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This paper is aimed at proving the existence and uniqueness of a common fixed point for a pair of ω − ψ-interpolative Hardy-
Rogers-Suzuki-type contractions in the context of quasipartial b-metric space. Thus, several results in literature such as Hardy
and Rogers, Suzuki, and others have been generalized in this work. We also offer a demonstrative example and an application
of fractional differential equations to validate the findings.

1. Introduction and Preliminaries

Fixed-point theory is one of the fascinating research areas in
pure mathematics, which has many applications in both
pure and applied mathematics. Picard presented an iterative
procedure for the solution of a functional equation first time
in his research paper. This notion was later developed into
an abstract framework by the Polish mathematician Stephan
Banach [1] who presented a powerful tool known as the
Banach contraction principle to determine the fixed point
of mapping in complete metric space. It states as follows:

Theorem 1 (see [1]). Let ðM, dÞ be a complete metric space
and let f : M⟶M be a contraction; that is, there exists a
number k ∈ ½0, 1Þ such that for all u, v ∈M,

d f u, f vð Þ ≤ kd u, vð Þ: ð1Þ

Then, f has a unique fixed point w in M:
By altering the contraction conditions, maps, and other

conditions, several researchers have generalized the Banach
contraction principle.

The Banach contraction principle needs continuity of
the map involved in the contraction condition. In 1968,
Kannan [2] relaxed the continuity condition and introduced
a new fixed-point theorem with a new contraction condition
as follows:

Theorem 2. Let ðM, dÞ be a complete metric space. A map-
ping T : M⟶M is said to be a Kannan contraction if there
exists λ ∈ ½0, 1/2Þ such that

d Tx, Tyð Þ ≤ λ d x, Txð Þ + d y, Tyð Þ½ �, ð2Þ

for all x, y ∈ X \ FixðTÞ: Then, T possesses a unique fixed
point.

In 2018, Karapinar first established the interpolative
Kannan-type contraction in his paper [3] as follows:

Definition 3. Let ðM, dÞ be ametric space.We say that the self-
mapping T : M⟶M is an interpolative Kannan-type
contraction, if there exists a constant λ ∈ ½0, 1Þ and α ∈ ð0, 1Þ

Hindawi
Journal of Function Spaces
Volume 2023, Article ID 3911534, 12 pages
https://doi.org/10.1155/2023/3911534

https://orcid.org/0000-0003-2121-6428
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/3911534


such that

d Tx, Tyð Þ ≤ λ d x, Txð Þ½ �α d y, Tyð Þ½ �1−α, ð3Þ

for all x, y ∈ X with x ≠ Tx:

Karapinar et al. [4] proved some results in the setting of
ðα, β, ψ, ϕÞ -interpolative contractions. Again in 2021, Khan
et al. [5] proved some fixed-point results on the interpolative
ðϕ, ψÞ-type Z-contraction. For more results on interpolative-
type contractions, one can see [6–8] and the references
therein.

Following the results due to Karapinar et al. [9], Gaba
and Karapinar [10] introduced a new approach to the inter-
polative contraction as follows:

Definition 4 (see [10]). Let ðM, dÞ be a metric space and f
: M⟶M be a self-map. We shall call T a relaxed ðλ, α, βÞ
-interpolative Kannan contraction, if there exists 0 ≤ λ, α, β
such that

d f u, f vð Þ ≤ λd u, f uð Þαd v, f vð Þ:β: ð4Þ

Gaba and Karapinar [10] introduced the following defini-
tion of optimal interpolative triplet as follows:

Definition 5 (see [10]). Let ðM, dÞ be a metric space and
f : M⟶M be a relaxed ðλ, α, βÞ-interpolative Kannan
contraction. The triplet ðλ, α, βÞ will be called an “optimal
interpolative triplet” if for any ϵ > 0, the inequality (4) fails
for at least one of the triplet ðλ − ϵ, α, βÞ, ðλ, α − ϵ, βÞ,
and ðλ, α, β − ϵÞ:

In view of the above definitions, Gaba and Karapinar
[10] proved the following theorem:

Theorem 6 (see [10]). Let ðM, dÞ be a complete metric space,
and f : M⟶M be a ðλ, α, βÞ-interpolative Kannan con-
traction with λ ∈ ½0, 1Þ, α, β ∈ ð0, 1Þ so that α + β < 1: Then,
f has a fixed point in M:

In 1973, Hardy and Rogers [11] introduced a natural
modification of the Banach contraction principle.

Theorem 7. Let ðM, dÞ be a complete metric space. The map-
ping f : M⟶M is called an interpolative Hardy-Rogers
type of contraction if there exist positive real numbers α, β,
γ, δ > 0, with β + α + γ + δ < 1 such that

d f u, f vð Þ ≤ αd u, vð Þ + βd u, f uð Þ + γd v, f vð Þ½ �
+ δ

1
2

d u, f vð Þ + d v, f uð Þð Þ
� �

,
ð5Þ

for each u, v ∈M \ Fixð f Þ. Then, a mapping f has a unique
fixed point in M.

Later in 2018, Karapinar et al. [12] introduced the fol-
lowing notion of interpolative Hardy-Rogers-type
contraction.

Theorem 8 (see [12]). Let ðM, dÞ be a complete metric space.
The mapping f : M⟶M is called an interpolative Hardy-
Rogers type of contraction if there exist λ ∈ ð0, 1Þ and positive
reals α, β, γ > 0, with β + α + γ < 1 such that

for each u, v ∈M \ Fixð f Þ. Then, a mapping f has a unique
fixed point in M.

Several other versions of this type of results were proven
by researchers. Some of them can be seen in [9, 13–15].

In 2008, Suzuki [16] introduced a generalization of the
Banach contraction principle and characterizes the metric
completeness of the underlying space. The generalized result
is as follows:

Theorem 9 (see [16]). Let ðM, dÞ be a complete metric space
and let f : M⟶M be a mapping such that for all u, v ∈M,

Φ kð Þd u, f uð Þ ≤ d u, vð Þ⇒ d f u, f vð Þ ⩽ kd u, vð Þ, ð7Þ

where Φ : ½0, 1Þ⟶ ð1/2, 1Þ is a nonincreasing function

defined by

Φ kð Þ =

1 if 0 ≤ k ≤

ffiffiffi
5

p
− 1

� �
2

,

1 − kð Þk−2 if

ffiffiffi
5

p
− 1

� �
2

≤ k ≤ 2−1/2,

1 + kð Þ−1 if 2−1/2 ≤ k < 1:

8>>>>>>>><
>>>>>>>>:

ð8Þ

Then, there exists a unique fixed-point w ∈M. A mapping
f satisfying (7) is called as the Suzuki contraction.

Example 10 (see [16]). Let M = fð1, 1Þ, ð4, 1Þ, ð1, 4Þ, ð4, 5Þ, ð
5, 4Þg with a metric d be defined by

d u1, u2ð Þ, v1, v2ð Þð Þ = u1 − v1j j + u2 − v2j j: ð9Þ

d f u, f vð Þ ≤ λ d u, vð Þ½ �β: d u, f uð Þ½ �α: d v, f vð Þ½ �γ: 1
2 d u, f vð Þ + d v, f uð Þð Þ
� �1−α−β−γ !

, ð6Þ
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Define a mapping

f u1, u2ð Þ =
u1, 1ð Þ if u1 ≥ u2,
1, u2ð Þ if u1 > u2:

(
ð10Þ

Then, the map f satisfies all the hypotheses of Theo-
rem 9, and ð1, 1Þ is the unique fixed point of f . However,
for u = ð4, 5Þ and v = ð5, 4Þ, dð f u, f vÞ = 6 > 2 = dðu, vÞ:
Thus, f does not satisfy the assumptions in Theorem 9
for any k ∈ ½0, 1Þ.

In 2021, Yeşilkaya [17] generalized the Banach contrac-
tion principle to ðλ, α, βÞ-interpolative Kannan contraction
as follows:

Definition 11 (see [17]). Let ðM, dÞ be a metric space. The
mapping f : M⟶M is called an ω − ϕ interpolative
Hardy-Rogers contraction of the Suzuki type. If there exist
ψ ∈Ψ, ω : M ×M⟶ ½0,∞Þ, and positive reals α, β, γ > 0,
with α + β + γ < 1, such that

where Ψ is the set of all nondecreasing self-mappings ψ on
½0,∞Þ such that ∑∞

n=1ψ
nðtÞ <∞ for all t > 0.

Similar results can be seen in [6, 7] and the references
therein.

In 2012, Wardowski [18] generalized the Banach con-
traction principle into F-contraction mapping principle as
follows:

Definition 12 (see [18]). Let ðM, dÞ be a metric space. A
mapping f : M⟶M is called an F-contraction if there
exist τ > 0 and F ∈F such that

τ + F d f u, f vð Þð Þ ⩽ F d u, vð Þð Þ, ð12Þ

holds for any u, v ∈M with dð f u, f vÞ > 0, where F is the set
of all functions F : R+ ⟶ R satisfying the following
conditions:

(F1) F is strictly increasing: u < v⇒ FðuÞ < FðvÞ,
(F2) For each sequence fαngn∈N in R+, limn⟶∞FðαnÞ

= −∞,
(F3) There exists k ∈ ð0, 1Þ such that limα⟶∞αkFðαÞ = 0.

We denote by F the set of all functions satisfying the
conditions ðF1Þ and ðF2Þ:

Example 13 (see [18]). The following F : ð0,+∞Þ are the ele-
ments of F

(1) Fθ = θ,
(2) Fθ = lnθ + θ,

(3) Fθ = −1/
ffiffiffi
θ

p
,

(4) Fθ = ln ðθ2 + θÞ:

In 2013, Salimi et al. [19] and Hussain et al. [20] modi-
fied the notions of α − ϕ-contractive and α-admissible map-
pings and established certain fixed-point theorem as given
below:

Definition 14 (see [19]). Let f be a self-mapping on M and
α, η : M ×M⟶ ½0,+∞Þ be two functions. We say that T
is an α-admissible mapping with respect to η if u, v ∈M,

α u, vð Þ ≥ η u, vð Þ⇒ α f u, f vð Þ ≥ η f u, f vð Þ: ð13Þ

Remark 15. It should be noted that Definition 14 reduces to
α-admissible mapping definition due to Samet et al. [21] if
we assume that αðu, vÞ = 1. Furthermore, if we suppose that
ηðu, vÞ = 1, we may argue that f is an admissible η-sub
admissible mapping.

Note that a self-map f can be ω-orbital admissible as
stated in the definition below:

Definition 16 (see [11]). Let f be a self-map defined on M,
and ω : M ×M⟶ ½0,∞Þ be a function. f is said to be an
ω-orbital admissible if for all u ∈M, we have

ω u, f uð Þ ≥ 1⇒ ω u, f 2u
À Á

≥ 1: ð14Þ

Gopal et al. [22] established the idea of α-type F-con-
tractions and α-type F-weak contractions by combining
the concepts of α-admissible mappings with F-contractions
and F-weak contractions:

Definition 17 (see [22]). Let ðM, dÞ be a metric space and g
: M⟶M be a mapping. Suppose α : M ×M⟶ f−∞g ∪
ð0,∞Þ be a function. The function g is said to be an α-type
F-contraction if there exists τ > 0 such that for all u, v ∈M,

d f u, f vð Þ > 0⇒ τ + α u, vð ÞF d gu, gvð Þð Þ ≤ F d u, vð Þð Þ: ð15Þ

1
2 d u, f uð Þ ≤ d u, vð Þ⇒ ω u, vð Þd f u, f vð Þ ≤ ψ d u, vð Þ½ �β: d u, f uð Þ½ �α: d v, f vð Þ½ �γ: 1

2 d u, f vð Þ + d v, f uð Þð Þ
� �1−α−β−γ( )

, ð11Þ

3Journal of Function Spaces



In 2019, Dey et al. [23] introduced the notion of general-
ized α-F-contraction mapping as follows:

Theorem 18 (see [23]). Let ðM, dÞ be a metric space and g
: M⟶M be a mapping. Let α : M ×M⟶ ½0,∞Þ be a
function and F ∈F: The function g is said to be a modified
generalized α − F-contraction mapping if there exists τ > 0

such that for all u, v ∈M,

d gu, gvð Þ > 0⇒ τ + α u, vð ÞF d gu, gvð Þð Þ ≤ F Ng u,vð Þ
� �

,

ð16Þ

where

Later, Wangwe and Kumar [24] proved results for α − F
-type contractions. One can see more results in [25–28] and
the references therein.

F − contraction mapping of Hardy-Rogers type was
introduced by Cosentino and Vetro [29] as follows:

Definition 19 (see [29]). Let ðM, dÞ be a metric space. A self-
mapping f on M is called an F-contraction of Hardy-Rogers
type if there exists F ∈F and τ ∈ S such that

τ d u, vð Þ + F d f u, f vð Þð Þð Þ ≤ F αd u, vð Þ + βd u, f uð Þ½
+ γd v, f vð Þ + δd u, f vð Þ + Ld v, f uð Þ�, ð18Þ

for all u, v ∈M with f u ≠ f v where α, β, γ, δ, L ∈ ½0,+∞Þ,

α + β + γ + 2δ = 1: ð19Þ

Moreover, f is said to be a F-contraction of Suzuki-
Hardy-Rogers type [30] if contraction Condition (18) holds
for all u, v ∈M with f u ≠ f v and dðu, f uÞ/2 < dðu, vÞ:

Many researchers generalized the concept of metric
space. The concept of b-metric space was first introduced
by Bakhtin in 1989. By adding a variable s ≥ 1 to the defini-
tion of metric space, the triangle inequality in this concept
was relaxed as follows:

Definition 20 (see [31]). A b-metric on a nonempty setM is a
function d : M ×M⟶ ½0,∞Þ, such that for all u, v,w ∈M
and for some real number s ≥ 1, it satisfies the following:

(i) if dðu, vÞ = 0, then u = v,

(ii) dðu, vÞ = dðv, uÞ,
(iii) dðu, vÞ ⩽ s½dðu,wÞ + dðw, vÞ�,

then, a pair ðM, dÞ is called b-metric space.

In 2021, Pauline and Kumar [32] presented an extension
of the fixed-point theorem for T-Hardy-Rodgers contraction

mappings in b-metric space. Czerwick [33] proved the exis-
tence of fixed point in b-metric space as follows:

Theorem 21 (see [33]). Let ν be a topological space and let
ðM, dÞ be a complete b-metric space. Let f : M⟶M be con-
tinuous and satisfy for each w ∈ ν

d f u,wð Þ, f v,wð Þ½ � ≤ αd u, vð Þ, ð20Þ

for all u, v ∈M, where 0 < α < 1. Then for each w ∈ ν, there
exists a unique fixed-point uðwÞ of f , i.e., f ½uðwÞ,w� = uðwÞ
and the function w⟶ uðwÞ is continuous on ν:

In 1994, Matthews [34] introduced partial metric space
as a result of the failure of metric functions in computer sci-
ence as follows:

Definition 22 (see [34]). Let M ≠∅. A partial metric is a
function p : M ×M⟶ R+satisfying

(i) pðu, vÞ = pðv, uÞ,
(ii) If 0 ⩽ pðu, uÞ = pðu, vÞ = pðv, vÞ, then u = v,

(iii) pðu, vÞ + pðw,wÞ ⩽ pðu,wÞ + pðw, vÞ for all u, v,w
∈M.

Then, a pair ðM, pÞ is called partial metric space. It is
clear that if pðu, vÞ = 0, then u = v; however, if u = v, then p
ðu, vÞ may not be zero.

Remark 23 (see [34]). As partial metrics have a wider range
of topological features and may easily support partial
ordering, partial metrics are more versatile than metric
spaces.

Künzi et al. [35] proposed the idea of partial quasimetric
by eliminating symmetry condition from the notion of par-
tial metric space.

Ng u,vð Þ =max d u, vð Þ, d u, gvð Þ + d v, guð Þ
2 , d g2u, u

À Á
+ d g2u, gv
À Á

2 , d g2u, gu
À Á

, d g2u, v
À Á

, d gu, vð Þ + d v, gvð Þ, d g2u, gv
À Á

+ d u, guð Þ
� �

:

ð17Þ
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Definition 24 (see [35]). A quasipartial metric on a non-
empty set M is a function qp : M ×M⟶ ½0,∞Þ such that

(1) qpðu, uÞ ⩽ qpðu, vÞ whenever u, v ∈M,

(2) qpðu, uÞ ⩽ qpðv, uÞ whenever u, v ∈M,

(3) qpðu,wÞ + qpðv, vÞ ⩽ ðqpðu, vÞ + qpðv,wÞÞ, whenever
u, v,w ∈M,

(4) u = v if and only if qpðu, uÞ = qpðu, vÞ = qpðv, vÞ
whenever u, v ∈M.

A pair ðM, qpÞ is called a quasipartial metric space.

In 2015, Gupta and Gautam [36] introduced the notion
of quasipartial b-metric space as follows:

Definition 25 (see [36]). A quasipartial b-metric on a non-
empty set M is a function qpb : M ×M⟶ ½0,∞Þ such that
for some real number s ≥ 1, it satisfies the following:

(i) if qpbðu, uÞ = qpbðu, vÞ = qpbðv, vÞ, then u = v (indis-
tancy implies equality),

(ii) qpbðu, uÞ ⩽ qpbðu, vÞ (small self-distances),

(iii) qpbðu, uÞ ⩽ qpbðv, uÞ (small self-distances)

(iv) qpbðu, vÞ + qpbðw,wÞ ⩽ s½qpbðu,wÞ + qpbðw, vÞ� (tri-
angularity), for all u, v ∈M.

Then, the pair ðM, qpbÞ is quasipartial b-metric on
space M.

Example 26 (see [36]). Let M =ℝ be the set of all real num-
bers. Define qpb : ℝ ×ℝ⟶ℝ+ by

qpb u, vð Þ = u − vj j + uj j: ð21Þ

Then, it is a quasipartial b-metric on M:
Gautam et al. [37, 38] extended several results in quasi-

partial b-metric spaces.
In this article, we establish the existence and uniqueness

of fixed-point theorems for ω − ψ- interpolative Hardy-Rog-
ers-Suzuki-type contraction in a compact quasipartial b
-metric spaces with an application to fractional differential
equations. An example is given to use the results that have
been proven. The outcomes of this study will generalize sev-
eral results obtained in [11, 12, 16–18, 25, 39, 40] and the
references therein.

2. Main Results

To establish our first main results, we will begin by general-
izing Definition 11 and extend it to a compact quasipartial b
-metric space.

Definition 27. Let ðM, qpbÞ be a compact quasipartial b-metric
space. A map f : M⟶M is called ω − ψ-interpolative
Hardy-Rogers contraction of Suzuki type, if there exist ψ ∈Ψ
, where Ψ is the set of all nondecreasing self-mappings ψ on
½0,∞Þ such that ∑∞

n=1ψ
nðtÞ <∞ for all t > 0 and α, β, γ > 0,

with α + β + γ < 1,

We now present our main theorem as follows:

Theorem 28. Let ðM, qpbÞ be a compact quasipartial b
-metric space and f : M⟶M be ω − ψ-interpolative
Hardy-Rogers contraction of Suzuki type. If f is ω-orbital
admissible mappings such that

ω u0, f u0ð Þ ≥ 1, ð23Þ

for some u0 ∈M: Then, a mapping f has a fixed point in M if
at least one of the following properties holds

(i) ðM, qpbÞ is ω-regular
(ii) f is a continuous map

(iii) f 2 is continuous, ωðu, f uÞ ≥ 1 where u ∈ Fixð f 2Þ:

Proof. Let u0 ∈M satisfies

ω u0, f u0ð Þ ≥ 1: ð24Þ

We construct a sequence fung∞n=1 as shown below

u1 = f u0, u2 = f u1,⋯, un = f un−1: ð25Þ

Assume that

un0 = un0+1 ð26Þ

for some n0 ∈ℕ, so that un0 is a fixed point of f . Thus on
contrary, we can suppose that

un ≠ un+1, ð27Þ

1
2 qpb u, f uð Þ < qpb u, vð Þ⇒ ω u, vð Þqpb f u, f vð Þ < ψ qpb u, vð Þ½ �β qpb u, f uð Þ½ �α qpb v, f vð Þ½ �γ 1

2 qpb u, f vð Þ + qpb v, f uð Þð Þ
� �1−α−β−γ( )

,

∀u, v ∈M \ Fix fð Þ:
ð22Þ
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for each n ∈ℕ ∪ f0g. As f is ω-orbital admissible

ω u0, f u0ð Þ = ω u0, u1ð Þ ≥ 1, ð28Þ

implies that

ω u1, f u1ð Þ = ω u1, u2ð Þ ≥ 1: ð29Þ

Similarly, continuing this process, we get a sequence,

ω un−1, unð Þ ≥ 1: ð30Þ

By substituting u = un−1 and v = f un−1 = un in Definition

27, we obtain

1
2 qpb un−1, f un−1ð Þ = 1

2 qpb un−1, unð Þ < qpb un−1, unð Þ
⇒ ω un−1, unð Þqpb f un−1, f unð Þ
< ψ qpb un−1, unð Þ½ �β qpb un−1, f un−1ð Þ½ �α qpb un, f unð Þ½ �γ
�

Â 1
2 qpb un−1, f unð Þ + qpb un, f un−1ð Þð Þ
� �1−α−β−γ!

= ψ qpb un−1, unð Þ½ �β qpb un−1, unð Þ½ �α qpb un, un+1ð Þ½ �γ
�

Â 1
2 qpb un−1, un+1ð Þ + qpb un, unð Þð Þ
� �1−α−β−γ!

:

ð31Þ

Thus, using ψðtÞ < t for t > 0, we have

Assuming that,

qpb un−1, unð Þ < qpb un, un+1ð Þ, ð33Þ

for all n ∈ℕ, then

1
2 qpb un−1, unð Þ + qpb un, un+1ð Þð Þ ≤ qpb un, un+1ð Þ, ð34Þ

Thus,

qpb un, un+1ð Þ½ �α+β < qpb un−1, unð Þ½ �α+β, ð35Þ

which is a contradiction. Hence, we get ∀n ∈ℕ,

qpb un, un+1ð Þ ≤ qpb un−1, unð Þ: ð36Þ

Then, the positive sequence fqpbðun−1, unÞg is a nonin-
creasing sequence with positive terms, so we attain that there
exists a ≥ 0 such that

lim
n⟶∞

qpb un−1, unð Þ = a: ð37Þ

Accordingly, we get

1
2 qpb un−1, unð Þ + qpb un, un+1ð Þð Þ < qpb un, un+1ð Þ: ð38Þ

Furthermore, using Equation (32),

qpb un, un+1ð Þ½ �1−γ < ψ qpb un−1, unð Þ½ �, ð39Þ

or equivalent

qpb un, un−1ð Þ < ψ qpb un−1, unð Þð Þ: ð40Þ

Hence, by repeating this condition, we can write

qpb un, un+1ð Þ < qpb un−1, unð Þ < ψ2qpb qpb un−2, un−1ð Þð Þ
<⋯ < ψnqpb u0, u1ð Þ:

ð41Þ

Now, we claim that fxng is a Cauchy sequence in ðX, q
pbÞ: Then, we shall use the triangle inequality with Equation
(41) for s ≥ 1 and find that

qpb un, un+lð Þ ≤ s qpb un, un+1ð Þ + qpb un+1, un+2ð Þð
+⋯+qpb un+l−1, un+lð Þ − qpb un+l−1, un+l−1ð ÞÞ,

< ψn qpb u0, u1ð Þ + ψn+1qpb u0, u1ð ÞÀ
+ :: + ψn+l−1qpb u0, u1ð Þ

�
, < 〠

∞

k=1
ψk qpb u0, u1ð Þð Þ:

ð42Þ

Letting n⟶∞ in Equation (42), we find that fung is a
Cauchy sequence in ðM, qpbÞ. Regarding that ðM, qpbÞ is

qpb un, un+1ð Þ < ψ qpb un−1, unð Þ½ �β qpb un−1, unð Þ½ �α qpb un, un+1ð Þ½ �γ 1
2 qpb un−1, un+1ð Þ + qpb un, unð Þð Þ
� �1−α−β−γ !

< qpb un−1, unð Þ½ �β qpb un−1, unð Þ½ �α qpb un, un+1ð Þ½ �γ 1
2 qpb un−1, unð Þ + qpb un, un+1ð Þð Þ
� �1−α−β−γ

:

ð32Þ
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complete, there exists t ∈M such that

lim
n⟶∞

qpb un, tð Þ = 0: ð43Þ

We will show that the point t is a fixed point of f . If
Equation (32) holds, that is, ðM, qpbÞ is ω-regular, then f
ung verify Equation (32), that

ω un, un+1ð Þ ≥ 1: ð44Þ

and ∀n ∈ℕ, we get

ω un, tð Þ ≥ 1: ð45Þ

We assert that

1
2 qpb un, f unð Þ ≤ qpb un, tð Þ, ð46Þ

or

1
2 qpb f un, f f unð Þð Þ ≤ qpb f un, tð Þ, ð47Þ

∀n ∈ℕ: Assuming on the contrary that

1
2 qpb un, f unð Þ > qpb un, tð Þ, ð48Þ

and

1
2 qpb f un, f f unð Þð Þ > qpb f un, tð Þ: ð49Þ

Using triangle inequality for s ≥ 1, we obtain

qpb un, un+1ð Þ = qpb un, f unð Þ ≤ s qpb un, tð Þ + qpb t, f unð Þ − qpb t, tð Þð Þ
< 1
2 qpb un, un+1ð Þ + 1

2 qpb un, un+2ð Þ = qpb un, un+1ð Þ,
ð50Þ

which is a contradiction. Therefore, ∀n ∈ℕ, either

1
2 qpb un, f unð Þ ≤ qpb un, tð Þ, ð51Þ

or

1
2 qpb f un, f f unð Þð Þ ≤ qpb f un, tð Þ, ð52Þ

holds. In case that inequality (46) holds, we get

If Equation (47) holds, we have

Therefore, letting n⟶∞ in Equations (54) and (55),
we get qpbðt, tÞ = 0, that is,

ft = t: ð56Þ

In case that assumption (47) is true, that is the mapping
f is continuous,

t = ft = lim
n⟶∞

f un = lim
n⟶∞

un+1, ð57Þ

qpb un+1, ftð Þ < ω un, tð Þ:qpb f un, ftð Þ < ψ qpb un, tð Þð½ �β qpb un, f unð Þ½ �α qpb t, ftð Þ½ �γ 1
2 qpb un, ftð Þ + qpb t, un+1ð Þð Þ
� �1−α−β−γ !

:

< qpb un, tð Þð½ �β qpb un, un+1ð Þ½ �α qpb t, ftð Þ½ �γ 1
2 qpb un, ftð Þ + qpb t, un+1ð Þð Þ
� �1−α−β−γ

:

ð53Þ

qpb un+2, ftð Þ < ω un+1, tð Þqpb f f unð Þ, ftð ÞÞ < ψ qpb f un, tð Þ½ �β qpb f un, f f unð Þð Þ½ �α qpb t, ftð Þ½ �γ 1
2 qpb f un, ftð Þ + qpb t, f f unð Þð Þð Þ
� �1−α−β−γ !

,

ð54Þ

= ψ qpb un+1, tð Þ½ �β qpb un+1, un+2ð Þ½ �α qpb t, ftð Þ½ �γ 1
2 qpb un+1, ftð Þ + qpb t, f un+2ð Þð Þ
� �1−α−β−γ !

: ð55Þ
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and we want to show that also

ft = t: ð58Þ

Assuming on the contrary that

t ≠ ft: ð59Þ

Since,

1
2 qpb ft, f 2 tð ÞÀ Á

= 1
2 qpb ft, tð Þ < qpb ft, tð Þ, ð60Þ

by Equation (47), we get

which is a contradiction. Consequently,

t = ft, ð62Þ

that is, t is a fixed point of f .

The following corollary is obtained by substituting ω = 1
in Theorem 28.

Corollary 29. Let ðM, qpbÞ be a complete and compact metric
space and f be self-mapping on M, such that

1
2
qpb u, f uð Þ < qpb u, vð Þ, ð63Þ

implies

for each u, v ∈M \ Fixð f Þ, where ψ ∈Ψ and positive real β,
α, γ > 0, with α + β + γ < 1. Then, f has a fixed point in M.

Proof. In Theorem 28, it is sufficient to get

ω u, vð Þ = 1, ð65Þ

for proof.

Further, taking ψðpÞ = pλ, with λ ∈ ½0, 1Þ in Corollary 29,
we obtain the following Corollary.

Corollary 30. Let ðM, qpbÞ be a compact quasipartial b
-metric space and f be a self-mapping on space M such that

1
2
qpb u, f uð Þ < qpb u, vð Þ, ð66Þ

implies that

qpb f u, f vð Þ < λ qpb u, vð Þ½ �β: qpb u, f uð Þ½ �α qpb v, f vð Þ½ �γ

Á 1
2

qpb u, f vð Þ + qpb v, f uð Þð Þ
� �1−α−β−γ

,
ð67Þ

for each u, v ∈M \ Fixð f Þ, where positive reals α, β, γ > 0,
with α + β + γ < 1. Then, f has a fixed point in M.

Remark 31. If we replace the quasipartial b-metric space by
the metric space in Theorem 28, then we get the result due
to Yeşilkaya [17] as a corollary.

Kumar [27] discussed the concept of orbital continuity.
Using this concept, we formulate the following example
which validates the result proved in Theorem 28.

Example 32. Let M = ½0, 2� and

qpb = u − vj j + uj j: ð68Þ

Here, ðM, qpbÞ is a complete and compact quasipartial b
-metric space defined by

f uð Þ =
1
3 if , 0 ≤ u ≤ 1,
u
5 if , 1 < u ≤ 2,

8><
>: ð69Þ

qpb t, ftð Þ < ω t, ftð Þ:qpb f 2t, ft
À Á

< ψ qpb ft, tð Þ½ �β qpb ft, f 2t
À ÁÂ Ãα

qpb t, ftð Þ½ �γ 1
2 qpb ft, ftð Þ + qpb ft, f 2t

À ÁÀ Á� �1−α−β−γ !

< qpb ft, tð Þ½ �β qpb ft, tð Þ½ �α qpb t, ftð Þ½ �γ 1
2 qpb ft, tð Þ
� �1−α−β−γ

< qpb t, ftð Þ,
ð61Þ

qpb f u, f vð Þ < ψ qpb u, vð Þ½ �β qpb u, f uð Þ½ �α qpb v, f vð Þ½ �γ 1
2 qpb u, f vð Þ + qpb v, f uð Þð Þ
� �1−α−β−γ !

, ð64Þ
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and further, let

ω u, vð Þ =
3, if , 0 ≤ u ≤ 1,
1, if , u = 0, and v = 2,
0, otherwise:

8>><
>>: ð70Þ

The mapping f is not continuous but since

f 2 = 1
3 , ð71Þ

we have f 2 is continuous mapping. Let a function ψ ∈Ψ
defined as ψ = t/6 and we choose β = 1/2, α = 1/3, γ = 1/7,
and t = 1. Then, we have to check if Theorem 28 holds.
We have to consider the following cases:

(i) For u, v ∈ ½0, 1�, we have

1
2 qpb u, f uð Þ < qpb u, vð Þ, ð72Þ

implies

(ii) For u = 0 and v = 2, we have

1
2 qpb 0, f 0ð Þ = 1

3 < qpb 0, 2ð Þ = 2, ð74Þ

implies

ω 0, 2ð Þqpb f 0, f 2ð Þ = 2
5 , <

1
6 2½ �1/2À Á 2

5

� �1/3 !
18
5

� �1/7 !
1
2

2
5 + 18

5

� �� �1/42
:

ð75Þ

For all other cases, Theorem 28 holds, since

ω u, vð Þ = 0: ð76Þ

As a result, the assumptions of Theorem 28 are satisfied,
also the mappings f has a fixed point u = 1/3:

3. An Application to Fractional
Differential Equations

Several authors gave solutions of fractional differential equa-
tions using fixed-point theorems. Some of them are worth
noting in this direction [41–45]. In this section, Theorem
28 is used to establish the existence and uniqueness of the
solution of the fractional order differential equation. Here,
we consider the following initial valued problem (IVP) of
the form

Dαu tð Þ = f t, utð Þ,∀t ∈ γ = 0, b½ �, α ∈ 0, 1ð Þ, ð77Þ

u tð Þ = ϕ tð Þ, t ∈ −∞,0ð Þ, ð78Þ
where Dα is the standard Riemann-Liouville fractional

derivative

f : γ × A⟶ℝ, ϕ ∈ A, ϕ 0ð Þ = 0, ð79Þ

and A is called a phase, space, or state space. Consider a
quasipartial b-metric qpb on X given by

qpb u, vð Þ = u − vj j + uj j, ð80Þ

∀u, v ∈M then, it is obvious that ðM, qpbÞ is a compact
quasipartial b-metric space. If u : ð−∞,b�⟶ℝ, and u0 ∈
γ, then for every t ∈ ½0, b�ut is a γ-valued continuous func-
tion on ½0, b�. The space γ is complete by a solution of
problems (77) and (78); we mean a space Ω = fu : ð−∞,
b�⟶ℝ : ujð−∞,0Þ∈B and uj½0,b�g: Therefore, a function u ∈
Ω is called a solution of Equations (77) and (78) if it sat-
isfies the equation DsuðtÞ = f ðt, utÞ on γ and condition u
ðtÞ = ϕðtÞ on ð−∞, 0�:

Lemma 33 (see [41]). Let 0 < β < 1 and h : ð0, b�⟶ℝ be
continuous and

lim
t⟶0+

υ tð Þ = υ 0+ð Þ ∈ℝ: ð81Þ

Then, u is a solution of the fractional integral equation

u tð Þ = 1
Γ βð Þ

ðt
0
t − sð Þβ−1υ sð Þds, ð82Þ

if and only if u is a solution of the initial value problem for the
fractional differential equation

Dβu tð Þ = υ tð Þ, t ∈ 0, bð �, u 0ð Þ = 0: ð83Þ

ω u, vð Þqpb f u, f vð Þ < ψ qpb u, vð Þ½ �β qpb u, f uð Þ½ �α qpb v, f vð Þ½ �γ 1
2 qpb u, f vð Þ + qpb v, f uð Þð Þ
� �1−α−β−γ

,
 

∀u, v ∈M
ð73Þ
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Theorem 34. Let f : γ × A⟶ℝ. Assume that there exists
q > 0 such that

f t, uð Þ − f t, vð Þj j + f t, uð Þj j ≤ q u − vj j + uj jð Þ, ð84Þ

for t ∈ γ and ∀u, v ∈ A. If bβkbq/Γðβ + 1Þ = k1λ < 1 where 0
≤ k1 < 1/7 and

kb = sup k tð Þj j: t ∈ 0, b½ �f g, ð85Þ

then, there exists a unique solution for (IVP) (77) and (78) on
the interval ð−∞, b�:

Proof.We first transform the given initial value problem into
a fixed point problem. For this, we consider an operator N
: Ω⟶Ω defined by

N uð Þ tð Þ =
ϕ tð Þ if , t ∈ −∞,0ð �,
1

Γ βð Þ
ð0
1
t − sð Þβ−1 f s, ysð Þ if , t ∈ 0, b½ �:

8><
>:

ð86Þ

Let ρð·Þ: ð−∞,b�⟶ℝ be a function defined by

ρ tð Þ =
ϕ tð Þ if , t ∈ −∞,0ð �,
0 if , t ∈ 0, bð Þ:

(
ð87Þ

Then, ξ0 = ϕ: For each η ∈ Cð½0, b�,ℝÞ with ηð0Þ = 0, we
denote by �η the function defined by

�η tð Þ =
0 if , t ∈ −∞,0ð �,
η tð Þ if , t ∈ 0, bð Þ:

(
ð88Þ

If

u tð Þ = 1
Γ βð Þ

ðt
0
t − sð Þβ−1 f s, usð Þds, ð89Þ

for every 0 ≤ t ≤ b and the function ηð·Þ satisfies

η tð Þ = 1
Γ βð Þ

ðt
0
t − sð Þβ−1 f s, �ηs + ρsð Þds: ð90Þ

Set

C0 = η ∈ C 0, b½ �,ℝð Þ: η0 = 0f g: ð91Þ

Now, let f : C0 ⟶ C0 be ω − ψ Hardy-Rogers-Suzuki
operator be defined by

f η tð Þ = 1
Γ βð Þ

ðt
0
t − sð Þβ−1 f s, �ηs + usð Þ: ð92Þ

The operator N has a fixed-point equivalent to f ; hence,
we have to prove that f has a fixed point. Indeed, if we con-

sider that η, η∗ ∈ C0, then for all t ∈ ½0, b�, we have

f η tð Þ − f η∗ tð Þj j + f η tð Þj j
= 1

Γ βð Þ
ðt
0
t − sð Þβ−1 f s, �ηs + usð Þds

����
−

1
Γ βð Þ

ðt
0
t − sð Þβ−1 f s, �η∗s + us

� �
ds
����

+ 1
Γ αð Þ

ðt
0
t − sð Þα−1 f s, �ηs + usð Þds

����
����

< 1
Γ βð Þ

ðt
0
t − sð Þβ−1 f s, �ηs + usð Þ − f s, �η∗ + ρs

� ���� ���
+ 1
Γ βð Þ

ðt
0
t − sð Þβ−1 f s, �ηs + ρsð Þj j

< 1
Γ βð Þ

ðt
0
t − sð Þβ−1 f s, �ρs + ρsð Þ − f s, �η∗ + ρs

� ���� ����
+ f s, �ηs + usð Þj jÞds

< 1
Γ βð Þ

ðt
0
t − sð Þβ−1 q �ηs − �η∗

�� �� + q �ηsj j
� �

ds

< 1
Γ βð Þ

ðt
0
t − sð Þβ−1qkb sup η sð Þ − η∗ sð Þj j + η sð Þj jð Þ

< kb
Γ βð Þ

ðt
0
t − sð Þβ−1qds η − η∗j j + ηj j:

ð93Þ

Therefore,

f ηð Þ − f η∗ð Þj j + f ηð Þj j < qbβkb
Γ β + 1ð Þ η − η∗j jb

+ ηj jqpb f ηð Þ, f η∗ð Þð Þ < λk1qpb η, η∗ð Þ:
ð94Þ

Suppose ψ ∈Ψ and α, β, γ ≥ 0 with α + β + γ < 1 such
that

1
2 qpb η, f ηð Þ < qpb η, η∗ð Þ ð95Þ

implies that

ω η, η∗ð Þqpb f η, f η∗ð Þ < ψ qpb η, η∗ð Þ½ �β: qpb η, f ηð Þ½ �β qpb η∗, f η∗ð Þ½ �γ
� �

Á 1
2 qpb η, f ηð Þ∗ð Þ + qpb η∗, f ηð Þ
� �

:

ð96Þ

Thus, we deduce that the operator f satisfy all the
hypothesis of Theorem 28. Therefore, f has a unique fixed
point.
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