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In this study, the modification of the concept of exponentially convex function, which is a general version of convex functions,
given on the coordinates, is recalled. With the help of an integral identity which includes the Riemann-Liouville (RL) fractional
integral operator, new Hadamard-type inequalities are proved for exponentially convex functions on the coordinates. Many
special cases of the results are discussed.

1. Introduction

The Hermite-Hadamard (HH) inequality, which has an
important place in the inequality theory, which produces
lower and upper bounds for the mean value of convex func-
tions, has been the focus of attention of researchers working
in this field. This famous inequality is presented as follows.

Let Ψ : I ⊆ℝ⟶ℝ be a convex mapping defined on the
interval I of real numbers and ϵ1 < ϵ2: The following double
inequality

Ψ
ϵ1 + ϵ2

2
� �

≤
1

ϵ2 − ϵ1

ðϵ2
ϵ1

Ψ xð Þdx ≤ Ψ ϵ1ð Þ +Ψ ϵ2ð Þ
2 , ð1Þ

is called HH inequality. In the case of Ψ is concave, one has
the above inequalities in the reversed direction.

Generalizations of the HH inequality for different kinds
of convex functions, new versions, and variants with the
potential to produce new limits have been derived. Essen-
tially, researchers have not only obtained numerous new
findings in the theory of inequality thanks to the concept
of a convex function, which is the basis of this inequality,

but also mentioned the applications of these findings in
numerical integration, statistics, and other branches of
mathematics. Undoubtedly, the contribution of different
kinds of convex function classes to these efforts is incredible.
The exponentially convex function definition, which is a
product of these efforts, is given by Awan et al. as follows.

Definition 1 (See [1]). A function Ψ : I ⊆ℝ⟶ℝ is said to
be exponentially convex function, if

Ψ 1 − ζð Þu1 + ζu2ð Þ ≤ 1 − ζð ÞΨ u1ð Þ
eαu1

+ ζ
Ψ u2ð Þ
eαu2

, ð2Þ

for all u1, u2 ∈ I, ζ ∈ ½0, 1� and α ∈ℝ.

In [2], the author has given some general classes of func-
tions which are called strongly preinvex functions. Several
extensions and generalizations can be found in the literature.
In [3], Dragomir mentioned another important modification
of convexity that causes the field of inequalities to expand
into multidimensional spaces as follows.
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Definition 2. Let us consider the bidimensional interval Δ
= ½ϵ1, ϵ2� × ½ϵ3, ϵ4� in ℝ2 with ϵ1 < ϵ2,ϵ3 < ϵ4: Recall that
the mapping Ψ : Δ⟶ℝ is convex on Δ if the following
inequality holds

Ψ νϵ1 + 1 − νð Þϵ2, νϵ3 + 1 − νð Þϵ4ð Þ ≤ νΨ ϵ1, ϵ2ð Þ + 1 − νð ÞΨ ϵ3, ϵ4ð Þ,
ð3Þ

for all ðϵ1, ϵ2Þ, ðϵ3, ϵ4Þ ∈ Δ and ν ∈ ½0, 1�:

In [3], the expansion of the HH inequality for convex
functions on the coordinates on a rectangle from the plane
ℝ2 has been proved by Dragomir.

Theorem 3. Suppose that Ψ : Δ = ½ϵ1, ϵ2� × ½ϵ3, ϵ4�⟶ℝ is
convex on the coordinates on Δ. Then, the following inequal-
ities are valid;

The above inequalities are sharp.

In [4], Alomari and Darus have extended the concept of
log-convexity to the coordinates and given some inequalities
of Hadamard type for two variables. The modification of
Jensen inequality on the coordinates has been given by
Bakula and Pečarić in [5]. They have also proved several
new variants of Jensen inequality on the coordinates. In
[6], Özdemir et al. have established the notion m − and ðα
,mÞ − convex functions on the coordinates and given several
novel inequalities based on these new definitions. In [7], the
authors have obtained some new integral inequalities for two
variables by using partial differentiable convex and s − con-
vex functions. In the same paper, they have given a new inte-

gral identity to provide the main findings. In [8], the authors
have used a different method and proved some new inequal-
ities of the Pachpatte type for the product of two s − convex
functions on the coordinates.

A new variant of the HH inequality in multidimensional
spaces has been obtained for convex functions by Sarikaya
et al. as follows:

Theorem 4 (See [9]). Let Ψ : Δ ⊂ℝ2 ⟶ℝ be a partial dif-
ferentiable mapping on Δ≔ ½ϵ1, ϵ2� × ½ϵ3, ϵ4� in ℝ2 with ϵ1
< ϵ2 and ϵ3 < ϵ4: If j∂2Ψ/∂ζ∂ξj is a convex function on the
coordinates on Δ, then one has the inequalities:

where

Ψ
ϵ1 + ϵ2

2 , ϵ3 + ϵ4
2

� �
≤
1
2

1
ϵ2 − ϵ1

ðϵ2
ϵ1

Ψ x, ϵ3 + ϵ4
2

� �
du1 +

1
ϵ4 − ϵ3

ðϵ4
ϵ3

Ψ
ϵ1 + ϵ2

2 , u2
� �

du2

" #

≤
1

ϵ2 − ϵ1ð Þ ϵ4 − ϵ3ð Þ
ðϵ2
ϵ1

ðϵ4
ϵ3

Ψ u1, u2ð Þdu1du2

≤
1
4

1
ϵ2 − ϵ1ð Þ

ðϵ2
ϵ1

Ψ u1, ϵ3ð Þdu1 +
1

ϵ2 − ϵ1ð Þ
ðϵ2
ϵ1

Ψ u1, ϵ4ð Þdu1 +
1

ϵ4 − ϵ3ð Þ

" ðϵ4
ϵ3

Ψ ϵ1, u2ð Þdu2 +
1

ϵ4 − ϵ3ð Þ
ðϵ4
ϵ3

Ψ ϵ2, u2ð Þdu2
#

≤
Ψ ϵ1, ϵ3ð Þ +Ψ ϵ1, ϵ4ð Þ +Ψ ϵ2, ϵ3ð Þ +Ψ ϵ2, ϵ4ð Þ

4 :

ð4Þ

Ψ ϵ1, ϵ3ð Þ +Ψ ϵ1, ϵ4ð Þ +Ψ ϵ2, ϵ3ð Þ +Ψ ϵ2, ϵ4ð Þ
4

1
ϵ2 − ϵ1ð Þ ϵ4 − ϵ3ð Þ

ðϵ2
ϵ1

ðϵ4
ϵ3

Ψ x, yð Þdxdy − A

�����
�����

≤
ϵ2 − ϵ1ð Þ ϵ4 − ϵ3ð Þ

16
∂2Ψ/∂ζ∂ξ
�� �� ϵ1, ϵ3ð Þ + ∂2Ψ/∂ζ∂ξ

�� �� ϵ1, ϵ4ð Þ + ∂2Ψ/∂ζ∂ξ
�� �� ϵ2, ϵ3ð Þ + ∂2Ψ/∂ζ∂ξ

�� �� ϵ2, ϵ4ð Þ
4

 !
,

ð5Þ

A = 1
2

1
ϵ2 − ϵ1ð Þ

ðϵ2
ϵ1

Ψ x, ϵ3ð Þ +Ψ x, ϵ4ð Þ½ �dx + 1
ϵ4 − ϵ3ð Þ

ðϵ4
ϵ3

Ψ ϵ1, yð Þdy +Ψ ϵ2, yð Þ½ �dy
" #

: ð6Þ
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Theorem 5. Let Ψ : Δ ⊂ℝ2 ⟶ℝ be a partial differentiable
mapping on Δ≔ ½ϵ1, ϵ2� × ½ϵ3, ϵ4� in ℝ2 with ϵ1 < ϵ2 and ϵ3

< ϵ4: If j∂2Ψ/∂ζ∂ξjq,q > 1, is a convex function on the coordi-
nates on Δ, then the following inequalities are valid:

where

and 1/p + 1/q = 1:

Theorem 6. Let Ψ : Δ ⊂ℝ2 ⟶ℝ be a partial differentia-
ble mapping on Δ≔ ½ϵ1, ϵ2� × ½ϵ3, ϵ4� in ℝ2 with ϵ1 < ϵ2

and ϵ3 < ϵ4: If j∂2Ψ/∂ζ∂ξjq,q ≥ 1, is a convex function
on the coordinates on Δ, then the following inequalities
are valid:

where

A = 1
2

1
ϵ2 − ϵ1ð Þ

ðϵ2
ϵ1

Ψ x, ϵ3ð Þ +Ψ x, ϵ4ð Þ½ �dx
"

+ 1
ϵ4 − ϵ3ð Þ

ðϵ4
ϵ3

Ψ ϵ1, yð Þdy +Ψ ϵ2, yð Þ½ �dy
#
:

ð10Þ

The concept of exponentially convex function on the
coordinates and the associated results are presented as the
following:

Definition 7 (See [10]). Let us consider the interval such as
Δ = ½ϵ1, ϵ2� × ½ϵ3, ϵ4� in ℝ2 with ϵ1 < ϵ2,ϵ3 < ϵ4: The function
Ψ : Δ⟶ℝ is exponentially convex on Δ if

Ψ 1 − ζð Þu1 + ζu3, 1 − ζð Þu2 + ζu4ð Þ ≤ 1 − ζð ÞΨ u1, u2ð Þ
eα u1+u2ð Þ + ζ

Ψ u3, u4ð Þ
eα u3+u4ð Þ ,

ð11Þ

for all ðu1, u2Þ, ðu3, u4Þ ∈ Δ,α ∈ℝ, and ζ ∈ ½0, 1�:

An equivalent definition of the exponentially convex
function definition in coordinates can be done as follows:

Definition 8 (See [10]). The mapping Ψ : Δ⟶ℝ is expo-
nentially convex function on the coordinates on Δ, if

Ψ ζϵ1 + 1 − ζð Þϵ2, ξϵ3 + 1 − ξð Þϵ4ð Þ ≤ ζξ
Ψ ϵ1, ϵ3ð Þ
eα ϵ1+ϵ3ð Þ

+ ζ 1 − ξð ÞΨ ϵ1, ϵ4ð Þ
eα ϵ1+ϵ4ð Þ + 1 − ζð ÞξΨ ϵ2, ϵ3ð Þ

eα ϵ2+ϵ3ð Þ

+ 1 − ζð Þ 1 − ξð ÞΨ ϵ2, ϵ4ð Þ
eα ϵ2+ϵ4ð Þ ,

ð12Þ

for all ðϵ1, ϵ3Þ, ðϵ1, ϵ4Þ, ðϵ2, ϵ3Þ, ðϵ2, ϵ4Þ ∈ Δ, α ∈ℝ, and ζ, ξ
∈ ½0, 1�:

Lemma 9 (See [10]). A function Ψ : Δ⟶ℝ will be called
exponentially convex on the coordinates if the partial map-
pings Ψu2

: ½ϵ1, ϵ2�⟶ℝ,Ψu2
ðuÞ = eαu2Ψðu, u2Þ, and Ψu1

: ½
ϵ3, ϵ4�⟶ℝ,Ψu1

ðvÞ = eαu1Ψðu1, vÞ are exponentially convex
where defined for all u2 ∈ ½ϵ3, ϵ4� and u1 ∈ ½ϵ1, ϵ2�:

Ψ ϵ1, ϵ3ð Þ +Ψ ϵ1, ϵ4ð Þ +Ψ ϵ2, ϵ3ð Þ +Ψ ϵ2, ϵ4ð Þ
4

1
ϵ2 − ϵ1ð Þ ϵ4 − ϵ3ð Þ

ðϵ2
ϵ1

ðϵ4
ϵ3

Ψ x, yð Þdxdy − A

�����
�����

≤
ϵ2 − ϵ1ð Þ ϵ4 − ϵ3ð Þ

4 p + 1ð Þ2/p
∂2Ψ/∂ζ∂ξ
�� ��q ϵ1, ϵ3ð Þ + ∂2Ψ/∂ζ∂ξ

�� ��q ϵ1, ϵ4ð Þ + ∂2Ψ/∂ζ∂ξ
�� ��q ϵ2, ϵ3ð Þ + ∂2Ψ/∂ζ∂ξ

�� ��q ϵ2, ϵ4ð Þ
4

 !1/q

,
ð7Þ

A = 1
2

1
ϵ2 − ϵ1ð Þ

ðϵ2
ϵ1

Ψ x, ϵ3ð Þ +Ψ x, ϵ4ð Þ½ �dx + 1
ϵ4 − ϵ3ð Þ

ðϵ4
ϵ3

Ψ ϵ1, yð Þdy +Ψ ϵ2, yð Þ½ �dy
" #

, ð8Þ

Ψ ϵ1, ϵ3ð Þ +Ψ ϵ1, ϵ4ð Þ +Ψ ϵ2, ϵ3ð Þ +Ψ ϵ2, ϵ4ð Þ
4

1
ϵ2 − ϵ1ð Þ ϵ4 − ϵ3ð Þ

ðϵ2
ϵ1

ðϵ4
ϵ3

Ψ x, yð Þdxdy − A

�����
�����

≤
ϵ2 − ϵ1ð Þ ϵ4 − ϵ3ð Þ

16
∂2Ψ/∂ζ∂ξ
�� ��q ϵ1, ϵ3ð Þ + ∂2Ψ/∂ζ∂ξ

�� ��q ϵ1, ϵ4ð Þ + ∂2Ψ/∂ζ∂ξ
�� ��q ϵ2, ϵ3ð Þ + ∂2Ψ/∂ζ∂ξ

�� ��q ϵ2, ϵ4ð Þ
4

 !1/q

,
ð9Þ
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Based on the definition of exponentially convex func-
tions on the coordinates the following HH-type inequality
is valid:

Theorem 10 (See [10]). Let Ψ : Δ = ½ϵ1, ϵ2� × ½ϵ3, ϵ4�⟶ℝ
be partial differentiable mapping on Δ = ½ϵ1, ϵ2� × ½ϵ3, ϵ4�,
and Ψ ∈ LðΔÞ,α ∈ℝ: If Ψ is exponentially convex function
on the coordinates on Δ, then one has

1
ϵ2 − ϵ1ð Þ ϵ4 − ϵ3ð Þ

ðϵ2
ϵ1

ðϵ4
ϵ3

Ψ x, yð Þdxdy

≤
1
4

Ψ ϵ1, ϵ3ð Þ
eα ϵ1+ϵ3ð Þ + Ψ ϵ1, ϵ4ð Þ

eα ϵ1+ϵ4ð Þ + Ψ ϵ2, ϵ3ð Þ
eα ϵ2+ϵ3ð Þ + Ψ ϵ2, ϵ4ð Þ

eα ϵ2+ϵ4ð Þ

� �
:

ð13Þ

In the field of inequality theory, numerous new results
have been produced on the concept of convexity with the help
of classical derivatives and integral operators. However, frac-
tional analysis, which has rapidly increased its influence in
mathematics and many applied sciences, has also become very
popular in the field of inequalities in recent years. Fractional
derivative and integral operator, which differ in terms of their
kernel structures and offer new approaches to many problems
with these differences, are the only reason for the rapid devel-
opment of fractional analysis. Because researchers have made
comparisons by examining each new operator in terms of
innovation and differences offered to problem solutions. In
particular, differences such as time memory effect, singularity,
and locality reveal the efficiency and functionality of the oper-
ators. We will now continue by introducing the RL fractional
operators, one of the cornerstones of fractional analysis.

Definition 11 (See [11]). Let Ψ ∈ L1½ϵ1, ϵ2�: The RL integrals
Jαϵ+1Ψ and Jαϵ−2Ψ of order α > 0 with ϵ1 ≥ 0 are defined by

Jαϵ+1Ψ u1ð Þ = 1
Γ αð Þ

ðu1
ϵ1

u1 − ζð Þα−1Ψ ζð Þdζ, u1 > ϵ1,

Jαϵ−2Ψ u1ð Þ = 1
Γ αð Þ

ðϵ2
u1

ζ − u1ð Þα−1Ψ ζð Þdζ, u1 < ϵ2,
ð14Þ

where ΓðαÞ = Ð∞0 e−ζuα−1du, here is J0ϵ+1Ψðu1Þ = J0ϵ−2Ψðu1Þ =
Ψðu1Þ:

In the above definition, if we set α = 1, the definition
overlaps with the classical integral.

Several researchers have studied fractional integral
operators to obtain new and more general results in
inequality theory. In [12], Dahmani has proved some
novel inequalities via fractional integral operators. Also,
in [13], he proved Minkowski and Hadamard-type
inequalities by using some basic properties of the func-
tions. In [14, 15], Dahmani et al. gave some new results
of Grüss and Chebyshev type by using Riemann-Liouville
fractional integral operators. These papers have extended
the discussion of inequality theory to fractional inequal-
ities and several general forms of the earlier works have
been provided. In [16], Sarikaya and Ogunmez have
proved some Hadamard-type inequalities by using the
Riemann-Liouville fractional integral operators using the
definitions of convex functions. Interested readers can
find definitions, extensions, refinements, and properties
of fractional integral operators in [17]. In [11], Miller
and Ross have made efforts to establish a survey for
relationships between fractional calculus and differential
equations. In [18], the authors have given the refinement
of the famous Hermite-Hadamard inequality via
Riemann-Liouville fractional integrals. Also, in the same
paper, they have obtained a new integral identity to pro-
duce some fractional inequalities. In [19], Agarwal et al.
have proved many new inequalities of the Hadamard
type by using the generalized k − fractional integral oper-
ator. Recently, several new integral inequalities of Jensen,
Jensen-Mercer, and Hadamard type have been provided
via generalized fractional integral operators in [20, 21]
and [22].

Definition 12 (See [23]). Let Ψ ∈ L1ð½ϵ1, ϵ2� × ½ϵ3, ϵ4�Þ: The
RL integrals Jα,βϵ+1 ,ϵ+3

, Jα,βϵ+1 ,ϵ−4 , J
α,β
ϵ−2 ,ϵ+3

, and Jα,βϵ−2 ,ϵ−4 of order α, β > 0
with ϵ1, ϵ3 ≥ 0 are defined by

Jα,βϵ+1 ,ϵ+3
Ψ u1, u2ð Þ = 1

Γ αð ÞΓ βð Þ
ðu1
ϵ1

ðu2
ϵ3

u1 − ζð Þα−1 u2 − ξð Þβ−1Ψ ζ, ξð Þdξdζ, u1 > ϵ1, u2 > ϵ3,

Jα,βϵ+1 ,ϵ−4
Ψ u1, u2ð Þ = 1

Γ αð ÞΓ βð Þ
ðu1
ϵ1

ðϵ4
u2

u1 − ζð Þα−1 ξ − u2ð Þβ−1Ψ ζ, ξð Þdξdζ, u1 > ϵ1, u2 < ϵ4,

Jα,βϵ−2 ,ϵ+3
Ψ u1, u2ð Þ = 1

Γ αð ÞΓ βð Þ
ðϵ2
u1

ðu2
ϵ3

ζ − u1ð Þα−1 u2 − ξð Þβ−1Ψ ζ, ξð Þdξdζ, u1 < ϵ2, u2 > ϵ3,

Jα,βϵ−2 ,ϵ−4Ψ u1, u2ð Þ = 1
Γ αð ÞΓ βð Þ

ðϵ2
u1

ðϵ4
u2

ζ − u1ð Þα−1 ξ − u2ð Þβ−1Ψ ζ, ξð Þdξdζ, u1 < ϵ2, u2 < ϵ4,

ð15Þ
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respectively. Here, Γ is the Gamma function,

J0,0ϵ+1 ,ϵ+3Ψ u1, u2ð Þ = J0,0ϵ+1 ,ϵ−4Ψ u1, u2ð Þ = J0,0ϵ−2 ,ϵ+3Ψ u1, u2ð Þ
= J0,0ϵ−2 ,ϵ−4Ψ u1, u2ð Þ =Ψ u1, u2ð Þ,

J1,1ϵ+1 ,ϵ+3Ψ u1, u2ð Þ = 1
Γ αð ÞΓ βð Þ

ðu1
ϵ1

ðu2
ϵ3

Ψ t, sð Þdsdt:
ð16Þ

To make the paper more readable, it will be effective to
use the following notations in the main findings:

A = Γ α + 1ð ÞΓ β + 1ð Þ
4 ϵ2 − ϵ1ð Þα ϵ4 − ϵ3ð Þβ

Jα,βϵ−2 ,ϵ−4Ψ x, yð Þ + Jα,βϵ+1 ,ϵ−4Ψ x, yð Þ
h

+ Jα,βϵ−2 ,ϵ+3Ψ x, yð Þ + Jα,βϵ+1 ,ϵ+3
Ψ x, yð Þ

i
−

Γ β + 1ð Þ
4 ϵ4 − ϵ3ð Þβ

Á Jβϵ−4Ψ ϵ1, ϵ3ð Þ + Jβϵ−4Ψ ϵ2, ϵ3ð Þ + Jβϵ+3Ψ ϵ2, ϵ4ð Þ + Jβϵ+3Ψ ϵ1, ϵ4ð Þ
h i
−

Γ α + 1ð Þ
4 ϵ2 − ϵ1ð Þα Jαϵ−2Ψ ϵ1, ϵ3ð Þ + Jαϵ−2Ψ ϵ2, ϵ3ð Þ

h
+ Jαϵ+1Ψ ϵ2, ϵ4ð Þ + Jαϵ+1Ψ ϵ1, ϵ4ð Þ

i
,

ð17Þ

where

Jα,βϵ−2 ,ϵ−4Ψ x, yð Þ = 1
Γ αð ÞΓ βð Þ

ðϵ2
ϵ1

ðϵ4
ϵ3

x − ϵ1ð Þα−1 y − ϵ3ð Þβ−1Ψ x, yð Þdydx,

Jα,βϵ+1 ,ϵ−4Ψ x, yð Þ = 1
Γ αð ÞΓ βð Þ

ðϵ2
ϵ1

ðϵ4
ϵ3

x − ϵ1ð Þα−1 ϵ4 − yð Þβ−1Ψ x, yð Þdydx,

Jα,βϵ−2 ,ϵ+3Ψ x, yð Þ = 1
Γ αð ÞΓ βð Þ

ðϵ2
ϵ1

ðϵ4
ϵ3

ϵ2 − xð Þα−1 y − ϵ3ð Þβ−1Ψ x, yð Þdydx,

Jα,βϵ+1 ,ϵ+3
Ψ x, yð Þ = 1

Γ αð ÞΓ βð Þ
ðϵ2
ϵ1

ðϵ4
ϵ3

ϵ2 − xð Þα−1 ϵ4 − yð Þβ−1Ψ x, yð Þdydx:

ð18Þ

The main motivation of the paper is to provide some
novel integral inequalities for partial differentiable exponen-
tially convex functions on the coordinates and to give some
special cases to demonstrate that the main findings are gen-
eral forms of the earlier results.

2. Main Results

The following integral identity will play a key role to provide
new estimations for partial differentiable exponentially con-
vex functions on the coordinates.

Lemma 13 (See [23]). Let Ψ : Δ = ½ϵ1, ϵ2� × ½ϵ3, ϵ4�⟶ℝ be
a twice partial differentiable mapping on Δ = ½ϵ1, ϵ2� × ½ϵ3,

ϵ4�: If ∂2Ψ/∂ζ∂ξ ∈ LðΔÞ and α, β > 0,ϵ1, ϵ3 ≥ 0, then, one has

Ψ ϵ1, ϵ3ð Þ +Ψ ϵ1, ϵ4ð Þ +Ψ ϵ2, ϵ3ð Þ +Ψ ϵ2, ϵ4ð Þ
4

+ A
����

����
= ϵ2 − ϵ1ð Þ ϵ4 − ϵ3ð Þ

4

ð1
0

ð1
0
ζαξβ

∂2Ψ
∂ζ∂ξ

ζϵ1 + 1 − ζð Þϵ2, ξϵ3ð
"

+ 1 − ξð Þϵ4Þdξdζ −
ð1
0

ð1
0
1 − ζð Þαξβ ∂2Ψ

∂ζ∂ξ
ζϵ1 + 1 − ζð Þϵ2, ξϵ3ð

+ 1 − ξð Þϵ4Þdξdζ −
ð1
0

ð1
0
ζα 1 − ξð Þβ ∂2Ψ

∂ζ∂ξ
ζϵ1 + 1 − ζð Þϵ2, ξϵ3ð

+ 1 − ξð Þϵ4Þdξdζ +
ð1
0

ð1
0
1 − ζð Þα 1 − ξð Þβ ∂2Ψ

∂ζ∂ξ
ζϵ1 + 1 − ζð Þϵ2, ξϵ3ð

+ 1 − ξð Þϵ4Þdξdζ
#
:

ð19Þ

Theorem 14. Let Ψ : Δ = ½ϵ1, ϵ2� × ½ϵ3, ϵ4�⟶ℝ be a partial
differentiable mapping on Δ = ½ϵ1, ϵ2� × ½ϵ3, ϵ4� and ∂2Ψ/∂ζ
∂ξ ∈ LðΔÞ, α, β > 0, α1 ∈ℝ: If j∂2Ψ/∂ζ∂ξj is exponentially
convex function on the coordinates on Δ, then one has

Ψ ϵ1, ϵ3ð Þ +Ψ ϵ1, ϵ4ð Þ +Ψ ϵ2, ϵ3ð Þ +Ψ ϵ2, ϵ4ð Þ
4

+ A
����

����
≤

ϵ2 − ϵ1ð Þ ϵ4 − ϵ3ð Þ
4 α + 1ð Þ β + 1ð Þ × ∂2Ψ/∂ζ∂ξ ϵ1, ϵ3ð Þ�� ��

eα1 ϵ1+ϵ3ð Þ

"

+ ∂2Ψ/∂ζ∂ξ ϵ1, ϵ4ð Þ�� ��
eα1 ϵ1+ϵ4ð Þ + ∂2Ψ/∂ζ∂ξ ϵ2, ϵ3ð Þ�� ��

eα1 ϵ2+ϵ3ð Þ

+ ∂2Ψ/∂ζ∂ξ ϵ2, ϵ4ð Þ�� ��
eα1 ϵ2+ϵ4ð Þ

#
:

ð20Þ

Proof. By considering Lemma 13 and by using the integral
form of the triangle inequality, we can write

Ψ ϵ1, ϵ3ð Þ +Ψ ϵ1, ϵ4ð Þ +Ψ ϵ2, ϵ3ð Þ +Ψ ϵ2, ϵ4ð Þ
4 + A

����
����

≤
ϵ2 − ϵ1ð Þ ϵ4 − ϵ3ð Þ

4

ð1
0

ð1
0
ζαsβ

∂2Ψ
∂ζ∂ξ

ζϵ1 + 1 − ζð Þϵ2, ξϵ3ð
�����

"

+ 1 − ξð Þϵ4Þjdξdζ +
ð1
0

ð1
0
1 − ζð Þαξβ ∂2Ψ

∂ζ∂ξ
ζϵ1ð

�����
+ 1 − ζð Þϵ2, ξϵ3 + 1 − ξð Þϵ4Þjdξdζ +

ð1
0

ð1
0
ζα 1 − ξð Þβ ∂2Ψ

∂ζ∂ξ
ζϵ1ð

�����
+ 1 − ζð Þϵ2, ξϵ3 + 1 − ξð Þϵ4Þjdξdζ +

ð1
0

ð1
0
1 − ζð Þα 1 − ξð Þβ ∂2Ψ

∂ζ∂ξ
ζϵ1ð

�����
+ 1 − ζð Þϵ2, ξϵ3 + 1 − ξð Þϵ4Þjdξdζ

#
:

ð21Þ

Since j∂2Ψ/∂ζ∂ξj is exponentially convex functions on
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the coordinates, we can write

Ψ ϵ1, ϵ3ð Þ +Ψ ϵ1, ϵ4ð Þ +Ψ ϵ2, ϵ3ð Þ +Ψ ϵ2, ϵ4ð Þ
4 + A

����
����

≤
ϵ2 − ϵ1ð Þ ϵ4 − ϵ3ð Þ

4

ð1
0

ð1
0
ζαξβ + 1 − ζð Þαξβ + ζα 1 − ξð Þβ
h�

+ 1 − ζð Þα 1 − ξð Þβ
i

ζξ
∂2Ψ/∂ζ∂ξ ϵ1, ϵ3ð Þ�� ��

eα ϵ1+ϵ3ð Þ

"

+ ζ 1 − ξð Þ ∂2Ψ/∂ζ∂ξ ϵ1, ϵ4ð Þ�� ��
eα ϵ1+ϵ4ð Þ + 1 − ζð Þξ ∂2Ψ/∂ζ∂ξ ϵ2, ϵ3ð Þ�� ��

eα ϵ2+ϵ3ð Þ

+ 1 − ζð Þ 1 − ξð Þ ∂2Ψ/∂ζ∂ξ ϵ2, ϵ4ð Þ�� ��
eα ϵ2+ϵ4ð Þ

#
dξdζ

#
:

ð22Þ

After the necessary basic computations, the proof is
completed.

Remark 15. If we assume that all the conditions of Theorem
14 are valid with α1 = 0, we obtain Theorem 5 in [23].

Corollary 16. If we assume that all the conditions of Theorem
14 are valid with α1 = 1, one has

Ψ ϵ1, ϵ3ð Þ +Ψ ϵ1, ϵ4ð Þ +Ψ ϵ2, ϵ3ð Þ +Ψ ϵ2, ϵ4ð Þ
4

+ A
����

����
≤

ϵ2 − ϵ1ð Þ ϵ4 − ϵ3ð Þ
4 α + 1ð Þ β + 1ð Þ × ∂2Ψ/∂ζ∂ξ ϵ1, ϵ3ð Þ�� ��

eϵ1+ϵ3

"

+ ∂2Ψ/∂ζ∂ξ ϵ1, ϵ4ð Þ�� ��
eϵ1+ϵ4

+ ∂2Ψ/∂ζ∂ξ ϵ2, ϵ3ð Þ�� ��
eϵ2+ϵ3

+ ∂2Ψ/∂ζ∂ξ ϵ2, ϵ4ð Þ�� ��
eϵ2+ϵ4

#
:

ð23Þ

Corollary 17. If we assume that all the conditions of Theorem
14 are valid with j∂2Ψ/∂ζ∂ξj is bounded, i.e.,

∂2Ψ ζ, ξð Þ
∂ζ∂ξ



∞

= sup
ζ,ξð Þ∈ ϵ1 ,ϵ2ð Þ× ϵ3 ,ϵ4ð Þ

∂2Ψ ζ, ξð Þ
∂ζ∂ξ

�����
����� <∞, ð24Þ

we get

Ψ ϵ1, ϵ3ð Þ +Ψ ϵ1, ϵ4ð Þ +Ψ ϵ2, ϵ3ð Þ +Ψ ϵ2, ϵ4ð Þ
4

+ A
����

����
≤

ϵ2 − ϵ1ð Þ ϵ4 − ϵ3ð Þ
4 α + 1ð Þ β + 1ð Þ

∂2Ψ ζ, ξð Þ
∂ζ∂ξ



∞

× 1

eα1 ϵ1+ϵ3ð Þ +
1

eα1 ϵ1+ϵ4ð Þ +
1

eα1 ϵ2+ϵ3ð Þ +
1

eα1 ϵ2+ϵ4ð Þ

� �
:

ð25Þ

Theorem 18. Let Ψ : Δ = ½ϵ1, ϵ2� × ½ϵ3, ϵ4�⟶ℝ be a partial
differentiable mapping on Δ = ½ϵ1, ϵ2� × ½ϵ3, ϵ4� and ∂2Ψ/∂ζ
∂ξ ∈ LðΔÞ, α, β ∈ ð0, 1�: If j∂2Ψ/∂ζ∂ξjq,q > 1, α1 ∈ℝ, is expo-

nentially convex function on the coordinates on Δ, then one
has

Ψ ϵ1, ϵ3ð Þ +Ψ ϵ1, ϵ4ð Þ +Ψ ϵ2, ϵ3ð Þ +Ψ ϵ2, ϵ4ð Þ
4

+ A
����

����
≤

ϵ2 − ϵ1ð Þ ϵ4 − ϵ3ð Þ
41+1/q αp + 1ð Þ1/p βp + 1ð Þ1/p

× ∂2Ψ/∂ζ∂ξ ϵ1, ϵ3ð Þ�� ��q
eα1 ϵ1+ϵ3ð Þ

 

+ ∂2Ψ/∂ζ∂ξ ϵ1, ϵ4ð Þ�� ��q
eα1 ϵ1+ϵ4ð Þ + ∂2Ψ/∂ζ∂ξ ϵ2, ϵ3ð Þ�� ��q

eα1 ϵ2+ϵ3ð Þ

+ ∂2Ψ/∂ζ∂ξ ϵ2, ϵ4ð Þ�� ��q
eα1 ϵ2+ϵ4ð Þ

!1/q

,

ð26Þ

where p−1 + q−1 = 1:

Proof. Taking into account the integral identity that is given
in Lemma 13 and by considering the Hölder inequality for
double integrals, then one has

Ψ ϵ1, ϵ3ð Þ +Ψ ϵ1, ϵ4ð Þ +Ψ ϵ2, ϵ3ð Þ +Ψ ϵ2, ϵ4ð Þ
4 + A

����
����

≤
ϵ2 − ϵ1ð Þ ϵ4 − ϵ3ð Þ

4 ×
ð1
0

ð1
0
ζαξβ
h ip

dsdt
� �1/p"

+
ð1
0

ð1
0

1 − ζð Þαξβ
h ip

dsdt
� �1/p

+
ð1
0

ð1
0
ζα 1 − ξð Þβ
h ip

dsdt
� �1/p

+
ð1
0

ð1
0

1 − ζð Þα 1 − ξð Þβ
h ip

dξdζ
� �1/p

×
ð1
0

ð1
0

∂2Ψ
∂ζ∂ξ

ζϵ1 + 1 − ζð Þϵ2, ξϵ3 + 1 − ξð Þϵ4ð Þ
�����

�����
q

dξdζ

 !1/q35:
ð27Þ

By making use of necessary computations, we obtain

Ψ ϵ1, ϵ3ð Þ +Ψ ϵ1, ϵ4ð Þ +Ψ ϵ2, ϵ3ð Þ +Ψ ϵ2, ϵ4ð Þ
4 +A

����
���� ≤ ϵ2 − ϵ1ð Þ ϵ4 − ϵ3ð Þ

4 αp + 1ð Þ1/p βp + 1ð Þ1/p

×
ð1
0

ð1
0

∂2Ψ
∂ζ∂ξ

ζϵ2 + 1 − ζð Þϵ2, ξϵ3 + 1 − ξð Þdð Þ
�����

�����
q

dξdζ

 !1/q35:
ð28Þ

Since j∂2Ψ/∂ζ∂ξjq is coordinated convex, we have

Ψ ϵ1, ϵ3ð Þ +Ψ ϵ1, ϵ4ð Þ +Ψ ϵ2, ϵ3ð Þ +Ψ ϵ2, ϵ4ð Þ
4 + A

����
����

≤
ϵ2 − ϵ1ð Þ ϵ4 − ϵ3ð Þ

4 αp + 1ð Þ1/p βp + 1ð Þ1/p
×

ð1
0

ð1
0
ζξ

∂2Ψ/∂ζ∂ξ ϵ1, ϵ3ð Þ�� ��q
eα1 ϵ1+ϵ3ð Þ

" 

+ ζ 1 − ξð Þ ∂2Ψ/∂ζ∂ξ ϵ1, ϵ4ð Þ�� ��q
eα1 ϵ1+ϵ4ð Þ

#
+ 1 − ζð Þξ ∂2Ψ/∂ζ∂ξ ϵ2, ϵ3ð Þ�� ��q

eα1 ϵ2+ϵ3ð Þ

+ 1 − ζð Þ 1 − ξð Þ ∂2Ψ/∂ζ∂ξ ϵ2, ϵ4ð Þ�� ��q
eα1 ϵ2+ϵ4ð Þ dξdζ

!1/q

:

ð29Þ
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By computing these integrals, we obtain

Ψ ϵ1, ϵ3ð Þ +Ψ ϵ1, ϵ4ð Þ +Ψ ϵ2, ϵ3ð Þ +Ψ ϵ2, ϵ4ð Þ
4 + A

����
����

≤
ϵ2 − ϵ1ð Þ ϵ4 − ϵ3ð Þ

41+1/q αp + 1ð Þ1/p βp + 1ð Þ1/p
× ∂2Ψ/∂t∂s ϵ1, ϵ3ð Þ�� ��q

eα1 ϵ1+ϵ3ð Þ

 

+ ∂2Ψ/∂t∂s ϵ1, dð Þ�� ��q
eα1 ϵ1+dð Þ + ∂2Ψ/∂t∂s ϵ2, ϵ3ð Þ�� ��q

eα1 ϵ2+ϵ3ð Þ

+ ∂2Ψ/∂t∂s ϵ2, dð Þ�� ��q
eα1 ϵ2+dð Þ

!1/q

:

ð30Þ

This completes the proof of the theorem.

Corollary 19. If we assume that all the conditions of Theorem
18 are valid with α1 = 1, we have the following inequality:

Ψ ϵ1, ϵ3ð Þ +Ψ ϵ1, ϵ4ð Þ +Ψ ϵ2, ϵ3ð Þ +Ψ ϵ2, ϵ4ð Þ
4

+ A
����

����
≤

ϵ2 − ϵ1ð Þ ϵ4 − ϵ3ð Þ
41+1/q αp + 1ð Þ1/p βp + 1ð Þ1/p

× ∂2Ψ/∂ζ∂ξ ϵ1, ϵ3ð Þ�� ��q
e ϵ1+ϵ3ð Þ

 

+ ∂2Ψ/∂ζ∂ξ ϵ1, ϵ4ð Þ�� ��q
e ϵ1+ϵ4ð Þ + ∂2Ψ/∂ζ∂ξ ϵ2, ϵ3ð Þ�� ��q

e ϵ2+ϵ3ð Þ

+ ∂2Ψ/∂ζ∂ξ ϵ2, ϵ4ð Þ�� ��q
e ϵ2+ϵ4ð Þ

!1/q

:

ð31Þ

Corollary 20. If we assume that all the conditions of Theorem
18 are valid with j∂2Ψ/∂ζ∂ξj is bounded, i.e.,

∂2Ψ ζ, ξð Þ
∂ζ∂ξ



∞

= sup
ζ,ξð Þ∈ ϵ1 ,ϵ2ð Þ× ϵ3 ,ϵ4ð Þ

∂2Ψ ζ, ξð Þ
∂ζ∂ξ

�����
����� <∞, ð32Þ

we get

Ψ ϵ1, ϵ3ð Þ +Ψ ϵ1, ϵ4ð Þ +Ψ ϵ2, ϵ3ð Þ +Ψ ϵ2, ϵ4ð Þ
4

+ A
����

����
≤

ϵ2 − ϵ1ð Þ ϵ4 − ϵ3ð Þ
41+1/q αp + 1ð Þ1/p βp + 1ð Þ1/p

∂2Ψ ζ, ξð Þ
∂ζ∂ξ



∞

× 1

eα1 ϵ1+ϵ3ð Þ +
1

eα1 ϵ1+ϵ4ð Þ +
1

eα1 ϵ2+ϵ3ð Þ +
1

eα1 ϵ2+ϵ4ð Þ

� �1/q
:

ð33Þ

Theorem 21. Let Ψ : Δ = ½ϵ1, ϵ2� × ½ϵ3, ϵ4�⟶ℝ be a partial
differentiable mapping on Δ = ½ϵ1, ϵ2� × ½ϵ3, ϵ4� and ∂2Ψ/∂ζ
∂ξ ∈ LðΔÞ, α, β ∈ ð0, 1�, α1 ∈ℝ: If j∂2Ψ/∂ζ∂ξjq,q > 1, is expo-
nentially convex function on the coordinates on Δ, then one
has

Ψ ϵ1, ϵ3ð Þ +Ψ ϵ1, ϵ4ð Þ +Ψ ϵ2, ϵ3ð Þ +Ψ ϵ2, ϵ4ð Þ
4

+ A
����

����
≤

ϵ2 − ϵ1ð Þ ϵ4 − ϵ3ð Þ
4

4

p α + 1ð Þp β + 1ð Þp
�

+ ∂2Ψ/∂ζ∂ξ ϵ1, cð Þ�� ��q
qeα1 ϵ1+cð Þ + ∂2Ψ/∂ζ∂ξ ϵ1, dð Þ�� ��q

qeα1 ϵ1+dð Þ

+ ∂2Ψ/∂ζ∂ξ ϵ2, cð Þ�� ��q
qeα1 ϵ2+cð Þ + ∂2Ψ/∂ζ∂ξ ϵ2, cð Þ�� ��q

qeα1 ϵ2+dð Þ

#
,

ð34Þ

where p−1 + q−1 = 1:

Proof. We will start with the integral identity that is given in
Lemma 13 and by considering Young inequality, then we
can write

Ψ ϵ1, ϵ3ð Þ +Ψ ϵ1, ϵ4ð Þ +Ψ ϵ2, ϵ3ð Þ +Ψ ϵ2, ϵ4ð Þ
4 + A

����
���� ≤ ϵ2 − ϵ1ð Þ ϵ4 − ϵ3ð Þ

4

× 1
p

ð1
0

ð1
0
ζαξβ
� �p

dξdζ + 1
q

ð1
0

ð1
0

∂2Ψ
∂ζ∂ξ

ζϵ1 + 1 − ζð Þϵ2, ξϵ3 + 1 − ξð Þϵ4ð Þ
�����

�����
q

dξdζ

"

+ 1
p

ð1
0

ð1
0

1 − ζð Þαξβ
� �p

dξdζ + 1
q

ð1
0

ð1
0

∂2Ψ
∂ζ∂ξ

ζϵ1 + 1 − ζð Þϵ2, ξϵ3 + 1 − ξð Þϵ4ð Þ
�����

�����
q

dξdζ

+ 1
p

ð1
0

ð1
0
ζα 1 − ξð Þβ
� �p

dξdζ + 1
q

ð1
0

ð1
0

∂2Ψ
∂ζ∂ξ

ζϵ1 + 1 − ζð Þϵ2; ;ξϵ3 + 1 − ξð Þϵ4ð Þ
�����

�����
q

dξdζ

+ 1
p

ð1
0

ð1
0

1 − ζð Þα 1 − ξð Þβ
� �p

dξdζ + 1
q

ð1
0

ð1
0

∂2Ψ
∂ζ∂ξ

ζϵ1 + 1 − ζð Þϵ2, ξϵ3 + 1 − ξð Þϵ4ð Þ
�����

�����
q

dξdζ

#
:

ð35Þ
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Since j∂2Ψ/∂t∂sjq is coordinated convex, we can provide

Ψ ϵ1, ϵ3ð Þ +Ψ ϵ1, ϵ4ð Þ +Ψ ϵ2, ϵ3ð Þ +Ψ ϵ2, ϵ4ð Þ
4 + A

����
����

≤
ϵ2 − ϵ1ð Þ ϵ4 − ϵ3ð Þ

4 × 4
p α + 1ð Þp β + 1ð Þp
�

+ ∂2Ψ/∂ζ∂ξ ϵ1, ϵ3ð Þ�� ��q
qeα1 ϵ1+ϵ3ð Þ + ∂2Ψ/∂ζ∂ξ ϵ1, ϵ4ð Þ�� ��q

qeα1 ϵ1+ϵ4ð Þ

+ ∂2Ψ/∂ζ∂ξ ϵ2, ϵ3ð Þ�� ��q
qeα1 ϵ2+ϵ3ð Þ + ∂2Ψ/∂ζ∂ξ ϵ2, ϵ4ð Þ�� ��q

qeα1 ϵ2+ϵ4ð Þ

#
:

ð36Þ

Which completes the proof.

Corollary 22. If we assume that all the conditions of Theorem
21 are valid with α1 = 1, we have the following inequality:

Ψ ϵ1, ϵ3ð Þ +Ψ ϵ1, ϵ4ð Þ +Ψ ϵ2, ϵ3ð Þ +Ψ ϵ2, ϵ4ð Þ
4

+ A
����

����
≤

ϵ2 − ϵ1ð Þ ϵ4 − ϵ3ð Þ
4

× 4

p α + 1ð Þp β + 1ð Þp
�

+ ∂2Ψ/∂ζ∂ξ ϵ1, ϵ3ð Þ�� ��q
qe ϵ1+ϵ3ð Þ + ∂2Ψ/∂ζ∂ξ ϵ1, ϵ4ð Þ�� ��q

qe ϵ1+ϵ4ð Þ

+ ∂2Ψ/∂ζ∂ξ ϵ2, ϵ3ð Þ�� ��q
qe ϵ2+ϵ3ð Þ + ∂2Ψ/∂ζ∂ξ ϵ2, ϵ4ð Þ�� ��q

qe ϵ2+ϵ4ð Þ

#
:

ð37Þ

Corollary 23. If we assume that all the conditions of Theorem
21 are valid with α1 = 0, we have the following inequality:

Ψ ϵ1, ϵ3ð Þ +Ψ ϵ1, ϵ4ð Þ +Ψ ϵ2, ϵ3ð Þ +Ψ ϵ2, ϵ4ð Þ
4

+ A
����

����
≤

ϵ2 − ϵ1ð Þ ϵ4 − ϵ3ð Þ
4

4

p α + 1ð Þp β + 1ð Þp
�

+ 1
q

∂2Ψ/∂ζ∂ξ ϵ1, ϵ3ð Þ�� ��q + ∂2Ψ/∂ζ∂ξ ϵ1, ϵ4ð Þ�� ��q�

+ ∂2Ψ/∂ζ∂ξ ϵ2, ϵ3ð Þ�� ��q + ∂2Ψ/∂ζ∂ξ ϵ2, ϵ4ð Þ�� ��q�#:
ð38Þ

Corollary 24. If we assume that all the conditions of Theorem
21 are valid with j∂2Ψ/∂ζ∂ξj is bounded, i.e.,

∂2Ψ ζ, ξð Þ
∂ζ∂ξ



∞

= sup
ζ,ξð Þ∈ ϵ1 ,ϵ2ð Þ× ϵ3 ,ϵ4ð Þ

∂2Ψ ζ, ξð Þ
∂ζ∂ξ

�����
����� <∞, ð39Þ

we get

Ψ ϵ1, ϵ3ð Þ +Ψ ϵ1, ϵ4ð Þ +Ψ ϵ2, ϵ3ð Þ +Ψ ϵ2, ϵ4ð Þ
4

+A
����

����
≤

ϵ2 − ϵ1ð Þ ϵ4 − ϵ3ð Þ
4

4

p α + 1ð Þp β + 1ð Þp + ∂2Ψ ζ, ξð Þ
∂ζ∂ξ



∞

"

Â 1

qeα1 ϵ1+ϵ3ð Þ +
1

qeα1 ϵ1+ϵ4ð Þ +
1

qeα1 ϵ2+ϵ3ð Þ +
1

qeα1 ϵ2+ϵ4ð Þ

� ��
:

ð40Þ

Corollary 25. If we assume that all the conditions of Theorem
21 are valid with j∂2Ψ/∂ζ∂ξj is bounded, i.e.,

∂2Ψ ζ, ξð Þ
∂ζ∂ξ



∞

= sup
ζ,ξð Þ∈ ϵ1 ,ϵ2ð Þ× ϵ3 ,ϵ4ð Þ

∂2Ψ ζ, ξð Þ
∂ζ∂ξ

�����
����� <∞, ð41Þ

and α1 = 0, we get

Ψ ϵ1, ϵ3ð Þ +Ψ ϵ1, ϵ4ð Þ +Ψ ϵ2, ϵ3ð Þ +Ψ ϵ2, ϵ4ð Þ
4

+ A
����

����
≤ ϵ2 − ϵ1ð Þ ϵ4 − ϵ3ð Þ 1

p α + 1ð Þp β + 1ð Þp
�

+ ∂2Ψ ζ, ξð Þ
∂ζ∂ξ



∞

1
q

� �#
:

ð42Þ

3. Conclusions

For the inequality theory, which is one of the important sub-
jects of mathematical analysis, producing new and original
integral inequalities is the main motivation point. For this
purpose, researchers sometimes use new function classes,
sometimes new integral operators, and sometimes try to
obtain modifications of some famous inequalities in different
spaces.

Two main innovations of the study are the usage of
bivariate versions of exponentially convex functions that
produce more optimal results than the concept of convexity
and the usage of RL fractional integral operators. The frac-
tional analysis is a subject that produces effective solutions
to real-world problems, helps explain various concepts in
physics and engineering, and brings innovation to fields
such as mathematics, statistics, economics, disease models,
mathematical biology, and modelling. Considering this mis-
sion, fractional analysis, which has been widely used by
researchers in the field of inequality theory, has brought a
unique orientation to the literature.

In this study, new and original findings were obtained by
using RL fractional integral operators and exponentially
convex functions on the coordinates and basic analysis proof
techniques. It has been confirmed that the main findings
have general forms, which have been reduced to the results
that were obtained in the literature by giving many special
cases.
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