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In this paper, by using the mountain pass theorem and the concentration compactness principle, we prove the existence of a
positive solution for a p-Kirchhoff-type problem with critical Sobolev exponent.

1. Introduction and Main Result

In this article, we study the existence of a positive solution
for the following p-Kirchhoff-type problem:

−Ma,b u Δpu = u p∗−2u + λ u q−2u, inΩ,
u = 0, on∂Ω,

1

where Ω ⊂ℝN is a bounded domain, 1 < p <N , Ma,b u =
a u p r−1 + b, a > 0, b ≥ 0, λ > 0, p < rp < q < p∗, is the
usual norm in W1,p

0 Ω given by u p =
Ω
∇u pdx, and

p∗ = pN/ N − p is the critical Sobolev exponent correspond-
ing to the noncompact embedding of W1,p

0 Ω into Lp∗ Ω .
This problem contains an integral over Ω, and it is no longer
a pointwise identity; therefore, it is often called nonlocal
problem. It is also called nondegenerate if b > 0 and a ≥ 0,
while it is named degenerate if b = 0 and a > 0.

In the past several decades, much attention has been
paid to the Kirchhoff-type problem which is closely related
to the stationary analog of the following equation:

ρ
∂2u
∂t2

−
ρ0
h

+ E
2L

L

0

∂u
∂x

2
dx

∂2u
∂x2

= 0, 2

proposed by Kirchhoff in [1] as an extension of the classical
d’Alembert’s wave equation by considering the effects of the
changes in the length of the strings during the vibrations,
where ρ, ρ0, h, E, and L are constants. Kirchhoff’s model takes
into account the changes in length of the strings produced by
transverse vibrations. These problems also serve to model
other physical phenomena as biological systems where u
describes a process which depends on the average of itself
(for example, population density). The presence of the non-
local term makes the theoretical study of these problems so
difficult; then, they have attracted the attention of many
researchers in particular after the work of Lions [2], where
a functional analysis approach was proposed to attack them.

In the last few years, great attention has been paid to the
study of Kirchhoff problems involving critical nonlinearities.
These problems create many difficulties in applying varia-
tional methods because of the lack of the compactness of
the Sobolev embedding. It is worth mentioning that the first
work on the Kirchhoff-type problem with critical Sobolev
exponent is Alves et al. in [3]. After that, many researchers
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dedicated to the study of several kinds of elliptic Kirchhoff
equations with critical exponent of Sobolev in bounded
domain or in the whole space ℝN ; some interesting studies
can be found in [4–9] and the references therein. More
precisely, Naimen in [8] generalized the results of [10] to
the semilinear Kirchhoff problem:

− b + a
Ω

∇u 2dx Δu = u5 + λf x, u , u > 0 inΩ,

u = 0 on ∂Ω,
3

where Ω ⊂ℝ3 is a bounded domain, f ∈ C Ω ×ℝ,ℝ , and
λ ∈ℝ. Under several conditions on f and λ, he proved the
existence and nonexistence of solutions. For larger dimen-
sional case, Figueiredo in [5] considers the case N ≥ 3 if
λ > 0 is sufficiently large. Matallah et al. in [7] studied the
existence and nonexistence of solutions for the following
p-Kirchhoff problem:

−M u Δpu = u p∗−2u + f x, u , inΩ,
u = 0, on ∂Ω,

4

where M R+ ⟶ R+ is a continuous function satisfying
some extra assumptions and f Ω × R⟶ R is a continu-
ous function satisfying some conditions. Benaissa and
Matallah in [4] discussed the problem

− a
ℝN

∇u pdx + b Δpu = u p∗−2u + λf x  inℝN , 5

where f satisfies some conditions. Very recently, Benchira
et al. in [11] have generalized the results of [12] to the
nonlocal problem (1) with q = p, λ ∈ 0, bλ1 , b > 0, N ≥
p2, a > 0 if r <N/ N − p , and 0 < a < S−r if r =N/ N − p
(S is the best Sobolev constant for the imbedding W1,p

0
Ω ↪Lp

∗
Ω .

Inspired by the above works, especially by [8, 11], we are
devoted to studying the existence of positive solutions for
problem (1) for all λ positive. In our problem, a typical
difficulty occurs in proving the existence of solutions because
of the lack of the compactness of the Sobolev embedding
W1,p

0 Ω ⟶ Lp∗ Ω . Furthermore, in view of the corre-
sponding energy, the interaction between the Kirchhoff-

type perturbation u p r−1 and the critical nonlinearity
Ω

u p∗dx is crucial.
The main result of this paper is the following.

Theorem 1. Assume that a > 0, b ≥ 0, 1 < p <N , and max
rp, N p − 1 / N − p < q < p∗. Then, problem (1) has a
positive solution for all λ > 0.

Remark 2. IfN ≥ p2, thenmax rp, N p − 1 / N − p = rp
In the case where q ≤ rp, it is difficult to show that a Palais-
Smale sequence of the corresponding energy is bounded; in

this case, the authors in [7, 9] used the truncation method
to show the existence of solution under the condition “ suf-
ficiently large.” Our objective in this paper is the existence
of solution for all λ > 0.

Let us simply give a sketch of the Proof of Theorem 1.
The main tool is variational methods; more precisely, by
using the mountain pass theorem [13], we obtain a critical
point of the corresponding energy. The main difficulties
appear in the fact that problem (1) contains the critical
Sobolev exponent; then, the functional energy does not satisfy
the Palais-Smale condition in all range; to overcome the lack of
compactness, we need to determine a good level of the Palais-
Smale condition, and we must verify that the critical value is
contained in the range of this level. This is the key point to
obtain the existence of a mountain pass solution.

This paper is composed of two sections in addition to the
introduction. In Section 2, we give some preliminary results
which we will use later. Section 3 is devoted to the proof of
main result.

2. Preliminary Results

In this paper, we use the following notations: ⟶ resp⇀
denotes strong (resp., weak) convergence, on 1 denotes on
1 ⟶ 0 as n⟶ +∞, BR x0 is the ball centred at x0 and
of radius R, u− =max −u, 0 , and C, C1, C2,⋯, denote var-
ious positive constants. We define the best Sobolev constant
for the imbedding W1,p

0 Ω ↪Lp
∗
Ω as

S≔ inf
u∈W1,p

0 Ω \ 0

u p

Ω
u p∗dx

p/p∗ 6

Recall that the infimum S is attained in ℝN by the func-
tions of the form

uε x ≔ Nε
N − p
p − 1

p−1 N−p /p2

ε + x p/ p−1 p−N /p
, ε > 0

7

Moreover, uε satisfies

ℝN
∇uε

pdx =
ℝN

uε
p∗dx = Sp

∗/ p∗−p 8

Let R be a positive constant and set φ ∈ C∞
0 Ω such

that 0 ≤ φ x ≤ 1 for x ≤ R and φ x ≡ 1 for x ≤ R/2 and

BR 0 ⊂Ω Set vε x = φ x uε x and take zε x = vε x

Ω
vε x p∗dx

−1/p∗
so that

Ω
zε

p∗dx = 1 Then, we have
the well-known estimates as ε⟶ 0:

2 Journal of Function Spaces



zε
p = S +O εN−p/p ,

Ω

zε
qdx =

O ε N−p p−1 /p2 p∗−q if q > N p − 1
N − p

,

O ε N−p /p2 q ln ε if q = N p − 1
N − p

,

O ε N−p /p2 q if q < N p − 1
N − p

9

(See [14, 15]).
The energy function corresponding to problem (1) is

given by

E u = a
rp

u rp + b
p

u p −
1
p∗ Ω

u p∗dx

−
λ

q Ω

u qdx,∀u ∈W1,p
0 Ω

10

Notice that E is well defined in W1,p
0 Ω and belongs to

C1 W1,p
0 Ω ,ℝ . We say that u ∈W1,p

0 Ω \ 0 is a weak
solution of (1), if for any v ∈W1,p

0 Ω there holds

Ma,b u
Ω

∇u p−2∇u∇vdx −
Ω

u p∗−2uvdx − λ
Ω

u q−2uvdx = 0

11

Hence, a critical point of functional E is a weak solution
of problem (1).

Definition 3. Let c ∈ℝ; a sequence un ⊂W1,p
0 Ω is called a

PS c sequence (Palais-Smale sequence at level c) if

E un ⟶ c and E′ un ⟶ 0 as n⟶ +∞ 12

Let c ∈ℝ. We say that E satisfies the Palais-Smale condi-
tion at level c, if any PS c sequence contains a convergent

subsequence in W1,p
0 Ω

By [11], we have the following result.

Lemma 4. Let a > 0, b ≥ 0, r, θ > 1, and y = a/θ Sr 1/ θ−1 .
For y ≥ 0, we consider the function f θ ℝ+ ⟶ℝ∗, given by

f θ y = S−1yθ − aSr−1y − b 13

Then,

(1) when b ≠ 0, the equation f θ y = 0 has a unique
positive solution y0 > y and f θ y ≥ 0 for all y ≥ y0

(2) when b = 0, the equation f θ y = 0 has a unique positive
solution y1 = aSr 1/ θ−1 and f θ y ≥ 0 for all y ≥ y1

3. Proof of Main Result

To prove our main result, we use the mountain pass theo-
rem. First, we will verify that the functional E exhibits the
mountain pass geometry.

Lemma 5. Suppose that a > 0, b ≥ 0, 1 < p <N, and rp < q <
p∗. Then, there exists e ∈W1,p

0 Ω \ 0 and positive numbers
δ1 and ρ1 such that

(a) E u ≥ δ1 > 0, with u = ρ1

(b) e > ρ1 and E e < 0

Proof.

(1) Let u ∈W1,p
0 Ω \ 0 ; by Sobolev and Young inequal-

ities, we have

E u = a
rp

u rp + b
p

u p −
1
p∗ Ω

u p∗dx −
λ

q Ω

u qdx

≥ −
1
p∗

S−p
∗/p u p∗ + a

rp
u rp + b

p
u p −

λ

q
C u q

14

Let ρ = u , from (14), one has

E u ≥
a
rp

ρrp −
1
p∗

S−p
∗/pρp

∗
−
λ

q
Cρq 15

As rp < q < p∗ and a > 0 there exists a sufficiently small
positive numbers ρ1 and δ1 such that

E u ≥ δ1 > 0, with u = ρ1 16

(2) Let u ∈W1,p
0 Ω \ 0 ; as p∗ > rp, it holds that E tu

⟶ −∞ as t⟶ +∞, so we can easily find e ∈W1,p
0

Ω \ 0 with e > ρ1, such that E e < 0. The proof
is complete

We define

Γ = ξ ∈ C 0, 1 ,W1,p
0 Ω , ξ 0 = 0, ξ 1 = e ,

c = inf
ξ∈Γ

max
t∈ 0,1

E ξ t ,
17

where e is taken from Lemma 5.
Now, we prove the following lemma which is important

to ensure the local compactness of PS sequences for E.
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Let y0 and y1 be defined in Lemma 4 and define

C∗ ≔
p∗ − rp
rpp∗

aSryr/ r−1∗ + p∗ − p
pp∗

bSy1/ r−1∗ , 18

with

y∗ =
y0 if b ≠ 0,
y1 if b = 0

19

Lemma 6. Assume that a > 0, b ≥ 0, 1 < p <N , rp < q < p∗,
and un ⊂W1,p

0 Ω is a PS c sequence for E with

c < C∗ 20

Then, un contains a subsequence converging strongly
in W1,p

0 Ω .

Proof. As n⟶∞ and rp < q < p∗, we have

c + on 1 −
1
q
on 1 un = E un −

1
q

E′ un , un

≥ a
q − rp
rpq

un
rp + b

q − p
pq

un
p

21

Then, un is bounded in W1,p
0 Ω . Hence, by the con-

centration compactness principle due to Lions (see [6, 16]),
there exists a subsequence, still denoted by un , such that

∇un
p ⇀ dη ≥ ∇u p +〠

i∈I
ηiδxi ,

un
p∗ ⇀ dγ = u p∗ +〠

i∈I
γiδxi ,

22

where I is an at most countable index set, ηi, γi are nonneg-
ative numbers, and δxi is the Dirac mass at xi. Moreover, by
the Sobolev inequality, we infer that

ηi ≥ Sγp/p
∗

i for all i ∈ I 23

We now claim that I =∅. To this end, by contradiction,
suppose that I ≠∅; then, there exists j ∈ I. For ε > 0, let ϕε,j
be a smooth cut-off function centered at xj such that 0 ≤
ϕε,j ≤ 1,ϕε,j Bε xj

= 1, ϕε,j Ω\B2ε xj
= 0, and ∇ϕε,j x ≤ 2/ε.

Clearly, ϕε,jun is bounded in W1,p
0 Ω . It follows from E′

un ⟶ 0 as n⟶∞ that

0 = lim
ε⟶0

lim
n⟶∞

Ma,b un
Ω

∇un
p−2∇un∇ ϕε,jun dx

−
Ω

un
p∗−2un ϕε,jun dx − λ

Ω

un
q−2un ϕε,jun dx

24

On the one hand, by Hölder’s inequality and (6), we have

Ω

un
qϕε,j dx ≤

B2ε xj

un
qϕε,jdx

≤
B2ε xj

un
p∗dx

q/p∗

B2ε xj

dx

p∗−q /p∗

≤ C un
qεN p∗−q /p∗

25

Since N p∗ − q /p∗ > 0 and un is bounded in
W1,p

0 Ω , then

lim
ε⟶0

lim
n⟶∞ Ω

un
qϕε,j dx = 0 26

Moreover, by using Hölder’s inequality, we find

lim
ε⟶0

lim
n⟶∞ Ω

un ∇un
p−2∇un∇ϕε,jdx

≤ lim
ε⟶0

lim
n⟶∞ Ω

∇un
p p−1 /p un∇ϕε,j dx

≤ lim
ε⟶0

lim
n⟶∞ Ω

∇un
p

p−1 /p

Ω

un
p ∇ϕε,j

p
dx

1/p

≤ C1 limε⟶0 Ω

u p ∇ϕε,j
p
dx

1/p

≤ C1 limε⟶0 B2ε xj

u p∗dx

1/p∗

B2ε xj

∇ϕε,j
pp∗/ p∗−p

dx

p∗−p /pp∗

≤ C1 limε⟶0 B2ε xj

u p∗dx

1/p∗

B2ε xj

∇ϕε,j
N
dx

1/N

≤ C2 limε⟶0 B2ε xj

u p∗dx

1/p∗

= 0

27

So, as un is bounded in W1,p
0 Ω , we deduce that

lim
ε⟶0

lim
n⟶∞

Ma,b un
Ω

un ∇un
p−2∇un∇ϕε,jdx = 0 28

By (22), (26), (28), and Hölder’s inequality, we obtain

0 = lim
ε⟶0

lim
n⟶∞

E′ un , ϕε,jun ≥ b + aηr−1j ηj − γj, 29

that is,

γj ≥ bηj + aηrj 30

Then, by (23), we obtain

γj = 0 or S−1 γj
p∗−p /p∗

− aSr−1 γj
p/p∗ r−1

− b ≥ 0 31
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Now, we assume by contradiction that γj ≠ 0. Set y =
γj

p r−1 /p∗and θ = p∗ − p / p r − 1 ; then by (31), we get

S−1yθ − aSr−1y − b ≥ 0 32

It is clear that θ > 1 thanks to p∗ > rp. So, from (32) and
the definition of f θ in Lemma 4, we get

f θ y = S−1y p∗−p / p r−1 − aSr−1y − b ≥ 0 33

According to Lemma 4, there exist y0 > ap r − 1 /
p∗ − p Sr p r−1 / p∗−rp and y1 = aSr p r−1 / p∗−rp such
that f θ y∗ = 0 and f θ y ≥ 0 if y ≥ y∗ with

y∗ =
y0 if b ≠ 0,
y1 if b = 0,

34

which implies that

S γj
p/p∗

≥ Sy1/ r−1∗ 35

Moreover, using (23), we conclude that

ηj ≥ Sγp/p
∗

j ≥ Sy1/ r−1∗ 36

On the other hand, by the fact p < rp < q < p∗, one can
get

c + on 1 = E un −
1
q

E′ un , un

= b
q − p
qp

un
p + p∗ − q

qp∗ Ω

un
p∗dx + a

q − rp
rqp

un
rp

≥ b
q − p
qp

u p + ηj + p∗ − q
qp∗ Ω

u p∗ + γj

+ a
q − rp
rqp

u p + ηj
r

≥ b
q − p
qp

u p + p∗ − q
qp∗ Ω

u p∗ + a
q − rp
rqp

u rp

+ b
q − p
qp

ηj +
p∗ − q
qp∗

γ j + a
q − rp
rqp

ηrj ,

37

which implies that

c ≥ b
q − p
qp

Sy1/ r−1∗ + p∗ − q
qp∗

Sy1/ r−1∗
p∗/p

S−p
∗/p + a

q − rp
rqp

Sy1/ r−1∗
r

≥ a
p∗ − rp
rpp∗

Sy1/ r−1∗
r
+ b

p∗ − p
pp∗

Sy1/ r−1∗ − a
p∗ − rp
rpp∗

Sy1/ r−1∗
r

− b
p∗ − p
pp∗

Sy1/ r−1∗ + b
q − p
qp

Sy1/ r−1∗

+ p∗ − q
qp∗

Sy1/ r−1∗
p∗/p

S−p
∗/p + a

q − rp
rqp

Sy1/ r−1∗
r

≥ a
p∗ − rp
rpp∗

Sy1/ r−1∗
r
+ b

p∗ − p
pp∗

Sy1/ r−1∗

+ p∗ − q
qp∗

Sy1/ r−1∗
p∗/p

S−p
∗/p+−a p

∗ − q
qp∗

Sy1/ r−1∗
r
− b

p∗ − q
qp∗

Sy1/ r−1∗

≥ a
p∗ − rp
rpp∗

Sryr/ r−1∗ + b
p∗ − p
pp∗

Sy1/ r−1∗

+ p∗ − q
qp∗

Sy1/ r−1∗ S−1y p∗−p / p r−1
∗ − aSr−1y∗ − b

= C∗ + p∗ − q
qp∗

Sy1/ r−1∗ f θ y∗ = C∗

38

This is a contradiction. Hence, I is empty and so

Ω

un
p∗dx⟶

Ω

u p∗dx 39

On the other hand, we have

E′ un , un =Ma,b u un
p

−
Ω

un
p∗dx − λ

Ω

un
qdx = on 1 ,

40

E′ un , v =Ma,b u
Ω

∇un
p−2∇un∇vdx

−
Ω

un
p∗−2unvdx − λ

Ω

un
q−2unvdx = on 1 ,

41

for any v ∈W1,p
0 Ω . Set l = lim un as n⟶ +∞; then,

from (40) and (41), we deduce that

alp r−1 + b lp −
Ω

u p∗dx − λ
Ω

u qdx = 0, 42

alp r−1 + b
Ω

∇u p−2∇u∇vdx

−
Ω

u p∗−2uvdx − λ
Ω

u q−2uvdx = 0
43

Taking the test function v = u in (43), we get

alp r−1 + b u p −
Ω

u p∗dx − λ
Ω

u qdx = 0 44

Therefore, the equalities (42) and (44) imply that u = l.
Consequently, un converges strongly in W1,p

0 Ω , which is
the desired result.
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The energy functional E satisfies the Palais-Smale condi-
tion at level c for any c < C∗. So, the existence of the solution
follows immediately from the following lemma.

Lemma 7. Let a > 0, b ≥ 0, 1 < p <N , and

max rp, N p − 1
N − p

< q < p∗ 45

Then,

sup
t≥0

E tzε < C∗ 46

Proof. We define the functions g and h such that

g t = E tzε = a
rp

trp zε
rp + b

p
tp zε

p −
1
p∗

tp
∗
−
λ

q
tq

Ω

zε
qdx,

h t = a
rp

trp zε
rp + b

p
tp zε

p −
1
p∗

S−p
∗/p zε

p∗ tp
∗

47

Then,

g t = h t −
tp

∗

p∗
1 − S−p

∗/p zε
p∗ − λ

tq

q Ω

zε
qdx 48

Note that lim
t⟶+∞

g t = −∞ and g t > 0 when t is close

to 0, so sup
t≥0

g t is attained for some Tε > 0. Furthermore,

from g′ Tε = 0, it follows that

−Tp∗−1
ε + aTrp−1

ε zε
rp + bTp−1

ε zε
p = λTq−1

ε
Ω

zε
qdx,

49

−λTq−1
ε

Ω

zε
qdx + aTrp−1

ε zε
rp + bTp−1

ε zε
p = Tp∗−1

ε

50

By multiplying the equation in (49) by T1−p
ε , we obtain

−Tp∗−p
ε + aTp r−1

ε zε
rp + b zε

p > 0 51

Easy computations show that

Tε ≤
ap r − 1
p∗ − p

zε
rp

1/ p∗−rp
52

By applying (9), we have for ε small enough

Tε ≤
ap r − 1
p∗ − p

Sr
1/ p∗−rp

≕ τ0 53

On the other hand, we multiply the equation in (50) by
T1−rp
ε and by recalling (53), we obtain

Tp∗−rp
ε ≥ a zε

rp − λTq−rp
ε

Ω

zε
qdx

≥ a zε
rp − λ τ0

q−rp

Ω

zε
qdx

54

By applying (9), we have for ε small enough

Tε ≥ aSr 1/ p∗−rp ≕ τ1 55

Now, we estimate g Tε .
It follows from h′ t = 0 that

−S−p
∗/p zε

p∗ tp
∗−1 + atrp−1 zε

rp + btp−1 zε
p = 0, 56

that is,

− S−p
∗/p zε

p∗−ptp
∗−p − atp r−1 zε

p r−1 − b = 0 57

Set

y = tp r−1 S1−r zε
p r−1 , 58

and θ = p∗ − p / p r − 1 As θ > 1, then by (57), we get

− S−1yθ − aSr−1y − b = −f θ y = 0, 59

which implies from Lemma 4 that f θ y∗ = 0 with y∗ defined
in (34). Therefore, h′ t∗ = 0, where

t∗ = S1/p zε
−1 y∗

1/ p r−1 60

As f θ y is concave, then h′ t is convex and so

max
t≥0

h t = h t∗ = −
1
p∗

S−p
∗/p zε

p∗ tp
∗

∗ + a
rp

zε
rptrp∗ + b

p
zε

ptp∗

61

Since h′ t∗ = 0, one has

S−p
∗/p zε

p∗ tp
∗

∗ = a zε
rptrp∗ + b zε

ptp∗ 62

So, we deduce that

max
t≥0

h t = −
1
p∗

a zε
rptrp∗ + b zε

ptp∗ + a
rp

zε
rptrp∗ + b

p
zε

ptp∗

= a
1
rp

−
1
p∗

trp∗ zε
rp + b

1
p
−

1
p∗

tp∗ zε
p

= a
1
rp

−
1
p∗

Sryr/ r−1∗ + b
1
p
−

1
p∗

Sy1/ r−1∗ = C∗

63
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Consequently, by (9) and as q > N p − 1 / N − p ,
we have

sup
t≥0

E tzε = g Tε = h Tε + 1
p∗

S−p
∗/p zε

p∗ − 1 Tp∗
ε −

λ

q
Tq
ε

Ω

zε
qdx

≤ C∗ + 1
p∗

S−p
∗/p zε

p∗ − 1 Tp∗
ε −

λ

q
Tq
ε

Ω

zε
qdx

≤ C∗ + 1
p∗

O ε N−p /p τ1
p∗ −

λ

q
τ0

qO ε N−p p−1 /p2 p∗−q

≤ C∗ +O ε N−p /p −O ε N−p p−1 /p2 p∗−q
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Taking ε small enough, we obtain supt≥0E tzε < C∗.
Thus, the proof of this lemma is completed.

Now, we can proof the existence of a mountain pass-type
solution.

Proof of Theorem 1. Applying Lemma 5, we get that E pos-
sesses a mountain pass geometry. Then, from the mountain
pass theorem [13], there exists a PS c sequences un ⊂
W1,p

0 Ω of E. According to Lemmas 6 and 7, un has a
subsequence (still denoted by un ) such that un ⟶ u in
W1,p

0 Ω . Hence, u is a critical point of E and therefore a
solution of (1).

Now, we show that u > 0. To obtain a contradiction
assume that u = u−. We have

0 = E′ u , u− = a u p r−1 + b
Ω

∇u p−2∇u∇u−dx

−
Ω

u p∗−2uu−dx − λ
Ω

u q−2uu−dx

≥ a u p r−1 + b u− p +
Ω

u p∗dx + λ
Ω

u qdx ≥ b u− p
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Then, u− = 0. By the strong maximum principle [17], one
has u > 0. Theorem 1 can be concluded.
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