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In this paper, we investigate the global well-posedness of the equilibrium diffusion model in radiation hydrodynamics. The model
consists of the compressible Navier-Stokes equations coupled with radiation effect terms described by the fourth power of
temperature. The global existence of classical solutions to the Cauchy problem in the whole space is established when initial
data is a small smooth perturbation of a constant equilibrium state: moreover, an algebraic rate of convergence of solutions
toward equilibrium is obtained under additional conditions on initial data. The proof is based on the refined energy method
and Fourier’s analysis.

1. Introduction

Radiation hydrodynamics is concerned with the propaga-
tion of thermal radiation through a fluid or gas and the
effect of this radiation on the dynamics. The importance
of thermal radiation in physical problems increases as
the temperature rises. Hydrodynamics with an explicit
account of radiation energy and momentum contribution
constitutes the character of radiation hydrodynamics. Such
consideration finds their practical applications in the
understanding of certain reentry of space vehicles, astro-
physical, supernova explosions, laser fusion, and so on
(cf. [1, 2]). As in classical fluid mechanics, the equations
of motion in radiation hydrodynamics are derived from
the conservation laws for macroscopic quantities. How-
ever, due to the presence of radiation, the classical “mate-
rial” flow has to be coupled with radiation which is an
assembly of photons and needs a priori relativistic treat-
ment. Hence, the whole problem to be considered is then
a coupling between the standard hydrodynamics for the
matter and a radiative transfer equation for the photon
distribution. Moreover, if the specific intensity of radiation
is isotropic (cf. [3, 4]) and assumes that the photons emit-
ted by the gas have a high probability of reabsorption

within the optically thick regions, then the equilibrium dif-
fusion model can be derived [5, 6]. This model is widely
used in radiation hydrodynamics research (cf. [7, 8]).

In equilibrium diffusion theory, the quantities of primary
interest (i.e., the radiative energy density, pressure, and flux)
in radiation hydrodynamic problems can be explicitly calcu-
lated via the Planck formula once the temperature distribution
is known. The radiation energy density associated with a Planck
distribution varies as much as the fourth power of temperature,
and the radiative transfer equation can be omitted because the
radiation field is isotropic. Therefore, based on the standard
hydrodynamics, the system consists of the compressible
Navier-Stokes equations coupled with radiation effect terms as
described above in the following form (see [4, 9]):

ρt + div ρuð Þ = 0, ð1Þ

ρuð Þt + div ρu ⊗ uð Þ+∇ PF + PRð Þ = div S, ð2Þ

ρ eF + eRð Þ + 1
2 ρu

2
� �

t

+ div ρ eF + eRð Þ + 1
2 ρu

2 + PF + PRð Þ
� �

u
� �

+ div qF + qRð Þ = div Su,
ð3Þ
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with initial data

ρ, u, θð Þjt=0 = ρ0, u0, θ0ð Þ, x ∈ℝ3: ð4Þ

Here, ρ = ρðx, tÞ > 0, θ = θðx, tÞ > 0, u = uðx, tÞ = ðu1ðx,
tÞ, u2ðx, tÞ, u3ðx, tÞÞ, for t ≥ 0, x ∈ℝ3 denote the mass den-
sity, temperature, and velocity field of the fluid, respectively.
PF = Rρθ, eF = cνθ, and qF = −κF∇θ are the pressure, inter-
nal energy, and heat flux of the fluid, respectively; R, cν,
and κF are positive constants; PR = ða/3Þθ4, eR = ða/ρÞθ4, and
qR = −κRθ

3∇θ represent radiation pressure, energy, and heat
flux, respectively, and a, κR are positive constants. The symbol
S stands for the viscous stress tensor S = λ′ðdivÞI + μð∇u +
ð∇uÞΤÞ, λ′ and μ are the constant viscosity coefficients of the
fluid satisfying 3λ′ + 2μ > 0, and I is the 3 × 3 identity matrix.

Let us introduce some related mathematical results of
the equilibrium diffusion model. For the one-dimensional
case, the global existence of strong solutions for the Cauchy
problem was proved in [10]. The existence of a global
smooth solution for an equilibrium diffusion model with
the magnetic field to the Dirichlet boundary problem was
addressed by Zhang and Xie [11]; similar results were
obtained in [12]. Ducomet and Zlotnik [13] studied the sta-
bilization properties and the existence of global solutions on
the bounded domain for 1D radiative and reactive viscous
gas dynamics by constructing the global Lyapunov func-
tionals under certain growth assumption on heat-
conductivity κF . The global existence and exponential stabil-
ity of strong solutions were established in [14], see also [15]
on the global solution for a self-gravitating viscous radiative
and reactive gas for free boundary problem. The existence of
a global strong solution and large-time behavior to the Cau-
chy problem was studied in [16]. For the multidimensional
case, Ducomet and Feireisl [17, 18] investigated the global
existence of weak variational solutions for this model with
gravitational force and magnetic field in a bounded domain.
A similar result can be obtained under more general consti-
tutive assumptions [19]. The existence of the global weak
solution to the equilibrium diffusion model in the
unbounded domain was studied by Poul [20].

The purpose of this paper is to construct global classical
solutions to the system (Equation (1)) near an equilibrium
state ð1, 0, 1Þ and investigate the large-time behavior of this
solution. Therefore, it is natural to introduce the transforms

ρ = 1 + ϱ, θ = 1 +Θ ð5Þ

to rewrite the system (Equation (1)) as

ϱt + 1 + ϱð Þ div u+∇ϱ · u = 0,

ut + u · ∇u + R∇Θ + R 1 +Θð Þ∇ϱ
1 + ϱ

+ 4a/3ð Þ 1 +Θð Þ3∇Θ
1 + ϱ

= λ′Δu
1 + ϱ

+
λ′ + μ
� �

∇div u
1 + ϱ

,

Θt +
1 + ϱð Þu · ∇Θ
F ϱ,Θð Þ + R 1 + ϱð Þ 1 +Θð Þ + 4a/3ð Þ 1 +Θð Þ4

F ϱ,Θð Þ div u

+ 4a 1 +Θð Þ3∇Θ · u
F ϱ,Θð Þ = κFΔΘ

F ϱ,Θð Þ + κR 1 +Θð Þ3ΔΘ
F ϱ,Θð Þ

+ 3κR 1 +Θð Þ2 ∇Θj j2
F ϱ,Θð Þ + λ′ div uð Þ2

F ϱ,Θð Þ + 2μD ·D
F ϱ,Θð Þ ,

ð6Þ

where Fðϱ,ΘÞ = cνð1 + ϱÞ + 4að1 +ΘÞ3, and D =DðuÞ is the
deformation tensor,

Dij ≔
1
2

∂ui
∂xj

+
∂uj

∂xi

 !
andD ·D≔ 〠

3

i,j=1
D2
ij: ð7Þ

For simplicity of the presentation and without loss of
generality, we assume the positive constants R = μ = λ′ =
κF = κR ≡ 1, cν = 3, a = 3/4. We can further simplify system
(6) into

ϱt + 1 + ϱð Þ div u+∇ϱ · u = 0, ð8Þ

ut + u · ∇u+∇Θ + 1 +Θð Þ∇ρ
1 + ϱ

+ 1 +Θð Þ3∇Θ
1 + ϱ

= Δu
1 + ϱ

+ 2∇div u
1 + ϱ

,

ð9Þ

Θt +
1 + ϱð Þu · ∇Θ
F ϱ,Θð Þ + 1

3 1 +Θð Þ div u + 3 1 +Θð Þ3∇Θ · u
F ϱ,Θð Þ ,

ð10Þ

= ΔΘ

F ϱ,Θð Þ +
1 +Θð Þ3ΔΘ
F ϱ,Θð Þ + 3 1 +Θð Þ2 ∇Θj j2

F ϱ,Θð Þ + div uð Þ2
F ϱ,Θð Þ + 2D ·D

F ϱ,Θð Þ ,

ð11Þ
with initial data

ϱ, u,Θð Þjt=0 = ϱ0 xð Þ, u0 xð Þ,Θ0 xð Þð Þ
= ρ0 xð Þ − 1, u0 xð Þ, θ0 xð Þ − 1ð Þ: ð12Þ

Remark 1. The purpose of taking special values of param-
eters is to simplify the equation form and facilitate calcu-
lation. But for (6) with general parameters, we can also
achieve the goal by the following processing:

R 1 + ϱð Þ 1 +Θð Þ + 4a/3ð Þ 1 +Θð Þ4
F ϱ,Θð Þ

Á div u = R 1 + ϱð Þ 1 +Θð Þ + 4a/3ð Þ 1 +Θð Þ4
F ϱ,Θð Þ −

R + 4a/3ð Þ
cν + 4a

 !

Á div u + R + 4a/3ð Þ
cν + 4a div u:

ð13Þ

After this processing, the left side of the above equa-
tion can be decomposed into nonlinear and linear parts,
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and how to control the linear terms is the main difficulty
that needs to be overcome in the proof process.

For the later use in this paper, we give some notations.
The norm of L2 is denoted by k·k. C denotes a positive (gen-
erally large) constant and λ a positive (generally small) con-
stant and takes a different value from line to line. A ~ B
means CA ≤ B ≤ ð1/CÞA for a generic constant C > 0. For
an integrable function f : ℝ3 ⟶ℝ, its Fourier transform
is defined by

f̂ ξð Þ =
ð
ℝ3
e−ix·ξ f xð Þdx, x · ξ = 〠

3

j=1
xjξj, ξ ∈ℝ3, ð14Þ

where i =
ffiffiffiffiffiffi
−1

p
∈ℂ is the imaginary unit. For two complex

numbers or vectors g and h, ðgjhÞ≔ g · �h denotes the dot
product of g with the complex conjugate of h.

With the above preparations, the main result can be
stated as follows.

Theorem 2. Suppose that kðρ0, u0,Θ0ÞkH4 is small enough.
Then, the Cauchy problem (8)–(12) admits a unique global
solution ðρðx, tÞ, uðx, tÞ,Θðx, tÞÞ, which satisfies

ρ, u,Θ ∈ C 0,∞½ � ;H4 ℝ3À ÁÀ Á
,  sup

t≥0
ρ, u,Θð Þk kH4 ≤ C ρ0, u0,Θ0ð Þk kH4 :

ð15Þ

Theorem 3. Moreover, assume that kðρ0, u0,Θ0ÞkH4∩L1 is
sufficiently small, under the assumptions of Theorem 2, then
for all t ≥ 0, we have the following time decay

ρ, u,Θð Þk kL2 ≤ C 1 + tð Þ−3/4, ð16Þ

∇ ρ, u,Θð Þk kH3 ≤ C 1 + tð Þ−5/4: ð17Þ
The existence of global classical solutions to the prob-

lem (Equations (8)–(12)) will be proved by extending the
local solutions with respect to time based on the global a
priori estimates and continuum arguments. We mainly
use refined energy methods to establish these estimates
in high-order Sobolev’s spaces. In particular, for the non-
linear term containing 1/Fðϱ,ΘÞ and ð1 +ΘÞ3, we need
to decompose the linear part of it as in Remark 1 and
modify some methods motivated by Matsumura and
Nishida [21, 22] to obtain the corresponding estimates.
For algebra decay in time, we first get the time-decay
property for the linearized system (Equations (43) and
(44)) by using the Fourier multiplier technique. Then,
the time-decay rate can be given by combining the global
a priori estimate obtained in Theorem 2, and the above
time-decay property applies the energy estimate technique
to the nonlinear problem (Equations (8)–(12)), whose
solutions can be represented by the solution-semigroup
operator for the linearized system (Equations (43) and
(44)) by using the Duhamel principle. The key point is
to obtain a Lyapunov-type inequality for E1ðtÞ (see Equa-
tion (56)).

We organize the rest of the paper as follows: in Section 2,
we derive the uniform-in-time a priori estimates and com-
bine local existence results to establish the existence of global
classical solutions. In Section 3, we investigate the decay
rates of solutions in the whole space.

2. Global Existence

In what follows, our analysis is based on the reformulated
Cauchy problem (Equations (8)–(12)). To obtain the global
existence, the most important point is to obtain the
uniform-in-time a priori estimates.

2.1. A Priori Estimates. In this subsection, we will establish
the uniform-in-time a priori estimates in the whole space
ℝ3. First, let us assume that ðϱ, u,ΘÞ is the smooth solution
to the Cauchy problem (Equations (8)–(12)) on 0 ≤ t < T for
T > 0 and satisfies

sup
t≥0

ϱ, u,Θð Þk kH4 ≤ δ, ð18Þ

where 0 < δ < 1 is a generic constant small enough. Next, we
introduce a technical lemma which are useful in the subse-
quent estimates:

Lemma 4 (see [23, 24]). There exists a positive constant C,
such that for any f , g ∈H4ðℝ3Þ and any multi-index k with
1 ≤ jkj ≤ 4,

fk kL∞ ℝ3ð Þ ≤ C ∇fk k1/2L2 ℝ3ð Þ ∇2 f
 1/2

L2 ℝ3ð Þ,

f gk kH3 ℝ3ð Þ ≤ C fk kH3 ℝ3ð Þ ∇gk kH3 ℝ3ð Þ,

∂k f gð Þ
 

L2 ℝ3ð Þ ≤ C ∇fk kH3 ℝ3ð Þ ∇gk kH3 ℝ3ð Þ:
ð19Þ

Then, we begin to give the priori estimate of ϱ, u,Θ.

Lemma 5. Let ϱ, u,Θ be the smooth solution to (8)–(12).
Then, for all 0 ≤ t ≤ T with any T > 0, it holds

1
2
d
dt

ϱ, u,
ffiffiffi
6

p
Θ

� � 2 + λ ∇ u,Θð Þk k2 + div uk k2À Á
≤ C ϱ, u,Θð Þk kH2 + ϱ, u,Θð Þk k2H2

À Á
Â ∇ ϱ, u,Θð Þk k2H1 + div uk k2À Á

:

ð20Þ

Proof. Multiplying (8)–(11) by ϱ, u, 6Θ, respectively, and
then taking integration and summation, one has
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1
2
d
dt

ϱk k2 + uk k2 +
ffiffiffi
6

p
Θ

 2� �
+
ð ∇uj j2
1 + ϱ

dx

+
ð 2 div uð Þ2

1 + ϱ
dx+

ð 12 ∇Θj j2
F ϱ,Θð Þ dx

= −
ð 1
2 ϱ

2 div udx−
ð
u · ∇uð Þ · udx+

ð
ϱ −Θð Þ
1 + ϱ

∇ϱ · udx

+
ð
ϱ − 3Θ + 3Θ2 +Θ3À Á

1 + ϱ
∇Θ · udx−

ð
∇

1
1 + ϱ

� �
· ∇u · udx

−
ð
2∇ 1

1 + ϱ

� �
· u div udx−

ð
2Θ2 div udx

−
ð
12Θ∇

1
F ϱ,Θð Þ · ∇Θdx−

ð 6 1 + ϱð ÞΘ + 18 1 +Θð Þ3Θ
F ϱ,Θð Þ ∇Θ · udx

+
ð 6 3Θ2 + 3Θ3 +Θ4À Á

ΔΘ

F ϱ,Θð Þ dx+
ð 18 1 +Θð Þ2Θ ∇Θj j2

F ϱ,Θð Þ dx

+
ð 6Θ div uð Þ2

F ϱ,Θð Þ dx+
ð 12ΘD ·D

F ϱ,Θð Þ dx ≡ 〠
13

j=1
I j

ð21Þ

Using Hölder and Sobolev’s inequalities, for I1, I2, I3, I5,
I6, I7, I12, I13, we have

I1 + I2 + I3 ≤ C ϱk kL3 div uk kL2 ϱk kL6 + C uk kL3 ∇uk kL2 uk kL6
+ C ϱk kL3 + Θk kL3ð Þ ∇ϱk kL2 uk kL6

≤ C ϱk kH1 div uk kL2 ∇ϱk kL2 + C uk kH1 ∇uk k2L2
+ C ϱk kH1 + Θk kH1ð Þ ∇ϱk kL2 ∇uk kL2 ,

≤ C ϱ, u,Θð Þk kH1 ∇ ϱ, uð Þk k2 + div uk k2À Á
,

I5 + I6 + I7 ≤ C ∇uk kL3 + div uk kL3ð Þ ∇
1

1 + ϱ

� � 
L2

uk kL6

+ C Θk kL3 div uk kL2 Θk kL6
≤ C uk kH2 ∇ϱk kL2 ∇uk kL2 + C Θk kH1 div uk kL2 ∇Θk kL2 ,

I12 + I13 ≤ C Θk kL∞ div uk k2L2 + C 〠
3

i,j=1
uixj

 
L2

uj
xi

 
L2

Θk kL∞

≤ C Θk kH2 div uk k2L2 + ∇uk k2L2
À Á

,
ð22Þ

For the rest terms, under the assumption (18), we have

I8 ≤ ∇
1

F ϱ,Θð Þ
� � 

L2
∇Θk kL3 Θk kL6

≤ C ∇ϱk kL2 + ∇Θk kL2 + Θk kL∞ ∇Θk kL2 + Θk k2L∞ ∇Θk kL2
À Á

∇Θk kL3 Θk kL6
≤ C ∇ϱk kL2 + ∇Θk kL2 + Θk kH2 ∇Θk kL2ð Þ Θk kH1 ∇Θk kL2 ,

ð23Þ

and similarly, we get

I4 ≤ C ϱk kH1 + Θk kH1 + Θk k2H1
À Á

∇Θk kL2 ∇uk kL2 ,
I9 ≤ C 1 + ϱk kH2 + Θk kH2ð Þ Θk kH1 ∇Θk kL2 ∇uk kL2 ,

I10 + I11 ≤ C Θk kH1 + Θk k2H2
À Á

∇Θk k2H1 :

ð24Þ

Then, (20) follows by plugging all estimates above into
(21), and hence Lemma 5 is proved.

Lemma 6. Let ϱ, u,Θ be the smooth solution to (8)–(12).
Then, for all 0 ≤ t ≤ T with any T > 0, it holds

1
2
d
dt

〠
1≤ kj j≤4

∂kϱ, ∂ku,
ffiffiffi
6

p
∂kΘ

� � 2
+ λ 〠

1≤ kj j≤4
∂k∇u
 2 + ∂k div u

 2 + ∂k∇Θ
 2� �

≤ C ϱ, u,Θð Þk kH4 + ϱ, u,Θð Þk k2H4

À Á
Â ∇ϱk k2H3 + ∇ u,Θð Þk k2H4 + div uk k2H4

À Á
:

ð25Þ

Proof. Applying ∂k with 1 ≤ jkj ≤ 4 to (8)–(11), multiplying
by ∂kϱ, ∂ku, and 6∂kΘ, respectively, and then taking integra-
tion and summation, we have

1
2
d
dt

∂kϱ
 2 + ∂ku

 2 + ffiffiffi
6

p
∂kΘ

 2� �
+
ð ∇∂ku
��� ���2
1 + ϱ

dx

+
ð 2 div ∂ku
� �2

1 + ϱ
dx+

ð 12 ∇∂kΘ
��� ���2
F ϱ,Θð Þ dx

= −
ð
∂k ϱ div uð Þ∂kϱdx+

ð
−∂k, u · ∇
h i

ϱ∂kϱdx

+
ð 1
2 ∂kϱ
��� ���2 div udx− ð ∂k u · ∇uð Þ∂kudx

+
ð
∂k

ϱ − 3Θ + 3Θ2 +Θ3À Á
1 + ϱ

∇Θ

 !
∂kudx

+
ð

Θ − ϱð Þ
1 + ϱ

∂kϱ div ∂kudx+
ð
∂kϱ∇

1 +Θ

1 + ϱ

� �
· ∂kudx

+
ð

−∂k, 1 +Θ

1 + ϱ
∇

� �
ϱ∂kudx−

ð
∇

1
1 + ϱ

� �
· ∇∂ku · ∂kudx

−
ð
2∇ 1

1 + ϱ

� �
· ∂ku div ∂kudx

+ 〠
0≤k′<k

Ck,k′

ð
∂k−k′

1
1 + ϱ

� �
∂k′Δu · ∂kudx

+ 〠
0≤k′<α

Ck,k′

ð
2∂k−k′ 1

1 + ϱ

� �
∂k′∇div u · ∂kudx

−
ð
∂k

6 1 + ϱð Þ + 18 1 +Θð Þ3
F ϱ,Θð Þ ∇Θ · u

 !
∂kΘdx

−
ð
2∂k Θ div uð Þ∂kΘdx−

ð
12∇ 1

F ϱ,Θð Þ
� �

· ∇∂kΘ∂kΘdx

+ 〠
0≤k′<k

Ck,k′

ð
12∂k−k′ 1

F ϱ,Θð Þ
� �

∂k′ΔΘ∂kΘdx

+
ð
6∂k 3Θ + 3Θ2 +Θ3À Á

ΔΘ

F ϱ,Θð Þ

 !
∂kΘdx

+
ð
18∂k 1 +Θð Þ2 ∇Θj j2

F ϱ,Θð Þ

 !
∂kΘdx+

ð
6∂k div uð Þ2Θ

F ϱ,Θð Þ

 !
∂kΘdx

+
ð
12∂k D ·DΘ

F ϱ,Θð Þ
� �

∂kΘdx ≡ 〠
20

j=1
I j,

ð26Þ
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where ½·, · � stands for ½A, B� = AB − BA for two operators A
and B, Ck,k′ is constant depending only on k and k′. Each
term can be estimated as follows. Using Hölder, Sobolev,
and Young’s inequalities, (18) and Lemma 4, we easily get
the following bounds

I1 + I2 ≤ C ϱk kH4 ∇ϱk kH3 div uk kH4 + ∇uk kH3ð Þ,

I3 + I4 ≤ C uk kH3 ∇ϱk k2H3 + ∇uk k2H4
À Á

,

I6 ≤ C ϱk kH4 ∇ϱk kH1 + ∇Θk kH1ð Þ div uk kH4 ,

I7 ≤ C ϱk kH4 uk kH4 ∇ϱk kH2 + ∇Θk kH2 + ∇ϱk kH2 ∇Θk kH1ð Þ,

I8 ≤ C uk kH4 ∇ϱk k2H3 + ∇ϱk kH2 ∇Θk kH2
À Á

+ C ϱk kH4 uk kH4 ∇ϱk kH2 ∇Θk kH2 ,

I9 + I10 ≤ C uk kH4 ∇ϱk kH2 ∇uk kH4 + div uk kH4ð Þ,

I14 ≤ C Θk kH4 div uk kH4 ∇Θk kH3 ,

I15 ≤ C Θk kH4 ∇ϱk kH2 + ∇Θk kH2ð Þ ∇Θk kH4 : ð27Þ

For I11, we have

I11 ≤ C uk kH4 ∇ϱk kH3 ∇uk kH4 , ð28Þ

where the first inequality follows that for k′ < k,

ð
∂k−k′

1
1 + ϱ

� �
∂k′Δu∂kudx ≤

∂k
1

1 + ϱ

� �  Δuk kL∞ ∂ku
 , k′

�� �� = 0
� �

,

∂k−k′
1

1 + ϱ

� � 
L3

∂k′Δu
 

L6
∂ku
 , k′

�� �� = 1
� �

,

∂k−k′
1

1 + ϱ

� � 
L∞

∂k′Δu
 

L2
∂ku
 , k′

�� �� ≥ 2
� �

,

8>>>>>>>><>>>>>>>>:
ð29Þ

and Sobolev and Young’s inequalities were further used.
Similarly, by (18), we have

I5 = 〠
0≤k′≤k

Ck,k′

ð
∂k−k′

ϱ − 3Θ + 3Θ2 +Θ3À Á
1 + ϱ

 !
∂k′∇Θ∂kudx

≤ C 1 + ∇ϱk kH3ð Þ ∇ϱk kH3 + ∇Θk kH3 + ∇Θk k2H3 + ∇Θk k3H3
À Á

Á ∇Θk kH4 uk kH4 + C ϱk kH4 + Θk kH4ð Þ ∇ϱk kH3 + ∇Θk kH3ð Þ
Á ∇Θk kH4 uk kH4 ≤ C 1 + ϱk kH4 + Θk kH4ð Þ
Á uk kH4 ∇ϱk kH3 + ∇Θk kH3ð Þ ∇Θk kH4 ,

I12 ≤ C uk kH4 ∇ϱk kH3 div uk kH4 ,

I13 ≤ C uk kH4 Θk kH4 ∇ϱk kH3 + ∇Θk kH3ð Þ
Á ∇Θk kH4 + C Θk kH4 ∇uk kH3 ∇Θk kH4 ,

I16 ≤ C 1 + ϱk kH4 + Θk kH4ð Þ Θk kH4 ∇ϱk kH3 + ∇Θk kH3ð Þ ∇Θk kH4 ,

I18 ≤ C ϱk kH4 + Θk kH4ð Þ Θk kH4 ∇ϱk kH3 + ∇Θk kH3ð Þ
Á ∇Θk kH4 + C Θk k2H4 ∇Θk k2H4 ,

I19 ≤ C ϱk kH4 + Θk kH4ð Þ Θk kH4 ∇ϱk kH3 + ∇Θk kH3ð Þ
Á div uk kH4 + C Θk k2H4 div uk k2H4 ,

I20 ≤ C ϱk kH4 + Θk kH4ð Þ Θk kH4 ∇ϱk kH3 + ∇Θk kH3ð Þ
Á ∇uk kH4 + C Θk k2H4 ∇uk k2H4 :

ð30Þ

Finally, for I17, we divided into three parts to deal with

I17 = 6
ð
∇

3Θ + 3Θ2 +Θ3

F ϱ,Θð Þ
� �

· ∇∂kΘ∂kΘdx

+ 6
ð 3Θ + 3Θ2 +Θ3À Á

∇∂kΘ
��� ���2

F ϱ,Θð Þ dx

+ 6
ð

∂k, 3Θ + 3Θ2 +Θ3

F ϱ,Θð Þ Δ

� �
Θ∂kΘdx ≡ 〠

3

j=1
I j17:

ð31Þ

By Lemma 4 and (18), we have

I117 ≤ ∇
3Θ + 3Θ2 +Θ3

F ϱ,Θð Þ
� � 

L∞
∇∂αΘk k ∂αΘk k

≤ C ∇ϱk kH2 + ∇Θk kH2ð Þ Θk kH2 ∇Θk kH4 Θk kH4

+ C ∇Θk kH2 ∇Θk kH4 Θk kH4 ≤ C Θk k2H4

Á ∇ϱk kH2 + ∇Θk kH2ð Þ ∇Θk kH4 + C Θk kH4 ∇Θk k2H4 ,

I217 ≤ C Θk kH2 + Θk k2H2
À Á

∇Θk k2H4 ,

I317 ≤ C Θk kH4 ∇Θk k2H4 + C ϱk kH4 + Θk kH4ð Þ Θk kH4

Á ∇ϱk kH3 + ∇Θk kH3ð Þ ∇Θk kH4 :

ð32Þ

Therefore,

I17 ≤ C ϱ,Θð Þk kH4 + ϱ,Θð Þk k2H4
À Á

∇ϱk k2H3 + ∇Θk k2H4
À Á

:

ð33Þ

Plugging these estimates into (26) and taking the sum
over 1 ≤ jαj ≤ 3, (25) follows, and, thus, Lemma 6 is proved.

At last, we give the estimate of ∇ρ.

Lemma 7. Let ðϱ, u,ΘÞ be the smooth solution to (8)–(12).
Then for all 0 ≤ t ≤ T with any T > 0, it holds

d
dt

〠
kj j≤3

ð
∇∂kϱ · ∂kudx + λ ∇ϱk k2H3

≤ C ∇uk k2H4 + div uk k2H4 + ∇Θk k2H3

À Á
+ C ϱ, u,Θð Þk kH4 + ϱ, u,Θð Þk k2H4

À Á
∇ ϱ, u,Θð Þk k2H3 :

ð34Þ

Proof. Taking differentiation ∂kðjkj ≤ 3Þ to (9), and carrying
an direct calculation, we get
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ð
∇∂kϱ
��� ���2dx = −

ð
∇∂kϱ · ∂kutdx−

ð
∇∂kϱ∂k u · ∇uð Þdx

−
ð
∇ϱ · ∇∂kΘdx−

ð
∇∂kϱ · ∂k Θ − ϱ

1 + ϱ

� �
∇ϱ

� �
dx

−
ð
∇∂kϱ · ∂k 1 +Θð Þ3

1 + ϱ
∇Θ

 !
+
ð
∇∂kϱ · ∂k Δu

1 + ϱ

� �
dx

+
ð
2∇∂kϱ · ∂k ∇div u

1 + ϱ

� �
dx ≡ 〠

7

j=1
I j:

ð35Þ

For I1, applying (8), we have

I1 = −
d
dt

ð
∇∂kϱ · ∂kudx+

ð
∂k div u∂k 1 + ϱð Þ div u+∇ϱ · u½ �dx

≤ −
d
dt

ð
∇∂kϱ · ∂kudx + C ∇uk k2H3 + C ϱk kH4 ∇uk k2H3 :

ð36Þ

Using Hölder, Soblev, and Young’s inequalities and (18),
we obtain

I2 ≤ C ϱk kH4 ∇uk k2H3 ,

I3 ≤ ε ∇∂kϱ
 2 + Cε ∇Θk k2H3 ,

I4 ≤ C ϱk kH4 ∇ϱk kH3 ∇ϱk kH2 + ∇Θk kH2ð Þ
+ C ϱk k2H4 ∇ϱk kH2 ∇Θk kH2 ,

I5 ≤ C ϱk kH4 ∇Θk kH3 ∇ϱk kH2 + ∇Θk kH2ð Þ
+ C ϱk kH4 Θk kH4 ∇ϱk kH2 + ∇Θk kH2ð Þ2

+ ε ∇∂kϱ
 2 + Cε ∇Θk k2H3 ,

I6 + I7 ≤ C ϱk kH4 ∇ϱk kH3 ∇uk kH4 + C ∇∂kϱ
  ∇uk kH4

+ C ∇∂kϱ
  div uk kH4 ≤ ε ∇∂kϱ

 2
+ Cε ∇uk k2H4 + div uk k2H4

À Á
+ C ϱk kH4 ∇ϱk kH3 ∇uk kH3 :

ð37Þ

Putting these estimates into (35) and taking the sum over
jαj ≤ 3 gives (34), Lemma 7 is proved.

2.2. Global Existence. In this subsection, we will show that
there exists a unique global-in-time solution to the problem
Equations (8)–(12). Firstly, define a total temporal energy
functional EðtÞ and corresponding dissipation rate func-
tional DðtÞ by

E tð Þ = ϱk k2 + uk k2 +
ffiffiffi
6

p
Θ

 2
+ 〠

1≤ kj j≤4
∂kϱ
 2 + ∂ku

 2 + ffiffiffi
6

p
∂kΘ

 2� �
+ τ1 〠

kj j≤3

ð
∇∂kϱ · ∂kudx,

D tð Þ = ∇ϱk k2H3 + ∇ u,Θð Þk k2H4 + div uk k2H4 ,

ð38Þ

where 0 < τ1 ≪ 1 are constant. Then, it follows from (18)
that

E tð Þ ~ ϱ, u,Θð Þ tð Þk k2H4 : ð39Þ

Now, the sum of Equations (20), (25), and (34) τ1 ×
gives

d
dt

E tð Þ + λD tð Þ ≤ C E1/2 tð Þ +E tð ÞÂ Ã
D tð Þ, ð40Þ

for all 0 ≤ t < T . From Equation (18), the time integration of
Equation (40) yields

E tð Þ + λ
ðt
0
D sð Þds ≤E 0ð Þ, ð41Þ

for all 0 ≤ t < T . Besides, Equation (18) can be justified by
choosing

E 0ð Þ ~ ϱ0, u0,Θ0ð Þk k2H4 ð42Þ

sufficiently small. So that the a priori estimate is closed. For
brevity, the proof for local existence of smooth solutions is
omitted. By Equation (41) and the result on the local exis-
tence, the standard continuity arguments give the global
existence and uniqueness of solutions to the Cauchy prob-
lem (Equation (8)–(12)). Thus, we complete the proofs of
Theorem 2.

3. Time Decay of Solutions

In this section, so as to obtain the time-decay rates of solu-
tions to the nonlinear system (Equations (8)–(12)), we con-
sider the following Cauchy problem of the linearized system:

ϱt + div u = 0,
ut+∇ϱ + 2∇Θ − Δu − 2∇div u = 0,

Θt +
1
3 div u − 2ΔΘ = 0,

ð43Þ

with initial data

ϱ, u,Θð Þjt=0 = ϱ0, u0,Θ0ð Þ xð Þ, x ∈ℝ3: ð44Þ

For simplicity of later presentation, we denote that UðtÞ
= ðϱðtÞ, uðtÞ,ΘðtÞÞ and U0 = ðϱ0, u0,Θ0Þ, then the solution
to Equations (43) and (44) can be presented as follows:

U tð Þ =Λ tð ÞU0, ð45Þ

whereΛðtÞ is the solution operator of Equations (43) and (44).
With the above preparations, we have the following decay
result.
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Lemma 8. Let 1 ≤ q ≤ 2. For any k, k′ with k′ ≤ k and m =
jk − k′j,

∂kΛ tð ÞU0

 
L2
≤ C 1 + tð Þ−3/2 1/q−1/2ð Þ−m/2 ∂k′U0

 
Lq
+ ∂kU0

 
L2

� �
,

ð46Þ

hold for all t ≥ 0.

Proof. By Fourier, transforming (43) with respect to x, one
has

bϱ t + iξ · û = 0, ð47Þ

ût + iξbϱ + 2iξ bΘ + ξj j2û + 2ξ ξ · ûð Þ = 0, ð48Þ

bΘ t + 2 ξj j2 bΘ + 1
3 iξ · û = 0: ð49Þ

Firstly, one can acquire from the system (47)–(49) that

∂t bϱ , û, ffiffiffi
6

p bΘ� ���� ���2 + ξj j2 ûj j2 + 2 ξ · ûj j2 + 12 ξj j2 bΘ��� ���2 = 0:

ð50Þ

Multiplying (48) by
�
iξbϱ¯ , utilizing integration by parts in

t, and replacing ∂tbϱ by (47), we have

∂t û iξbϱjð Þ + ξj j2 bϱj j2 = ξ · ûj j2 + 3 ξj j2iξ · û�bϱ − 2 ξj j2 bΘ�bϱ: ð51Þ

Then, taking the real part of (51) and utilizing the
Cauchy-Schwarz inequality, one has

∂t Re û iξbϱjð Þ + ξj j2 bϱj j2 ≤ ξ · ûj j2 + ε ξj j2 bϱj j2

+ Cε ξj j2 ξ · ûj j2 + ε ξj j2 bϱj j2 + Cε ξj j2 bΘ��� ���2 ð52Þ

with ε > 0 a small constant. Multiplying it by 1/ð1 + jξj2Þ, we
conclude that there exists λ > 0 such that

∂t Re û iξbϱjð Þ
1 + ξj j2

+ λ ξj j2 bϱj j2
1 + ξj j2

≤ C ξ · ûj j2 +
C ξj j2 bΘ��� ���2
1 + ξj j2

: ð53Þ

Lastly, we define the time-frequency Lyapunov func-
tional as

E Û t, ξð ÞÀ Á
= bρ , û, ffiffiffi

6
p bΘh i��� ���2 + τ2

Re ûjiξbρð Þ
1 + ξj j2

, ð54Þ

where 0 < τ2 ≪ 1 are constant. It is also immediate to verify

that EðÛÞ ~ jÛj2. Moreover, by suitably choosing constant
τ2, the sum of Equations (50) and (53), τ2 × gives

∂tE Û t, ξð ÞÀ Á
+ λ ξj j2
1 + ξj j2

E Û t, ξð ÞÀ Á
≤ 0: ð55Þ

The conclusions of Lemma 8 directly follows from the
above estimate, and the detailed proof is omitted for brevity.

Now, we continue to proof the rate of convergence. First,
define

E1 tð Þ = 〠
1≤ kj j≤4

∂kϱ
 2 + ∂ku

 2 + ffiffiffi
6

p
∂kΘ

 2� �
+ τ1 〠

kj j≤3

ð
∇∂kϱ · ∂kudx,

ð56Þ

D1 tð Þ = 〠
1≤ kj j≤3

∂k∇ϱ
 2 + 〠

1≤ kj j≤4
∂k∇ u,Θð Þ
 2 + 〠

1≤ kj j≤4
∂k div u
 2:

ð57Þ

By using Lemma 4 and similar arguments to those in the
proof of Lemma 5–Lemma 7, we can deduce

d
dtE1 tð Þ + λD1 tð Þ ≤ C E1/2

1 tð Þ +E1 tð ÞÀ Á
D1 tð Þ: ð58Þ

Thus,

d
dtE1 tð Þ + λD1 tð Þ ≤ 0, ð59Þ

if E1ðtÞ is small enough.
On the other hand, by the definitions of E1ðtÞ andD1ðtÞ,

we have

E1 tð Þ ≤ C D1 tð Þ + ∇Uk k2L2
À Á

: ð60Þ

From (59), we have

d
dtE1 tð Þ + λ

C
E1 tð Þ − λ ∇Uk k2L2

� �
≤

d
dtE1 tð Þ + λD1 tð Þ ≤ 0,

ð61Þ

which implies

d
dtE1 tð Þ + λE1 tð Þ ≤ C ∇Uk k2L2 : ð62Þ

Next, we give the estimate of k∇Uk2L2 . For this purpose, we
can rewrite the nonlinear Cauchy problem (Equations
(8)–(12)) as

U tð Þ =Λ tð ÞU0 +
ðt
0
Λ t − sð Þ G1,G2,G3ð Þds ≡ 〠

4

j=1
Ii tð Þ ð63Þ
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with

G1 = −ϱ div u−∇ϱ · u,

G2 = −u · ∇u − Θ − ϱ

1 + ϱ
∇ϱ −

ϱ − 3Θ + 3Θ2 +Θ3À Á
1 + ϱ

∇Θ

−
ϱ

1 + ϱ
Δu −

2ϱ
1 + ϱ

∇div u,

G3 = −
1 + ϱ + 3 1 +Θð Þ3À Á

u · ∇Θ
F ϱ,Θð Þ −

1
3Θ div u

+ 2 − 2F ϱ,Θð Þ +Θ + 3Θ + 3Θ2 +Θ3À Á
ΔΘ

F ϱ,Θð Þ

+ 3 1 +Θð Þ2 ∇Θj j2
F ϱ,Θð Þ + div uð Þ2

F ϱ,Θð Þ + 2D ·D
F ϱ,Θð Þ ,

I1 tð Þ =Λ tð ÞU0,

I2 tð Þ =
ðt
0
Λ t − sð Þ G1, 0, 0ð Þds,

I3 tð Þ =
ðt
0
Λ t − sð Þ 0, G2, 0ð Þds,

I4 tð Þ =
ðt
0
Λ t − sð Þ 0, 0,G3ð Þds:

ð64Þ

Define

E∞ tð Þ = sup
0≤s≤t

1 + sð Þ5/2E1 sð Þ: ð65Þ

One has that from Lemma 8,

∇I1 tð Þk kL2 ≤ C 1 + tð Þ−5/4 ∇U0k kL2 + U0k kL1ð Þ,

∇I2 tð Þk kL2 ≤ C
ðt
0
1 + t − sð Þ−5/4 ∇G1k kL2 + G1k kL1ð Þds

≤ C
ðt
0
1 + t − sð Þ−5/4E1 sð Þds

≤ C
ðt
0
1 + t − sð Þ−5/4 1 + sð Þ−5/2dsE∞ tð Þ

≤ C 1 + tð Þ−5/4E∞ tð Þ,

∇I4 tð Þk kL2 + ∇I5 tð Þk kL2 ≤ C
ðt
0
1 + t − sð Þ−5/4

Á ∇G2k kL2 + ∇G3k kL2 + G2k kL1 + G3k kL1ð Þds

≤ C
ðt
0
1 + t − sð Þ−5/4 E1 sð Þ +E2

1 sð ÞÀ Á
ds

≤ C 1 + tð Þ−5/4 E∞ tð Þ +E2
∞ tð ÞÀ Á

:

ð66Þ

Therefore, it follows that

∇Uk k2L2 ≤ C 1 + tð Þ−5/2 ∇U0k k2L2 + U0k k2L1 +E2
∞ tð Þ +E4

∞ tð ÞÈ É
:

ð67Þ

Then, by Equations (62) and (67) and Gronwall’s inequal-
ity, we obtain

E1 tð Þ ≤ e−λtE1 0ð Þ + C 1 + tð Þ−5/2
Á ∇U0k k2L2 + U0k k2L1 +E2

∞ tð Þ +E4
∞ tð ÞÀ Á

,
ð68Þ

and hence,

E∞ tð Þ ≤ C ∇U0k k2H3 + U0k k2L1 +E2
∞ tð Þ +E4

∞ tð ÞÀ Á
: ð69Þ

Thus, since k∇U0k2H3 + kU0k2L1 can be small enough, one
has

E∞ tð Þ ≤ C ∇U0k k2H3 + U0k k2L1
À Á

, ð70Þ

for all t ≥ 0, that is,

E1 tð Þ ≤ C 1 + tð Þ−5/2 ∇U0k k2H3 + U0k k2L1
À Á

, ð71Þ

which means

∇ ϱ, u,Θð Þk kH3 ≤ C 1 + tð Þ−5/4, ð72Þ

for all t ≥ 0, this obtain Equation (17). We can use the similar
way to prove Equation (16) and omit here. This completes the
proof of Theorem 3.
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