’
where
M(en,l, T”(e*)en,l) = max {v(en,l, T”<€*)en,1),
(59)

v(en,l, T”(E"*I)en,l), v(en,l, T”(€*>en) } > 0.

It follows that

n(e* 1 m o)
v(en’ T ( )€n> < Z Sup {U(en—l’q)|q € {T en—l}mzl}
1 m . oo
<< W sup {U(em q)lge{T eO}m:1} —0 (n—>00).
(60)

Since T is a continuous mapping, lim, _ d(T"¢")e*,
T™")¢,) = 0. Therefore,

v(e*, T”<€*)e*> <s {v(e*, €,) + v(en, T”<€*)en)

+ v(T”“*)e*, T”<€*)en>} —0(n— 00).
This means that €* = T"¢)¢" Now,

v(e", Te") = u(T”<€*>e*, TT"<€*>e*)
<y(M(e", Te"))M(e*, Te"),

where

M(€", Te") = max {v(e*, Te"), v(e*, T”(e*)e*),
(63)
v(e*, T"<€”>Te*) } =v(e*, Te").

Hence, we get v(e*, Te*) < (1/2s)v(e*, Te*), e, € =T
€*. Assume there has a @* satistying ®* = T®* and €* # @*
; then, @* = T@* = --- = T"¢)@* and

U(S*, (D*) — U(Tn(e*)e*’ Tn(e*)@*)
(64)

Sy(M(e*,@"))M(e*,@") < zisd(e*,a)*),

which is impossible. So T possesses the unique fixed
point £*.

At the end, we prove the last part. To do this, we fix an
integer €, 0<¢<n(e*), and Vn>n(e*); we put n=in(e*)
+¢,i>1. Then, Ve € G; we have

v(e*, T"e) = U(Tn(e*)e*’ Tin(e*)+€€)
< w(M(e*, T(i—l)n(e*)JrBe))M(e*’ T(i—l)n(e*)ﬂ’,e)’
(65)
where
M(e*, T(i—l)n(e*)+€e>
= max {v(e*, T(i’1>”(e*>+ee>, v(e*, T”(e*>e*) ,u(e", T”e)}.
(66)

If  v(er, T"e) >v(e*, TV ) then  M(e",
70 e) = y(e*, T"€). According to (65), we have

1
v(e*, T"e) < 2—U(€*, T"¢),i.e.e” =T"e. (67)

S

It follows that T"e — €* as n — co. If v(e*, T"€) < v
(e*, TUDn€)+te) "one can get that

1 ; .
v(e®, T"e) < —vf e*, T e), (68)
2s

Similarly,

v(e*, T(i—l)n(e*)Jree) -0 (Tn(e*)e*, T(ifl)n(e*)”e)

(69)
<y (M (e*, T(i—2)n(€*)+€€))M (e*’ T(i—Z)n(e*)-H’.e) i

where

M<€*, T(i—2)n(e*)+€€)

- max {v (e*, T(i—z)n(e*)ﬂie) v (e*, Tn(E*)€*>, (70)
v(e*, T(i—l)n(e*)+€€) }
If v(e*, TV e) > y(e*, TP e), then
M(e*, T(i—2)n(e*)+€€> _ v(e*, T(i—l)n(E*)%e)’ (71)
that is,

U(e*’ T(i—l)n(e*)+’8€) < ziv(e*, T(i-l)ﬂ(€*>+“e),i.e.,e* (72)
s
— T(i—l)n(e*)ﬂe'

Since €* is a fixed point of T, one get €* = T"(¢)¢* =
7)€+ e Consequently, T"e — €* as n — 0.



10
If v(e*, TV e) < y(e*, T2 e)  then
v<€*’ T(i—l)n(e*)+86> < iv<€*) T(i—2)n(e*)+€€) ) (73)
2s

We continue to calculate according to this method; if
there exists i, <i satisfying e* = TU0)"(€)*e then T"e
— €* as n — 00. Otherwise, one can conclude that

v(e", T"e) <+ < (ZLS)I.U(G*, T'€) — 0(i—> 00). (74)

Therefore, for each € € G, the iteration {T"€} is conver-
gent to €. O

Example 4. Let G=[0,+00) and v(e, @) = (¢ — @)*. Obvi-
ously, (G,v) is a complete rectangular b -metric space with
s=3.Define T : G — G with

€

Te= 3 €« [0,400). (75)

Define mappings y(€) = 1/3s and n(e) = 3, Ve € [0,+00).
One has

n(e n(e 1
U(T ©¢, T )(D) =v(T’, T3(D) = a(e— @), (76)
¥(M(e.@))M(e: 0)
1
= 5 max {v(e, @),v(e, T€),v(e, T’ @) } (77)
1
>
9
That is, v(T" ¢, T"€)@) < y/(M(e, @))M(e, @).

We®=é@—@f

Thus, all hypotheses of Theorem 15 are fulfilled. So T
possesses the unique common fixed point 0. Furthermore,
for each € € G, the iteration {T"¢} is convergent to 0.

4. Application

In this part, we will prove the solvability of this initial value
problem:

md2€ +
a2 " de
e(O):O,

€' (0)=0,

- mF(e, €(e)) =0,
(78)

where m and ¢>0 are constants and F: [0, H] x R*
— R is a continuous mapping.

Obviously, problem (78) is related to the integral equa-
tion:

€e) = L Y(e,v)F(v, e(v))dv,e € [0, H|, (79)
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where Y(e, r) is defined as

_ pw(e=v)
Lo g<o<e<H,
Yep)-{ (50)

0, 0<e<Q<H,

where w = ¢/m is a constant.
Next, by using Theorem 13 and Theorem 15, we shall
present the solvability of the integral equation:

H

e(e) = j I'(e0 ¢(e))de. (81)

0
Let G=C([0, H]). For p>2,¢, @ € G, define

v(e, @) = sup |e(e) —@(e)[F. (82)
e€[0,H]

Hence, (G, v) is a complete rectangular b-metric space
with s =371,
In the following, define T : G — G by

Te(e) = jjme, 0. €(@))de. (83)

Suppose Z: RxR — R is a given function that sat-
isfies the following condition:

n

(e(g), ®(e)) 2 0and Z(@(e), Td(e))
> 0implies Z(e(e), Ta(¢)) (84)
>0Ve, 0 € G.

Theorem 16. Assume that

(i) I : [0,H] x [0, H| X R — R* is continuous

(ii) there has an €,€G satisfying Z(e,(¢), Tey(e)) =0
for all € € [0, H|

(iii) Ve € [0, H] and €,y € G, E(e(e), @(e)) >0 imply E
(Te(e), Tad(e)) =0

(iv) if {€,} CG satisfies E(e,(¢), €,,,(€)) =0, ¥VneN,

and lim, e, =e¢, then we can choose a subse-
quence {€, } of {€,} such that Z(e, (), €(¢)) 20,
VkeN

(v) for each e€G with T"®e=¢€, we have Z(e(e),
@(e)) >0 for any @ € G

(vi) there is a continuous mapping Y : [0, H] x [0, H]
—> R* satisfying

H
1
su Y(e,0)do < {/——> 85
s | Veades (/2 (55)
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(e 0 (@) ~ I'(e: p, (@) < Y(& ) e(Q) -

Then, (81) possesses a unique solution € € G.

Proof. Set a : G x G —> [0,+00) by

a(e, @) = { £, if E(e(e), @(¢)) = 0, (87)

0, otherwise.

One can check that T is triangular «, orbital admissible.
In view of (i)-(vi), for €, ® € G, we obtain

sfv(Te(e), To(e))

=5 sup |Te(e) - Ta(e)”
£€[0,H|
H H r
=& sup J (e 0 e(Q))dQ—J I'(e, 0 @())de
£€[0,H| 0
i p
< sup ( IT(e, 0, €(Q)) — I'(e; 0 w(@))IdQ>
e€[0,H| 0
H p
< sup < Y(e, 0)|€(Q) - ‘D(Q)|d9>
£€[0,H| 0
H P
<sP sup < Y(e, Q)dQ) sup |e(t) - @(e) [’
seOH] 0 e€[0,H]
<s. sup |e(e) — @(e) [P
3P+ se[O,II-)I]| ( ) ( )‘
= 3p+1 ’

(88)

which implies that

a(e(e), (D(S))U(T”<E) €(e), T”(€>w(s)>

< @(v(e(s), a(e)), u<e(s), T"(S)e(s)>, v(e(s), T”<€)w(s))),
(89)

where (e, €,, €)= (€, + €, +¢€)/3, =31 and
n(e) = 1. After that, all hypotheses of Theorem 13 are ful-
filled. Hence, T has a unique fixed point € € G. That is, € is
the unique solution of integral equation (81). O

Remark 17. If I'(e, 0, €(e)) = Y(&, @) F(0 €(@)), |F(e €(0))
- F(, @(0))| < |e(@) — @(Q)}; then, (78) has a unique solu-
tion by Theorem 16.

Theorem 18. Suppose that

(i) I':[0,H] %

(ii) there is a continuous mapping Y : [0, H] X
— R* satisfying

[0, H x R — R* is continuous

[0, H]

11
(&0 e(Q)) ~ I'(s: 0 @)
H H
<Y(e Q)|e(e) +@(e) - <J0 I'(e, 0, €(Q))da + JO I'(e 0 (D(Q))dQ) ,
(90)
H
sup J Y(e,Q)do < 7 (91)
e€[0,H]J 0

Then, (81) possesses a unique solution € € G.

Proof. For €, ® € G, according to the conditions (i)-(ii), one
can get

v(Te(e), To(e))
= sup [Te(e) = Ta(o)

H P

= sup JHF(e, 0, €(0))do - JO

e€[0,H||Jo

< sup] (J:Y(s, Q)|e(e) + @(e)

€€[0,H]

I'(e, 0 @(0))de

(JHF<s o c(e >>de+J e a()de) ’dQ)P

4
Ye Ta(e)| + [a(e) - <e>|>de)

< sup
e€[0,H]

Jo

r
JY To(e) + afe) ~(e) + e(e)~ Te(o) e

0

ool

Te(e)])

< sup
€€[0,H]

()] +|@(e) -

e(e)| +le(e) -

0
< sup(
€€[0,H

-H
J Ysed9> - sup (Je(e) ~ T@
eeUH]

sup |e(e) = Ta(e)|’ + sup |@(e) — e(e)|” + sup |e(e) = Te(e)|”
1 £€[0,H] ec[0,H] £€[0,H]
< .3P.
32p 3
1
< M(e, {D),

3s

(92)

where M(e, @) is the same as in Theorem 15. Thus, all
the hypotheses of Theorem 15 are fulfilled with y(e) =1/3s
and n(e) = 1. It follows that T possesses a unique fixed point
€ € G, and so is a solution of (81). O

5. Conclusions

In rectangular b-metric spaces, we introduced a new triangu-
lar a-orbital admissible condition and established two fixed
point results for mappings with a contractive iterate at a
point. Further, we provided two examples that elaborated
the usability of presented results. At the same time, we
proved the existence and uniqueness of solution of an inte-
gral equation.
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