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In the present study, the optimality approach is applied to find the exact solution of the Landau-Ginzburg-Higgs Equation
(LGHE) using new transformations. This method is a direct algebraic method for obtaining exact solutions of nonlinear
differential equations. We find suitable solutions of the LGHE in terms of elliptic Jacobi functions by applying transformations
of basic functions. Exact solutions of the equations are obtained with the help of symbolic software (Maple) which allows the
computation of equations with parameter constants. It is exposed that PIM is influential, suitable, and shortest and offers an
exact solution of LGHE.

1. Introduction

Exact solutions of nonlinear partial differential equations
play an important role in nonlinear science, especially in
nonlinear physical science because they can carry substan-
tial physical information and more understanding into the
physical aspects of the problem. [1]. Recently, several
methods have been used to find exact solutions of nonlin-
ear model equations like Cahn-Allen equation [2], ð2 + 1Þ
-dimensional Date-Jimbo-Kashiwara-Miwa (DJKM) equa-
tion [3], Newell-Whitehead-Segel (NWS) equations [4],
the Chaffee–Infante equation [5], DNA Peyrard–Bishop
equation [6], Burger’s equation [7], the ð2 + 1Þ-dimen-
sional nonlinear Sharma–Tasso–Olver equation [8], and
Ablowitz-Kaup-Newell-Segur water wave equation [9].
Recently, a number of concrete techniques have been rec-
ognized for finding accurate and comprehensible solutions
of nonlinear physical models with the help of computer
algebra, such as Maple, MATLAB, and Mathematica.

These include power ondex method [7, 9], lie symmetry
groups [3, 4], new extended direct algebraic method, and
the generalized Kudryashov method [10].

The Landau-Ginzburg-Higgs (LGH) equation was intro-
duced by Lev Devidovich Landau and Vitaly Lazarevich
Ginzburg having very wide range of applications in radially
inhomogeneous plasma having a constant phase relation of
ion-cyclotron waves. It demonstrated superconductivity
and unidirectional wave propagation in nonlinear media
[11]. Several approaches have been adopted to attain the
close form and approximate solutions of the LGH equation.
Khuri has investigated the close form solutions of LGH,
Klein–Gordon, and Sine–Gordon equations by using unified
approach [12]. In [13], the new modification method is
proved by solving LGH equation and Cahn-Allen equation.
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In this paper, we will examine the solutions of Landau-
Ginzburg-Higgs equation by using polynomial and elemen-
tary functions. In Section 2, we designate temporarily the
PIM and explain index powers by taking first partial deriva-
tive of dependent function with respect to time. In Section 3,
we apply this method to the LGH equation by introducing
new transformations. The PDE (1) is reduced in different
form of differential equations. These ODEs are solved by
using the elliptic JacobiSN (z, k) function and its differential
equation, see (10).

2. Power Index Method

Considering the PDE (1), and we want to find its exact solu-
tion, we introduce the variables η as

η = q x, tð Þ≔ k1 exp a1x + a2tð Þ + k2 ln b1x + b2tð Þ,
η = q x, tð Þ≔ b1x + b2tð Þs,

ð2Þ

or

η = q x, tð Þ≔ tanm a1x + a2tð Þ, ð3Þ

and the function transforms

u t, xð Þ = b1x + b2tð Þr f ηð Þ, ð4Þ

or

u t, xð Þ = tann a1x + a2tð Þf ηð Þ: ð5Þ

Now, we differentiate (4) according to PDE (1), and we
can find the relation of indexes of x and t in each term as

∂
∂t

u x, tð Þ = r b1x + b2tð Þr−1 f ηð Þ + s b1x + b2tð Þr+s−1 f ′ ηð Þ, ð6Þ

if we choose η = ðb1x + b2tÞs.
We observe the coefficient functions of f ðηÞ and its

derivative terms so that the PDE equation may be changed
into ODE. In (6), the coefficient function of f ðηÞ is
ðb1x + b2tÞr−1, and the coefficient function of f ′ðηÞ is
ðb1x + b2tÞr+s−1. The optimal indices x and t of the indepen-
dent variables are chosen such that only two indices are var-
ied at a time and the rest are fixed. We continue this process
with different indices x and t so that we find all well-defined
transformation. Our objective in this method is to get the
required ODE.

Q η, f , f f ′, f ″,⋯
� �

= 0: ð7Þ

Solve the ODE (7) by using computerized symbolic
package like Maple. The exact solution of (1) can be
obtained from (4) to (7) after replacing an unknown func-
tion f ðηÞ. Figure 1 shows the procedure of transformation
of PDE (1) to ODE (7).

3. Exact Solutions of Landau-Ginzburg-
Higgs Equation

Case 1. We choose anew variable ξ in exponential form and
choosing new transformation hðξÞ as

ξ = exp a1x + a2tð Þ, u t, xð Þ = a1a2
n

h ξð Þ: ð8Þ

The PDE (1) reduces to the nonlinear ODE

a21 − a22
À Á

ξ2h″ ξð Þ + a21 − a22
À Á

ξh′ ξð Þ
− a21a

2
2ξh

3 ξð Þ +m2h ξð Þ = 0:
ð9Þ

Since the ODE (9) is second-order nonlinear ODE, to
find the solution of ODE (9), we need the following
second-order differential equation.

h″ zð Þ − 2k2h3 ξð Þ + 1 + k2
À Á

h ξð Þ = 0: ð10Þ

The elliptic function JacobiSN (z, k) is the solution of
(10). The InverseJacobiSNðz, kÞ is defined as

InverseJacobiSN z, kð Þ =
ðz
0

dηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2ð Þ 1 − k2η2

À Áq : ð11Þ

Jacobi elliptic functions are named for the famous math-
ematician Jacobi, and then, Gauss gave some attention to
JacobiSN (z, k). Applications of Jacobi elliptic functions
include closed-form solutions for nonlinear integrable
equations.
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Figure 1: Flow chart of the power index method.
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If we choose z = α1ð
ffiffiffi
2

p
α2 ln ðξÞ + C1Þ and k = α3 with

α1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2

C2
2a

2
1a

2
2 + 2m2

s
,

α2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2 − a21a

2
2

À Á
2 a21 − a22
À Á

s
,

α3 =
C2a1a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2 − a21a

2
2

p
ð12Þ

and using relations

h′ zð Þ = ξffiffiffi
2

p
α1α2

h′ ξð Þ,

h″ zð Þ = ξ2

2 α1α2ð Þ2 h
″ ξð Þ + ξ

2 α1α2ð Þ2 h
′ ξð Þ,

ð13Þ

then the ODE (10) transforms to ODE (9), and the solution
of ODE (10) transforms to the solution of ODE (9) which
has the form

h ξð Þ = C2α1
ffiffiffi
2

p
JacobiSN α1

ffiffiffi
2

p
α2 ln ξð Þ + C1

� �
, α3

h i
: ð14Þ

Using (8) and (14), we get the exact solution of the PDE
(1) which is

u t, xð Þ = a1a2
n

C2α1
ffiffiffi
2

p
JacobiSN

Á α1
ffiffiffi
2

p
α2 a1x + a2tð Þ + C1ð Þ, α3

h i
,

ð15Þ

where α1, α2, α3 are defined above.

Figure 2 demonstrates solution (15) of PDE (1). Figure 3
demonstrates contrasts of uðx, tÞ in (15).

Case 2. Next, we define a new variable ξ in logarithmic func-
tion and choosing new transformation hðξÞ as

ξ = ln b1x + b2tð Þ, u t, xð Þ = h ξð Þ: ð16Þ

The PDE (1) can be reduced to the ODE

b21 − b22
À Á

e−2ξh″ ξð Þ + b21 − b22
À Á

e−2ξh′ ξð Þ
− n3h3 ξð Þ +m2h ξð Þ = 0:

ð17Þ

Since the ODE (17) can be obtained by using transfor-
mation z = α4ðα5eξ + C1Þ, k = α6C2, and relations,

h′ zð Þ = e−ξ

α4α5
h′ ξð Þ,

h″ zð Þ = e−2ξ

α4α5ð Þ2 h
″ ξð Þ − e−2ξ

α4α5ð Þ2 h
′ ξð Þ,

ð18Þ

in (10). By using the solution of ODE (10), the analytic solu-
tion of ODE (17) can be expressed in the form

h ξð Þ = C2α4JacobiSN α4 α5e
ξ + C1

� �
, α6C2

h i
, ð19Þ

where

α4 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m2

C2
2 − 1

À Á
n2 + 2m2

s
,

α5 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2 − n2ð Þ
2 b21 − b22
À Á

s
,

α6 =
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m2 − n2
p :

ð20Þ

Using (19) and (16), we get the exact solution of the PDE
(1) that is

u t, xð Þ = C2α4
ffiffiffi
2

p
JacobiSN α4 α5 b1x + b2tð Þ + C1ð Þ, α6C2½ �,

ð21Þ

where α4, α5, α6 are defined above in this case. Figure 4 pre-
sents graphical diagram of the analytical solution of (21)
which is periodic solution of PDE (1).

Case 3. We choose a new variable ξ in polynomial form and
choosing new transformation hðξÞ as

ξ = a1x + a2tð Þs, u t, xð Þ = a1x + a2tð Þrh ξð Þ: ð22Þ
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Figure 2: 3D plot of solution (15) of PDE (1).
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Figure 3: 3D plot of solution (15) of PDE (1).
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The PDE (1) reduces to the algebraic form

a1x + a2tð Þβi F h ξð Þ, h′ ξð Þ, h″ ξð Þ
� �

= 0, ð23Þ

where

βi ∈ r − 2, r + s − 2, r + 2s − 2, r, 3rf g: ð24Þ

To convert PDE (1) into nonlinear ODE, the index
values of βi must be chosen in such a way so that there are
multiples of index s. To select suitable values of βi, its mem-
bers must have the following relation r = s − 1 or r = s/2 − 1.
If we choose the first relation, the algebraic equation (23) can
be changed to the following ODE, successfully.

A s2 − 3s + 2
À Á

−m2ξ2/s
h i

h ξð Þ + 3sA s − 1ð Þξh′ ξð Þ
+ n2ξ2h3 ξð Þ +m2s2 a22 − a21

À Á
h′′ ξð Þ = 0,

ð25Þ

where A = ða22 − a21Þ. Since the ODE (25) can be achieved by
using transformation z = α8ð1/2α8ξ + C1Þ, k = α9C2, and
chain rule in (10). Figure 5 presents graphical diagram of
the analytical solution of (28).

The analytic solution of ODE (25) for s = 1 can attained
from ODE (10) in the form

h ξð Þ = C2α7JacobiSN α8
1
2 α8ξ + C1

� �
, α9C2

� �
, ð26Þ

where

α7 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m2

C2
2 − 1

À Á
n2 + 2m2

s
,

α8 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2m2 − n2ð Þ

a21 − a22
À Á

s
,

α9 =
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m2 − n2
p :

ð27Þ

Using (22) and (26), we get the exact solution of the PDE
(1) that is

u t, xð Þ = C2α7JacobiSN α8
1
2 α8 a1x + a2tð Þ + C1

� �
, α9C2

� �
:

ð28Þ

The analytic solution of ODE (25) for s = 2 is

h ξð Þ = C2α7ffiffiffi
ξ

p JacobiSN α7
1
2 α8

ffiffiffi
ξ

p
+ C1

� �
, α9C2

� �
: ð29Þ

Using (22) and (25), we get the exact solution of the PDE
(1) that is

u t, xð Þ = C2α7
a1x + a2tð ÞÞ JacobiSN

Á α8
1
2 α8 a1x + a2tð Þ

� �
+ C1Þ, α9C2

� �
,

ð30Þ

where α7, α8, α9 are defined above. If we choose the sec-
ond relation r = s/2 − 1, then the transformation (22)
reduces of the form

ξ = a1x + a2tð Þs, u t, xð Þ = a1x + a2tð Þ 1/sð Þ−1h ξð Þ: ð31Þ

Figure 6 shows graphical representation of solution of
(28) which is periodic solution of PDE (1).
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Figure 4: 3D plot of solution (21) of PDE (1).
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Figure 6: 3D plot of solution (30) of PDE (1).

4 Journal of Function Spaces



By using (31), the algebraic equation can be changed to
the following ODE.

s2 a22 − a21
À Á

ξ2h″ ξð Þ + s 2s − 3ð Þ a22 − a21
À Á

ξh′ ξð Þ
+ a22 − a21

À Á 1
4 s

2 −
3
2 s + 2

� �
−m2ξ2/s

� �
h ξð Þ

+ n2ξh3 ξð Þ = 0:

ð32Þ

Using transformation z = α7ðð1/2Þα8ðξÞ1/s + C1Þ, k = α9
C2 in (1), we found the analytic solution of the ODE (32)
in the form

h ξð Þ = C2α7ξ
2−sð Þ/2sJacobiSN α7

1
2 α8 ξð Þ1/s + C1

� �
, α9C2

� �
:

ð33Þ

The PDE (1) has the solution

u t, xð Þ = C2α7 a1x + a2tð Þ 2−sð Þ/2sJacobiSN

Á α7
1
2 α8 a1x + a2tð Þ1/s + C1

� �
, α9C2

� �
:

ð34Þ

Figure 7 is the 3D representation of solution (30).

Case 4. We choose a new variable ξ in polynomial form and
choosing new transformation hðξÞ as

ξ = tan2 a1x + a2tð Þ, u t, xð Þ = tan a1x + a2tð Þh ξð Þ, ð35Þ

a2 − b2
À Á

ξ 1 + ξð Þ2h′′ ξð Þ + 5
2 a2 − b2
À Á

1 + ξð Þ ξ + 3/5ð Þh′ ξð Þ

+ 1
2 h ξð Þ −1

2 n2ξ + a2 − b2
À Á

ξ + 1ð Þ + 2
� �

= 0:

ð36Þ

Using suitable transformation in (1), we can get analytic
solution of (36) as

h ξð Þ = 1ffiffiffi
ξ

p �
2C2JacobiSN

�
n2

−2
α10

arctan α11
α10

ffiffiffi
ξ

p� �� �

+ −2
α10

arctan α11
α10

ffiffiffi
ξ

p
+ 2C1

� � 1
α12

, n
α13

C2

� 1
α12

�
,

ð37Þ

where

α10 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2a2n2 + 2b2n2 + 16a2 − 16b2

p
,

α11 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 a2 − b2
À Á

8 − n2ð Þ
q

, α12 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
C2
2n2 − n2 + 8

s
,

α13 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−n2 + 8

p
:

ð38Þ

The PDE (1) has the solution of the form

u t, xð Þ = 1
tan a1x + a2tð Þ

�
2C2JacobiSN

�
n2
�
−2
α10

arctan

Á
�
α11
α10

tan a1x + a2tð Þ
���

+ 1
tan a1x + a2tð Þ

−2
α10

+
�
arctan

�
α11
α10

tan

Á Àa1x + a2t
Á
+ 2C1

� 1
α12

, n
α13

C2

� 1
α12

:

ð39Þ

4. Conclusion

In this paper, PIM has been used to construct exact solutions
of LGH equation by using function conversion. The exact
solutions of the LGH equation that we have obtained in this
article are useful for understanding physical phenomena
from many aspects. The performance of this method is
found to be reliable and effective.
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