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This paper derives some equalities via twice differentiable functions and conformable fractional integrals. With the help of the
obtained identities, we present new trapezoid-type and midpoint-type inequalities via convex functions in the context of the
conformable fractional integrals. New inequalities are obtained by taking advantage of the convexity property, power mean
inequality, and Hölder’s inequality. We show that this new family of inequalities generalizes some previous research studies by
special choices. Furthermore, new other relevant results with trapezoid-type and midpoint-type inequalities are obtained.

1. Introduction

Fractional calculus and the theory of inequalities, which
have recently received a lot of attention, have been the sub-
ject of many investigations in the mathematics. Mathemati-
cal modeling is one of the most important fields of this
theory in which fractional operators are defined to design
different fractional differential equations for describing the
phenomena. For instance, one can mention to the third-
order BVP with multistrip multipoint conditions [1], hybrid
version and the Hilfer type of thermostat model [2, 3], frac-
tional HIV model with the Mittag-Leffler-type kernel [4],
mathematical fractional model of Q fever [5], fractional
dynamics of mumps virus [6], fractional p-Laplacian equa-

tions [7], fractal-fractional version of AH1N1/09 virus along
with the fractional Caputo-type version [8], etc.

In the last century, the Hermite–Hadamard inequality
along with the midpoint and trapezoidal inequalities arising
from this inequality has attracted many researchers. In addi-
tion, RL-fractional (Riemann-Liouville) integrals, conform-
able integrals, and many types of such integrals have been
defined in these inequalities and have gained an important
place in the literature.

More precisely, fractional calculus is a big part of math-
ematics in which the mathematicians develop and extend the
existing classical ideas of integration and differentiation
operators to noninteger orders. Recently, it has received
the attention of many researchers from different areas like
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mathematicians, physicists, and engineers [9, 10]. For exam-
ple, if we consider a fluid-dynamic traffic model, then we see
that one can simulate the irregular oscillation of earthquakes
via fractional derivatives. These operators are also utilized
for modeling a main part of chemical and physical processes,
biological processes, and engineering problems. For
instance, biological population model [11], electrical circuits
[12], viscous fluid and their semianalytical solutions [13],
fractional gas dynamics [14], and fractal modeling of traffic
flow [15] are applied examples of the application of frac-
tional operators. Further, it is stated that fractional systems
provide some numerical outcomes that are more appropriate
than those given by integer-order systems [16, 17].

New investigations have developed a category of frac-
tional integration operators and their application in various
scientific fields. Using only the idea of the fundamental limit
formulation for derivatives, a novel well-behaved fractional
derivative was defined, entitled as the conformable deriva-
tive, by Khalil et al. in [18]. Some applied properties that
cannot be derived by the Riemann-Liouville and Caputo
operators are obtained by the conformable derivative. How-
ever, in [19], Abdelhakim stated that the conformable struc-
ture in [18] cannot yield acceptable data compared to the
Caputo idea for special functions. This flaw in the conform-
able definition was overcome by giving several extensions of
the conformable operators [20, 21]. Moreover, with the help
of the well-known exponential and Mittag-Leffler functions
and using them in the kernels, several researchers defined
newly expanded fractional operators such as exponential
discrete kernel-type operators [22], fractal-fractional opera-
tors [23], and some other derivatives [24, 25].

Inequalities are one of the important topics of mathe-
matics, and in this field, convex functions and their general-
izations play an important role. In [26–28], the authors
focused on Hermite–Hadamard inequalities by using the
majorization and some properties of convex functions. Later,
some other researchers combined these notions with mono-
city and boundedness [29–31]. Over the years, many math-
ematicians have concentrated on acquired trapezoidal and
midpoint-type inequalities that yield specific bounds via
the R.H.S. and L.H.S. of the Hermite–Hadamard inequality,
respectively. For instance, at first, Dragomir and Agarwal
derived trapezoid inequalities in relation to the convex func-
tions in [32], whereas Kirmac derived inequalities of mid-
point type with the help of the convex functions in [33]. In
addition, in [34], Qaisar and Hussain established a number
of generalized inequalities of midpoint type. Moreover, Sar-
ikaya et al. and Iqbal et al. derived some fractional trapezoid
and midpoint-type inequalities for a family of the convex
mappings in [35, 36], respectively. In [37, 38], studies
obtained some extensions from midpoint inequalities
involving the Riemann-Liouville operators. In [39], similar
results are derived by Hyder et al. under the generalized
Reimann-Liouville operators.

Researches on the differentiable functions of these
inequalities also have an important place in the literature.
Many researchers have focused on twice differentiable func-
tions to obtain many important inequalities. For example,
Barani et al. proved some inequalities under twice differen-

tiable mappings having the convexity property which is con-
nected to Hadamard-type inequalities in [40, 41]. In [42],
several novel extensions of integral fractional inequalities
of midpoint-trapezoid type for the abovementioned twice
differentiable functions are established. In [43], authors
obtained other class of novel inequalities in the sense of
the Simpson and Hermite–Hadamard for some special func-
tions whose absolute values of derivatives are convex.

The main goal of this paper is to acquire some new
trapezoid-type and midpoint-type inequalities with the help
of the twice differentiable function including conformable
fractional integrals. We also establish that the newly obtained
inequalities are a generalization of the existing trapezoid-type
and midpoint type inequalities. The ideas and strategies for
our results concerning trapezoid type and midpoint-type
inequalities via conformable fractional integrals may open
other directions for more research in this area.

2. Preliminaries

This section discusses the basics for building our main
results. Here, definitions of the Riemann-Liouville integrals
and conformable integrals, which are well known in the lit-
erature, are given. From the fact of fractional calculus theory,
mathematical preliminaries will be given.

For x, y > 0 (real numbers), the famous gamma function
and incomplete beta function are

Γ xð Þ≔
ð∞
0
tx−1e−tdt,

B x, y, rð Þ≔
ðr
0
tx−1 1 − tð Þy−1dt,

ð1Þ

respectively.
In 2006, Kilbas et al. [44] defined fractional integrals,

also called the Riemann-Liouville integrals (RL-integral) as
follows:

Definition 1 (see [44]). For ℏ ∈ L1½ν, ω�, the Riemann-
Liouville integrals Jϰν+ℏðxÞ and Jϰω−ℏðxÞ of order ϰ > 0 are,
respectively, given as

Jϰν+ℏ xð Þ = 1
Γ ϰð Þ

ðx
ν

x − tð Þϰ−1ℏ tð Þdt, x > ν, ð2Þ

Jϰω−ℏ xð Þ = 1
Γ ϰð Þ

ðω
x
t − xð Þϰ−1ℏ tð Þdt, x < ω, ð3Þ

where J0ν+ℏðxÞ = J0ω−ℏðxÞ = ℏðxÞ: By setting ϰ = 1, the
Riemann-Liouville integrals reduce to the classical integrals.

In 2017, Jarad et al. [25] formulated a novel fractional con-
formable integration operators. These researchers gave certain
characteristics for these operators and some other fractional
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operators defined before. The fractional conformable integral
operators are defined in the following definition:

Definition 2 (see [25]). For ℏ ∈ L1½ν, ω�, the fractional con-
formable integral operator ϰJ

μ
ν+ℏðxÞ and ϰJ μ

ω−ℏðxÞ of order
ϰ ∈ C, Re ðϰÞ > 0 and μ ∈ ð0, 1� are, respectively, given by

ϰ
J μ

ν+ℏ xð Þ = 1
Γ ϰð Þ

ðx
ν

x − νð Þμ − t − νð Þμ
μ

� �ϰ−1

Á ℏ tð Þ
t − νð Þ1−μ dt, t > ν,

ð4Þ

ϰ
J μ

ω−ℏ xð Þ = 1
Γ ϰð Þ

ðω
x

ω − xð Þμ − ω − tð Þμ
μ

� �ϰ−1

Á ℏ tð Þ
ω − tð Þ1−μ dt, t < ω:

ð5Þ

It is notable that the fractional integral in (4) coincides
with the fractional RL-integral in (2) when μ = 1. Moreover,
the fractional integral in (5) coincides with the fractional RL-
integral in (3) when μ = 1. For more studies about several
recent results in relation to fractional integral inequalities,
we can mention some versions in the context of the
Caputo-Fabrizio operators [45, 46], proportional generalized
operators [47, 48], some inequalities in the Maxwell fluid
modeling with nonsingular operators [49], conformable
integral inequalities [50], some inequalities based on the
Caputo-type operators [51], the Katugampola-type inequal-
ities [52, 53], and the references cited therein.

3. Trapezoid-Type Inequalities Based on
Conformable Fractional Integrals

In this section, inequalities of trapezoid type are obtained for
twice differentiable functions. We use the conformable frac-
tional integral operators to obtain these inequalities.

To acquire conformable fractional integrals trapezoid-
type inequalities, we consider the following lemma.

Lemma 3. Let ℏ : ½ν, ω�⟶ℝ be a twice differentiable map-
ping on ðν, ωÞ such that ℏ′′ ∈ L1ð½ν, ω�Þ. In this case, the
equality

ℏ νð Þ + ℏ ωð Þ
2

−
2μϰ−1μϰΓ ϰ + 1ð Þ

ω − νð Þμϰ
ϰ
J

μ
ν+ω/2−ℏ νð Þ + ϰ

J
μ
ν+ω/2+ℏ ωð ÞÂ Ã

= ω − νð Þ2μϰ
8

�ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

� �

Á ℏ″ 2 − t
2

ν + t
2
ω

� �
dt +

ð1
0

�ðt
0

�
1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ�
ds
�
ℏ″ t

2
ν + 2 − t

2
ω

� �
dt
�
,

ð6Þ

holds.

Proof. Employing integration by parts, it yields

I1 =
ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

� �
ℏ″ 2 − t

2 ν + t
2ω

� �
dt

= 2
ω − ν

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

� �
ℏ′ 2 − t

2 ν + t
2ω

� �����
1

0

−
2

ω − ν

ð1
0

1
μϰ

−
1 − 1 − tð Þμ

μ

� �ϰ� �
ℏ′ 2 − t

2 ν + t
2ω

� �
dt

= 2
ω − ν

ð1
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

� �
ℏ′ ν + ω

2
� �

−
2

ω − ν

(
2

ω − ν

1
μϰ

−
1 − 1 − tð Þμ

μ

� �ϰ� �
ℏ

2 − t
2 ν + t

2ω
� �����

1

0

+ 2ϰ
ω − ν

ð1
0

1 − 1 − tð Þμ
μ

� �ϰ−1
1 − tð Þμ−1ℏ 2 − t

2 ν + t
2ω

� �
dt
)

= 2
ω − ν

ð1
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

� �
f ′ ν + ω

2
� �

+ 2
ω − ν

� �2 ℏ νð Þ
μϰ

−
2

ω − ν

� �2 Γ ϰ + 1ð Þ
Γ ϰð Þ

ðν+ω/2
ν

Á 1 − 2/ω − ν ν + ω/2 − xð Þð Þμ
μ

� �ϰ−1

Á 2
ω − ν

ν + ω

2 − x
� �� �μ−1 2

ω − ν
ℏ xð Þdx

= 2
ω − ν

ð1
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ
ds

� �
ℏ′ ν + ω

2
� �

+ 2
ω − ν

� �2 ℏ νð Þ
μϰ

−
2

ω − ν

� �2+μϰ Γ ϰ + 1ð Þ
Γ ϰð Þ

Á
ðν+ω/2
ν

ω − ν/2ð Þμ − ν + ω/2 − xð Þμ
μ

� �ϰ−1

Á ℏ xð Þ
ν + ω/2 − xð Þ1−μ ℏ xð Þdx

= 2
ω − ν

ð1
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ
ds

� �
ℏ′ ν + ω

2
� �

+ 2
ω − ν

� �2 ℏ νð Þ
μϰ

−
2

ω − ν

� �2+μϰ
Γ ϰ + 1ð ÞϰJ μ

ν+ω/2−ℏ νð Þ:

ð7Þ

Likewise,

I2 =
ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

� �
ℏ″ t

2 ν +
2 − t
2 ω

� �
dt

= −
2

ω − ν

ð1
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

� �
ℏ′ ν + ω

2
� �

+ 2
ω − ν

� �2 ℏ ωð Þ
μϰ

−
2

ω − ν

� �2+μϰ
Γ ϰ + 1ð ÞϰJ μ

ν+ω/2+ℏ ωð Þ:

ð8Þ
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Then, it follows that

ω − νð Þ2μϰ
8 I1 + I2½ � = ℏ νð Þ + ℏ ωð Þ

2 −
2μϰ−1μϰΓ ϰ + 1ð Þ

ω − νð Þμϰ
Á ϰJ

μ
ν+ω/2−ℏ νð Þ + ϰ

J
μ
ν+ω/2+ℏ ωð ÞÂ Ã

:

ð9Þ

So, the proof is accomplished.

Theorem 4. Consider ℏ : ½ν, ω�⟶ℝ as a twice differentia-
ble mapping on ðν, ωÞ s.t. ℏ″ ∈ L1ð½ν, ω�Þ . If jℏ′′j is convex
on ½ν, ω�, then

ℏ νð Þ + ℏ ωð Þ
2

−
2μϰ−1μϰΓ ϰ + 1ð Þ

ω − νð Þμϰ
ϰ
J

μ
ν+ω/2−ℏ νð Þ + ϰ

J
μ
ν+ω/2+ℏ ωð ÞÂ Ã����

����
≤

ω − νð Þ2μϰ
8

Φ1 μ, ϰð Þ ℏ″ νð Þ�� �� + ℏ′′ ωð Þ�� ��� �
,

ð10Þ

where

Φ1 μ, ϰð Þ =
ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����dt

= 1
μϰ

ð1
0
t −

1
μ
B ϰ + 1, 1

μ
, 1 − 1 − tð Þμ

� �����
����dt:

ð11Þ

Proof. Taking the absolute value of both sides of (6), we derive

ℏ νð Þ + ℏ ωð Þ
2 −

2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰ
J

μ
ν+ω/2−ℏ νð Þ + ϰ

J
μ
ν+ω/2+ℏ ωð ÞÂ Ã����

����
≤

ω − νð Þ2μϰ
8

�ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����

Á ℏ″ 2 − t
2 ν + t

2ω
� �����

����dt +
ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����

Á ℏ″ t
2 ν +

2 − t
2 ω

� �����
����dt
�
:

ð12Þ

By using the convexity property of the jℏ″j, we establish

ℏ νð Þ + ℏ ωð Þ
2 −

2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰ
J

μ
ν+ω/2−ℏ νð Þ + ϰ

J
μ
ν+ω/2+ℏ ωð ÞÂ Ã����

����
≤

ω − νð Þ2μϰ
8

�ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����
� 2 − t

2

Á ℏ′ νð Þ�� �� + t
2 ℏ′ ωð Þ�� ���dt + ð1

0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����

Á t
2 ℏ′ νð Þ�� �� + 2 − t

2 ℏ′ ωð Þ�� ��� �
dt
�

= ω − νð Þ2μϰ
8

ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����dt

� �

Á ℏ′ νð Þ�� �� + ℏ′ ωð Þ�� ��� �
:

ð13Þ

The proof is ended.

Remark 5. In Theorem 11, we have the inequalities as follows:

(i) If we set μ = 1 in (10), then Theorem 4 leads to [42],
Corollary 7.

(ii) If we take μ = 1 and ϰ = 1 in (10), then Theorem 4
leads to [43], Proposition 2.

Theorem 6. Assume that ℏ : ½ν, ω�⟶ℝ is a twice differen-
tiable function on ðν, ωÞ s.t. ℏ′′ ∈ Lpð½ν, ω�Þ with ν < ω. Let

jℏ′′jq be convex on ½ν, ω� with q > 1. Then, the inequality

ℏ νð Þ + ℏ ωð Þ
2

−
2μϰ−1μϰΓ ϰ + 1ð Þ

ω − νð Þμϰ
ϰ
J

μ
ν+ω/2−ℏ νð Þ + ϰ

J
μ
ν+ω/2+ℏ ωð ÞÂ Ã����

����
≤

ω − νð Þ2μϰ
8

Θϰ
μ pð Þ

"
3 ℏ″ νð Þ�� ��q + ℏ″ ωð Þ�� ��q

4

 !1/q

+ ℏ″ νð Þ�� ��q + 3 ℏ″ ωð Þ�� ��q
4

 !1/q#

≤
ω − νð Þ2μϰ
23−2/p

Θϰ
μ pð Þ ℏ″ νð Þ�� ��q + ℏ″ ωð Þ�� ��qh i

,

ð14Þ

holds, where 1/q + 1/p = 1 and

Θϰ
μ pð Þ =

ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����
p

dt

 !1/q

: ð15Þ

Proof. By employing the Hölder inequality on (12), we have

ℏ νð Þ + ℏ ωð Þ
2 −

2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰ
J

μ
ν+ω/2−ℏ νð Þ + ϰ

J
μ
ν+ω/2+ℏ ωð ÞÂ Ã����

����
≤

ω − νð Þ2μϰ
8

" ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����
p

dt
 !1/p

Á
ð1
0
ℏ″ 2 − t

2 ν + t
2ω

� �����
����
q

dt
� �1/q

+
ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����
p

dt
 !1/p

Á
ð1
0
ℏ″ t

2 ν +
2 − t
2 ω

� �����
����
q

dt
� �1/q#

:

ð16Þ

For the sake of the convexity of jℏ′′jq on ½ν, ω�, we get
ð1
0
ℏ″ 2 − t

2 ν + t
2ω

� �����
����
q

dt

≤
ð1
0

2 − t
2 ℏ″ νð Þ�� ��q + t

2 ℏ″ ωð Þ�� ��q� �
dt

= 3 ℏ″ νð Þ�� ��q + ℏ″ ωð Þ�� ��q
4 ,

ð17Þ
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and similarly

ð1
0
ℏ″ t

2 ν +
2 − t
2 ω

� �����
����
q

dt ≤ ℏ″ νð Þ�� ��q + 3 ℏ″ ωð Þ�� ��q
4 : ð18Þ

If we substitute the inequalities (17) and (18) in (16), the
first inequality of (14) will be established.

The next inequality is derived directly if we let ϖ1 = 3
jℏ′′ðνÞjq,ρ1 = jℏ′′ðωÞjq,ϖ2 = jℏ′′ðνÞjq, and ρ2 = 3jℏ′′ðωÞjq
and apply the inequality

〠
n

k=1
ϖk + ρkð Þs ≤ 〠

n

k=1
ϖs
k + 〠

n

k=1
ρsk, 0 ≤ s < 1: ð19Þ

Thus, our deduction is ended.

Corollary 7. In Theorem 6, we have the inequalities as
follows:

(i) If we set μ = 1 in Theorem 6, we derive

ℏ νð Þ + ℏ ωð Þ
2

−
2ϰ−1Γ ϰ + 1ð Þ

ω − νð Þϰ Jϰν+ω/2−ℏ νð Þ + Jϰν+ω/2+ℏ ωð Þ½ �
����

����
≤

ω − νð Þ2
8

1
p + 1

−
1

ϰ + 1ð Þp ϰp + p + 1ð Þ
� �

×
"

3 ℏ″ νð Þ�� ��q + ℏ″ ωð Þ�� ��q
4

 !1/q

+ ℏ″ νð Þ�� ��q + 3 ℏ″ ωð Þ�� ��q
4

 !1/q#

≤
ω − νð Þ2
23−2/p

1
p + 1

−
1

ϰ + 1ð Þp ϰp + p + 1ð Þ
� �

Á ℏ″ νð Þ�� ��q + ℏ″ ωð Þ�� ��qh i
:

ð20Þ

Proof. For the proof, it will be sufficient to write down the
solution of the integral below.

Θϰ
μ pð Þ =Θϰ

1 pð Þ =
ð1
0

ðt
0
1 − sϰð Þds

����
����
p

dt
� �1/p

=
ð1
0
t −

tϰ+1

ϰ + 1

����
����
p

dt
 !1/p

:

ð21Þ

Under conditions A > B > 0 and p > 1, the inequality

A − Bj jp ≤ Ap − Bp ð22Þ

is satisfied.

From the inequality (22), A = t and B = tϰ+1/ϰ + 1, we
have

Θϰ
1 pð Þ ≤

ð1
0
tpdt −

ð1
0

tϰ+1

ϰ + 1

� �p

dt
 !1/p

= 1
p + 1 −

1
ϰ + 1ð Þp ϰp + p + 1ð Þ

� �1/p
:

ð23Þ

When the solution of Θϰ
μðpÞ is substituted for (14), the

proof is clear.

(ii) If we take μ = 1 and ϰ = 1 in Theorem 6, then

ℏ νð Þ + ℏ ωð Þ
2 −

1
ω − νð Þ

ðω
ν

ℏ xð Þdx
����

����
≤

ω − νð Þ2
8

1
p + 1 −

1
2p 2p + 1ð Þ

� �

Á
"

3 ℏ″ νð Þ�� ��q + ℏ″ ωð Þ�� ��q
4

 !1/q

+ ℏ″ νð Þ�� ��q + 3 ℏ″ ωð Þ�� ��q
4

 !1/q#

≤
ω − νð Þ2
23−2/p

1
p + 1 −

1
2p 2p + 1ð Þ

� �

Á ℏ″ νð Þ�� ��q + ℏ″ ωð Þ�� ��qh i
:

ð24Þ

Theorem 8. Consider ℏ : ½ν, ω�⟶ℝ as a twice differentia-
ble mapping on ðν, ωÞ s.t. ℏ″ ∈ Lqð½ν, ω�Þ. Assume that

jℏ′′jq admits the convexity property on ½ν, ω� with q ≥ 1.
Then,

ℏ νð Þ + ℏ ωð Þ
2

−
2μϰ−1μϰΓ ϰ + 1ð Þ

ω − νð Þμϰ
ϰ
J

μ
ν+ω/2−ℏ νð Þ + ϰ

J
μ
ν+ω/2+ℏ ωð ÞÂ Ã����

����
≤

ω − νð Þ2μϰ
8

Φ1 μ, ϰð Þð Þ1−1/q ×
"�

2Φ1 μ, ϰð Þ −Φ2 μ, ϰð Þð Þ
2

Á ℏ″ νð Þ�� ��q + Φ2 μ, ϰð Þ
2

ℏ″ ωð Þ�� ��q�1/q
+
�
Φ2 μ, ϰð Þ

2

Á ℏ″ νð Þ�� ��q + 2Φ1 μ, ϰð Þ −Φ2 μ, ϰð Þð Þ
2

ℏ″ ωð Þ�� ��q�1/q#
,

ð25Þ

holds, where

Φ2 μ, ϰð Þ =
ð1
0
t
ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����dt

= 1
μϰ

ð1
0
t t −

1
μ
B ϰ + 1, 1

μ
, 1 − 1 − tð Þμ

� �����
����dt:

ð26Þ
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Proof. By employing the power-mean inequality in (12), we
have

ℏ νð Þ + ℏ ωð Þ
2 −

2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰ
J

μ
ν+ω/2−ℏ νð Þ + ϰ

J
μ
ν+ω/2+ℏ ωð ÞÂ Ã����

����
≤

ω − νð Þ2μϰ
8

" ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����dt

� �1−1/q

×
�ð1

0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����

Á ℏ″ 2 − t
2 ν + t

2ω
� �����

����
q

dt
�1/q

+
ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����dt

� �1−1/q

×
�ð1

0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����

Á ℏ″ t
2 ν +

2 − t
2 ω

� �����
����
q

dt
�1/q#

:

ð27Þ

We know that jℏ′jq is convex. Thus,

ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
���� ℏ″ 2 − t

2 ν + t
2ω

� �����
����
q

dt

≤
ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
����

Á 2 − t
2 ℏ″ νð Þ�� ��q + t

2 ℏ″ ωð Þ�� ��q� �
dt

= 2Φ1 μ, ϰð Þ −Φ2 μ, ϰð Þð Þ
2 ℏ″ νð Þ�� ��q

+ Φ2 μ, ϰð Þ
2 ℏ″ ωð Þ�� ��q,

ð28Þ

and similarly

ð1
0

ðt
0

1
μϰ

−
1 − 1 − sð Þμ

μ

� �ϰ� �
ds

����
���� ℏ″ t

2 ν +
2 − t
2 ω

� �����
����
q

dt

≤
Φ2 μ, ϰð Þ

2 ℏ″ νð Þ�� ��q + 2Φ1 μ, ϰð Þ −Φ2 μ, ϰð Þð Þ
2 ℏ″ ωð Þ�� ��q:

ð29Þ

Substituting the inequalities (28) and (29) in (27), we
derive the desired result.

Corollary 9. In Theorem 8, we have the inequalities as
follows:

(i) By choosing μ = 1 in Theorem 8, we derive

ℏ νð Þ + ℏ ωð Þ
2

−
2ϰ−1Γ ϰ + 1ð Þ

ω − νð Þϰ Jϰν+ω/2−ℏ νð Þ + Jϰν+ω/2+ℏ ωð Þ½ �
����

����
≤

ω − νð Þ2
8

1
2
−

1
ϰ + 1ð Þ ϰ + 2ð Þ

� �1−1/q

×
"�

1
3
−

ϰ + 4
2 ϰ + 1ð Þ ϰ + 2ð Þ ϰ + 3ð Þ

� �
ℏ″ νð Þ�� ��q

+ 1
6
−

1
2 ϰ + 1ð Þ ϰ + 3ð Þ

� �
ℏ″ ωð Þ�� ��q�1/q

+
�

1
6
−

1
2 ϰ + 1ð Þ ϰ + 3ð Þ

� �
ℏ″ νð Þ�� ��q

+ 1
3
−

ϰ + 4
2 ϰ + 1ð Þ ϰ + 2ð Þ ϰ + 3ð Þ

� �
ℏ″ ωð Þ�� ��q�1/q#

:

ð30Þ

(ii) If we take μ = 1 and ϰ = 1 in Theorem 8, we derive

ℏ νð Þ + ℏ ωð Þ
2

−
1

ω − νð Þ
ðω
ν

ℏ xð Þdx
����

����
≤

ω − νð Þ2
24

"
11
16

ℏ″ νð Þ�� ��q + 5
16

ℏ″ ωð Þ�� ��q� �1/q

+ 5
16

ℏ″ νð Þ�� ��q + 11
16

ℏ″ ωð Þ�� ��q� �1/q
#
:

ð31Þ

4. Midpoint-Type Inequalities Based on
Conformable Fractional Integrals

In this section, midpoint-type inequalities are created for
twice differentiable functions with the help of conformable
fractional integrals. To formulate these inequalities, let us
first set up the following identity.

Lemma 10. Let ℏ : ½ν, ω�⟶ℝ be a twice differentiable map
on ðν, ωÞ with ℏ′′ ∈ L1ð½ν, ω�Þ. Then, the equality

2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰJ
μ
ν+ω/2+ℏ ωð Þ + ϰJ

μ
ν+ω/2−ℏ νð ÞÂ Ã

− ℏ
ν + ω

2

� �

= ω − νð Þ2μϰ
8

�ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

� �
ℏ″ 2 − t

2
ν + t

2
ω

� �
dt

+
ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

� �
ℏ″ t

2
ν + 2 − t

2
ω

� �
dt
�

ð32Þ

is valid.
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Proof. With the help of the integration by parts

I3 =
ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

� �
ℏ″ 2 − t

2 ν + t
2ω

� �
dt

= 2
ω − ν

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

� �
ℏ′ 2 − t

2 ν + t
2ω

� �����
1

0

−
2

ω − ν

ð1
0

1 − 1 − tð Þμ
μ

� �ϰ
ℏ′ 2 − t

2 ν + t
2ω

� �
dt

= 2
ω − ν

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

� �
ℏ′ ν + ω

2
� �

−
2

ω − ν

2
ω − ν

1 − 1 − tð Þμ
μ

� �ϰ

ℏ
2 − t
2 ν + t

2ω
� �����

1

0

(

−
2ϰ

ω − ν

ð1
0

1 − 1 − tð Þμ
μ

� �ϰ−1
1 − tð Þμ−1dt:

ð33Þ

By using variable change, equality is obtained as follows:

I3 =
2

ω − ν

ð1
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

� �
ℏ′ ν + ω

2
� �

−
2

ω − ν

� �2 1
μϰ

ℏ
ν + ω

2
� �

+ 2
ω − ν

� �2+μϰ Γ ϰ + 1ð Þ
Γ ϰð Þ

ðν+ω/2
ν

Á ω − ν/2ð Þμ − ν + ω/2 − xð Þμ
μ

� �ϰ−1 ℏ xð Þ
ν + ω/2 − xð Þ1−μ ℏ xð Þdx

= 2
ω − ν

ð1
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

� �
ℏ′ ν + ω

2
� �

−
2

ω − ν

� �2

Á 1
μϰ

ℏ
ν + ω

2
� �

+ 2
ω − ν

� �2+μϰ
Γ ϰ + 1ð ÞϰJ μ

ν+ω/2−ℏ νð Þ:

ð34Þ

In the same way,

I4 =
ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

� �
ℏ″ t

2 ν +
2 − t
2 ω

� �
dt

= −
2

ω − ν

ð1
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

� �
ℏ′ ν + ω

2
� �

−
2

ω − ν

� �2 1
μϰ

ℏ
ν + ω

2
� �

+ 2
ω − ν

� �2+μϰ
Γ ϰ + 1ð ÞϰJ μ

ν+ω/2+ℏ ωð Þ:

ð35Þ

If (34) and (35) are added together and then multiplied
by ðω − νÞ2μϰ/8, the proof is completed.

Theorem 11. Assume ℏ : ½ν, ω�⟶ℝ as a twice differentia-
ble function on ðν, ωÞ s.t. ℏ′′ ∈ L1ð½ν, ω�Þ. By considering the
convexity of jℏ′′j on ½ν, ω�, the inequality

2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰJ
μ
ν+ω/2+ℏ ωð Þ + ϰJ

μ
ν+ω/2−ℏ νð ÞÂ Ã

− ℏ
ν + ω

2

� �����
����

≤
ω − νð Þ2μϰ

8
Y1 μ, ϰð Þ ℏ″ νð Þ�� �� + ℏ″ ωð Þ�� ��� �

ð36Þ

is satisfied, where B denotes the beta function and

Y1 μ, ϰð Þ =
ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
����dt

= 1
μϰ

ð1
0

1
μ
B ϰ + 1, 1

μ
, 1 − 1 − tð Þμ

� �����
����dt:

ð37Þ

Proof. On both sides of (32), we take the absolute value and
get

2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰ
J

μ
ν+ω/2+ℏ ωð Þ + ϰ

J
μ
ν+ω/2−ℏ νð ÞÂ Ã

− ℏ
ν + ω

2
� �����

����
≤

ω − νð Þ2μϰ
8

�ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
���� ℏ″ 2 − t

2 ν + t
2ω

� �����
����dt

+
ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
���� ℏ″ t

2 ν +
2 − t
2 ω

� �����
����dt
�
:

ð38Þ

Since convexity of jℏ″j, then we have

2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰ
J

μ
ν+ω/2+ℏ ωð Þ + ϰ

J
μ
ν+ω/2−ℏ νð ÞÂ Ã

− ℏ
ν + ω

2
� �����

����
≤

ω − νð Þ2μϰ
8

�ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
����

Á 2 − t
2 ℏ″ νð Þ�� �� + t

2 ℏ″ ωð Þ�� ��� �
dt

+
ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
���� t

2 ℏ″ νð Þ�� �� + 2 − t
2 ℏ″ ωð Þ�� ��� �

dt
�

= ω − νð Þ2μϰ
8

ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
����dt

� �

Á ℏ″ νð Þ�� �� + ℏ″ ωð Þ�� ��� �
:

ð39Þ

Remark 12. In Theorem 11:

(i) If we set μ = 1, then we lead to [42], Theorem 1.5.

(ii) If we allow μ = 1 and ϰ = 1, then Theorem 11 and
[43], Proposition 1 are identical.

Theorem 13. Let ℏ : ½ν, ω�⟶ℝ be a twice differentiable
map on ðν, ωÞ s.t. ℏ′′ ∈ L1ð½ν, ω�Þ . Let jℏ′′j

q
be convex on ½

ν, ω� with q > 1. Then,
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2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰ
J

μ
ν+ω/2+ℏ ωð Þ + ϰ

J
μ
ν+ω/2−ℏ νð ÞÂ Ã

− ℏ
ν + ω

2

� �����
����

≤
ω − νð Þ2

2
Yϰ
μ pð Þ

� �1/p" 3 ℏ″ νð Þ�� ��q + ℏ″ ωð Þ�� ��q
4

 !1/q

+ ℏ″ νð Þ�� ��q + 3 ℏ″ ωð Þ�� ��q
4

 !1/q#

≤
ω − νð Þ2

2
4Yϰ

μ pð Þ
� �1/p

ℏ″ νð Þ�� �� + ℏ″ ωð Þ�� ��h i
,

ð40Þ

where 1/p + 1/q = 1, and

Yϰ
μ pð Þ =

ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
����
p

dt: ð41Þ

Proof. Using the Hölder inequality in (38), we have

2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰ
J

μ
ν+ω/2+ℏ ωð Þ + ϰ

J
μ
ν+ω/2−ℏ νð ÞÂ Ã

− ℏ
ν + ω

2
� �����

����
≤

ω − νð Þ2μϰ
8

" ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
����
p

dt
 !1/p

Á
ð1
0
ℏ″ 2 − t

2 ν + t
2ω

� �����
����
q

dt
� �1/q

+
ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
����
p

dt
 !1/p

Á
ð1
0
ℏ″ t

2 ν +
2 − t
2 ω

� �����
����
q

dt
� �1/q#

:

ð42Þ

Since jℏ′′jq is convex, we obtain

2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰ
J

μ
ν+ω/2+ℏ ωð Þ + ϰ

J
μ
ν+ω/2−ℏ νð ÞÂ Ã

− ℏ
ν + ω

2
� �����

����
≤

ω − νð Þ2μϰ
8

" ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
����
p

dt
 !1/p

Á
ð1
0

2 − t
2 ℏ″ νð Þ�� ��q + t

2 ℏ″ ωð Þ�� ��q� �
dt

� �1/q

+
ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
����
p

dt

 !1/p

Á
ð1
0

2 − t
2 ℏ″ νð Þ�� ��q + t

2 ℏ″ ωð Þ�� ��q� �
dt

� �1/q#
:

ð43Þ

If we substitute the inequalities (17) and (18) in (43), we
obtain the first inequality of (40).

The last inequality is established by letting ϖ1 = 3
jℏ″ðνÞjq,ρ1 = jℏ″ðωÞjq,ϖ2 = jℏ″ðνÞjq, and ρ2 = 3jℏ″ðωÞjq
and with help of the inequality (19).

Corollary 14. In Theorem 13, we have the inequalities as
follows:

(i) If we set μ = 1 in Theorem 13, we derive

2ϰ−1Γ ϰ + 1ð Þ
ω − νð Þϰ Jϰν+ω/2+ℏ ωð Þ + Jϰν+ω/2−ℏ νð Þ½ � − ℏ

ν + ω

2

� �����
����

≤
ω − νð Þ2
2 ϰ + 1ð Þ

1
ϰp + p + 1

� �1/p
"

3 ℏ″ νð Þ�� ��q + ℏ″ ωð Þ�� ��q
4

 !1/q

+ ℏ″ νð Þ�� ��q + 3 ℏ″ ωð Þ�� ��q
4

 !1/q#

≤
ω − νð Þ2
2 ϰ + 1ð Þ

4
ϰp + p + 1

� �1/p
ℏ″ νð Þ�� �� + ℏ″ ωð Þ�� ��h i

:

ð44Þ

(ii) If we take μ = 1 and ϰ = 1 in Theorem 13, we have

1
ω − ν

ðω
ν

ℏ xð Þdx − ℏ
ν + ω

2

� �����
����

≤
ω − νð Þ2

4
1

2p + 1

� �1/p
"

3 ℏ″ νð Þ�� ��q + ℏ″ ωð Þ�� ��q
4

 !1/q

+ ℏ″ νð Þ�� ��q + 3 ℏ″ ωð Þ�� ��q
4

 !1/q#

≤
ω − νð Þ2

4
4

2p + 1

� �1/p
ℏ″ νð Þ�� �� + ℏ″ ωð Þ�� ��h i

:

ð45Þ

Theorem 15. Let ℏ : ½ν, ω�⟶ℝ be a twice differentiable
map on ðν, ωÞ s.t. ℏ′′ ∈ L1ð½ν, ω�Þ. Suppose that jℏ′j

q
is con-

vex on ½ν, ω� with q ≥ 1. Then,

2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰ
J

μ
ν+ω/2+ℏ ωð Þ + ϰ

J
μ
ν+ω/2−ℏ νð ÞÂ Ã

− ℏ
ν + ω

2

� �����
����

≤
ω − νð Þ2μϰ

8
Y1 μ, ϰð Þð Þ1−1/q ×

"�
2Y1 μ, ϰð Þ − Y2 μ, ϰð Þ

2

Á ℏ″ νð Þ�� ��q + Y2 μ, ϰð Þ
2

ℏ″ ωð Þ�� ��qdt�1/q
+
�
Y2 μ, ϰð Þ

2

Á ℏ″ νð Þ�� ��q + 2Y1 μ, ϰð Þ − Y2 μ, ϰð Þ
2

ℏ″ ωð Þ�� ��qdt�1/q#
,

ð46Þ
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in which B depicts the beta function, and Y1ðμ, ϰÞ is defined
as in (37). Here,

Y2 μ, ϰð Þ =
ð1
0

ðt
0
t
1 − 1 − sð Þμ

μ

� �ϰ
ds

����
����dt

= 1
μϰ

ð1
0
t
1
μ
B ϰ + 1, 1

μ
, 1 − 1 − tð Þμ

� �����
����dt:

ð47Þ

Proof. By utilizing the power-mean inequality in (38), it
becomes

2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰ
J

μ
ν+ω/2+ℏ ωð Þ + ϰ

J
μ
ν+ω/2−ℏ νð ÞÂ Ã

− ℏ
a + ω

2
� �����

����
≤

ω − νð Þ2μϰ
8

" ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
����dt

� �1−1/q

×
ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
���� ℏ″ 2 − t

2 ν + t
2ω

� �����
����
q

dt
� �1/q

+
ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
����dt

� �1−1/q

×
ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
���� ℏ″ 2 − t

2 ν + t
2ω

� �����
����
q

dt
� �1/q#

:

ð48Þ

Due to the convexity of jℏ′′jq on ½ν, b�, we may write

2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰ
J

μ
ν+ω/2+ℏ ωð Þ + ϰ

J
μ
ν+ω/2−ℏ νð ÞÂ Ã

− ℏ
ν + ω

2
� �����

����
≤

ω − νð Þ2μϰ
8

ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
����dt

� �1−1/q

×
" ð1

0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
���� 2 − t

2 ℏ″ νð Þ�� ��q + t
2 ℏ″ ωð Þ�� ��qdt� �1/q

+
ð1
0

ðt
0

1 − 1 − sð Þμ
μ

� �ϰ
ds

����
���� t2 ℏ″ νð Þ�� ��q + 2 − t

2 ℏ″ ωð Þ�� ��qdt� �1/q#
:

ð49Þ

It is clearly seen that

2μϰ−1μϰΓ ϰ + 1ð Þ
ω − νð Þμϰ

ϰ
J

μ
ν+ω/2+ℏ ωð Þ + ϰ

J
μ
ν+ω/2−ℏ νð ÞÂ Ã

− ℏ
ν + ω

2
� �����

����
≤

ω − νð Þ2μϰ
8 Y1 μ, ϰð Þð Þ1−1/q

×
"

2Y1 μ, ϰð Þ − Y2 μ, ϰð Þ
2 ℏ″ νð Þ�� ��q + Y2 μ, ϰð Þ

2 ℏ″ ωð Þ�� ��qdt� �1/q

+ Y2 μ, ϰð Þ
2 ℏ″ νð Þ�� ��q + 2Y1 μ, ϰð Þ − Y2 μ, ϰð Þ

2 ℏ″ ωð Þ�� ��qdt� �1/q
#
:

ð50Þ

The proof is ended.

Corollary 16. In Theorem 15,

(i) if we set μ = 1, then we acquire

2ϰ−1Γ ϰ + 1ð Þ
ω − νð Þϰ Jϰν+ω/2+ℏ ωð Þ + Jϰν+ω/2−ℏ νð Þ½ � − ℏ

ν + ω

2

� �����
����

≤
ω − νð Þ2

8
1

ϰ + 1ð Þ ϰ + 2ð Þ
� �1−1/q

×
"�

ϰ + 4
2 ϰ + 1ð Þ ϰ + 2ð Þ ϰ + 3ð Þ ℏ″ νð Þ�� ��q

+ 1
2 ϰ + 1ð Þ ϰ + 3ð Þ ℏ″ ωð Þ�� ��qdt�1/q

+
�

1
2 ϰ + 1ð Þ ϰ + 3ð Þ ℏ″ νð Þ�� ��q

+ ϰ + 4
2 ϰ + 1ð Þ ϰ + 2ð Þ ϰ + 3ð Þ
� �

ℏ″ ωð Þ�� ��qdt�1/q#
,

ð51Þ

(ii) if we take μ = 1 and ϰ = 1, we obtain

1
ω − ν

ðω
ν

ℏ xð Þdx − ℏ
ν + ω

2

� �����
����

≤
ω − νð Þ2
48

"
5
8
ℏ″ νð Þ�� ��q + 3

8
ℏ″ ωð Þ�� ��qdt� �1/q

+ 3
8
ℏ″ νð Þ�� ��q + 5

8
ℏ″ ωð Þ�� ��qdt� �1/q

#
:

ð52Þ

5. Conclusion

In this research, we established new estimates of trapezoid
type and midpoint-type inequalities via conformable frac-
tional integrals under twice differentiable functions. These
inequalities were proven to be generalizations of the
Riemann-Liouville fractional integrals related to inequalities
of trapezoid type and midpoint type. In future works,
researchers can obtain likewise inequalities of midpoint type
and trapezoid type via conformable fractional integrals for
convex functions in the context of quantum calculus. More-
over, curious readers can investigate our obtained inequal-
ities via different kinds of fractional integrals.

Data Availability

No data were generated or analyzed during the current
study.

Conflicts of Interest

The authors declare that they have no competing interests.

Authors’ Contributions

Conceptualization was performed by H.K. and H.B.; formal
analysis was contributed by H.K., H.B., S.E., S.R., and

9Journal of Function Spaces



M.K.A.K.; methodology was performed by H.K., H.B., S.E.,
S.R., and M.K.A.K.; H.B. and S.E. were assigned for the soft-
ware. All authors have read and agreed to the published ver-
sion of the manuscript.

Acknowledgments

The third and fourth authors would like to thank Azarbaijan
Shahid Madani University.

References

[1] A. Alsaedi, M. Alsulami, H. M. Srivastava, B. Ahmad, and S. K.
Ntouyas, “Existence theory for nonlinear third-order ordinary
differential equations with nonlocal multi-point and multi-
strip boundary conditions,” Symmetry, vol. 11, no. 2, p. 281,
2019.

[2] D. Baleanu, S. Etemad, and S. Rezapour, “A hybrid Caputo
fractional modeling for thermostat with hybrid boundary
value conditions,” Boundary Value Problems, vol. 2020, no. 1,
2020.

[3] C. Thaiprayoon, W. Sudsutad, J. Alzabut, S. Etemad, and
S. Rezapour, “On the qualitative analysis of the fractional
boundary value problem describing thermostat control model
via ψ-Hilfer fractional operator,” Advances in Differential
Equations, vol. 2021, no. 1, 2021.

[4] M. Aslam, R. Murtaza, T. Abdeljawad et al., “A fractional order
HIV/AIDS epidemic model with Mittag-Leffler kernel,”
Advances in Differential Equations, vol. 2021, no. 1, 2021.

[5] J. K. K. Asamoah, E. Okyere, E. Yankson et al., “Non-fractional
and fractional mathematical analysis and simulations for Q
fever,” Chaos, Solitons & Fractals, vol. 156, article 111821,
2022.

[6] H. Mohammadi, S. Kumar, S. Rezapour, and S. Etemad, “A
theoretical study of the Caputo-Fabrizio fractional modeling
for hearing loss due to mumps virus with optimal control,”
Chaos, Solitons & Fractals, vol. 144, article 110668, 2021.

[7] H. Khan, Y. G. Li, W. Chen, D. Baleanu, and A. Khan, “Exis-
tence theorems and Hyers-Ulam stability for a coupled system
of fractional differential equations with p-Laplacian operator,”
Boundary Value Problems, vol. 2017, no. 1, 2017.

[8] S. Etemad, I. Avci, P. Kumar, D. Baleanu, and S. Rezapour,
“Some novel mathematical analysis on the fractal-fractional
model of the AH1N1/09 virus and its generalized Caputo-
type version,” Chaos, Solitons & Fractals, vol. 162, article
112511, 2022.

[9] G. A. Anastassiou, Generalized Fractional Calculus: New
Advancements and Applications, Springer, Switzerland, 2021.

[10] D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional
Calculus: Models and Numerical Methods, World Scientific,
Singapore, 2016.

[11] N. Attia, A. Akgül, D. Seba, and A. Nour, “An efficient numer-
ical technique for a biological population model of fractional
order,” Chaos, Solutions & Fractals, vol. 141, article 110349,
2020.

[12] A. Gabr, A. H. Abdel Kader, and M. S. Abdel Latif, “The effect
of the parameters of the generalized fractional derivatives on
the behavior of linear electrical circuits,” International Journal
of Applied and Computational Mathematics, vol. 7, no. 6, 2021.

[13] M. A. Imran, S. Sarwar, M. Abdullah, and I. Khan, “An analy-
sis of the semi-analytic solutions of a viscous fluid with old and

new definitions of fractional derivatives,” Chinese Journal of
Physics, vol. 56, no. 5, pp. 1853–1871, 2018.

[14] N. Iqbal, A. Akgül, R. Shah, A. Bariq, M. M. Al-Sawalha, and
A. Ali, “On solutions of fractional-order gas dynamics equa-
tion by effective techniques,” Journal of Function Spaces,
vol. 2022, Article ID 3341754, 14 pages, 2022.

[15] L. F. Wang, X. J. Yang, D. Baleanu, C. Cattani, and Y. Zhao,
“Fractal dynamical model of vehicular traffic flow within the
local fractional conservation laws,” Abstract and Applied Anal-
ysis, vol. 2014, Article ID 635760, 5 pages, 2014.

[16] M. A. Barakat, A. H. Soliman, and A. Hyder, “Langevin equa-
tions with generalized proportional Hadamard–Caputo frac-
tional derivative,” Computational Intelligence and Neuroscience,
vol. 2021, Article ID 6316477, 18 pages, 2021.

[17] H. Budak, S. K. Yıldırım, M. Z. Sarıkaya, and H. Yıldırım,
“Some parameterized Simpson-, midpoint- and trapezoid-
type inequalities for generalized fractional integrals,” Journal
of Inequalities and Applications, vol. 2022, no. 1, 2022.

[18] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, “A new
definition of fractional derivative,” Journal of Computational
and Applied Mathematics, vol. 264, pp. 65–70, 2014.

[19] A. A. Abdelhakim, “The flaw in the conformable calculus: it is
conformable because it isnot fractional,” Fractional Calculus
and Applied Analysis, vol. 22, no. 2, pp. 242–254, 2019.

[20] A. Hyder and A. H. Soliman, “A new generalized θ-conform-
able calculus and its applications in mathematical physics,”
Physica Scripta, vol. 96, no. 1, article 015208, 2021.

[21] D. Zhao and M. Luo, “General conformable fractional deriva-
tive and its physical interpretation,” Calcolo, vol. 54, no. 3,
pp. 903–917, 2017.

[22] T. Abdeljawad and D. Baleanu, “Monotonicity results for frac-
tional difference operators with discrete exponential kernels,”
Advances in Differential Equations, vol. 2017, no. 1, 2017.

[23] A. Atangana and D. Baleanu, “New fractional derivatives with
nonlocal and non-singular kernel: theory and application to
heat transfer model,” Thermal Science, vol. 20, no. 2,
pp. 763–769, 2016.

[24] A. Hyder and M. A. Barakat, “Novel improved fractional oper-
ators and their scientific applications,” Advances in Differential
Equations, vol. 2021, no. 1, 2021.

[25] F. Jarad, E. Uğurlu, T. Abdeljawad, and D. Baleanu, “On a new
class of fractional operators,” Advances in Difference Equa-
tions, vol. 2017, no. 1, 2017.

[26] S. Faisal, M. Adil Khan, T. U. Khan, T. Saeed, and Z. M. M. M.
Sayed, “Unifications of continuous and discrete fractional
inequalities of the Hermite–Hadamard–Jensen–Mercer type
via majorization,” Journal of Function Spaces, vol. 2022, Article
ID 6964087, 24 pages, 2022.

[27] S. Faisal, M. A. Khan, and S. Iqbal, “Generalized Hermite-
Hadamard-Mercer type inequalities via majorization,” Filo-
mat, vol. 36, no. 2, pp. 469–483, 2022.

[28] S. Faisal, M. A. Khan, T. U. Khan, T. Saeed, A. M. Alshehri,
and E. R. Nwaeze, “New “conticrete” Hermite–Hadamard–
Jensen–Mercer fractional inequalities,” Symmetry, vol. 14,
no. 2, p. 294, 2022.

[29] T. H. Zhao, M. K. Wang, and Y. M. Chu, “Concavity and
bounds involving generalized elliptic integral of the first kind,”
Journal of Mathematical Inequalities, vol. 15, no. 2, pp. 701–
724, 2021.

[30] T. H. Zhao, M. K. Wang, and Y. M. Chu, “Monotonicity and
convexity involving generalized elliptic integral of the first

10 Journal of Function Spaces



kind,” Revista de la Real Academia de Ciencias Exactas, Físicas
y Naturales. Serie A. Matemáticas, vol. 115, no. 2, 2021.

[31] T. H. Zhao, L. Shi, and Y. M. Chu, “Convexity and concavity of
the modified Bessel functions of the first kind with respect to
Hölder means,” Revista de la Real Academia de Ciencias
Exactas, Físicas y Naturales. Serie A. Matemáticas, vol. 114,
no. 2, 2020.

[32] S. S. Dragomir and R. P. Agarwal, “Two inequalities for differ-
entiable mappings and applications to special means of real
numbers and to trapezoidal formula,” Applied Mathematics
Letters, vol. 11, no. 5, pp. 91–95, 1998.

[33] U. S. Kirmac, “Inequalities for differentiable mappings and
applications to special means of real numbers and to midpoint
formula,” Applied Mathematics and Computation, vol. 147,
no. 1, pp. 137–146, 2004.

[34] S. Qaisar and S. Hussain, “On Hermite-Hadamard type
inequalities for functions whose first derivative absolute values
are convex and concave,” Fasciculi Mathematici, vol. 58, no. 1,
pp. 155–166, 2017.

[35] M. Z. Sarikaya, E. Set, H. Yaldiz, and N. Basak, “Hermite-
Hadamard's inequalities for fractional integrals and related
fractional inequalities,” Mathematical and Computer Model-
ling, vol. 57, no. 9–10, pp. 2403–2407, 2013.

[36] M. Iqbal, S. Qaisar, and M. Muddassar, “A short note on inte-
gral inequality of type Hermite-Hadamard through convex-
ity,” Journal of Computational Analysis and Applications,
vol. 21, no. 5, pp. 946–953, 2016.

[37] H. Budak and P. Agarwal, “New generalized midpoint type
inequalities for fractional integral,” Miskolc Mathematical
Notes, vol. 20, no. 2, pp. 781–793, 2019.

[38] H. Budak and R. Kapucu, “New generalization of midpoint
type inequalities for fractional integral,” Annals of the Alexan-
dru Ioan Cuza University – Mathematics, vol. 67, no. 1,
pp. 113–128, 2021.

[39] A. Hyder, H. Budak, and A. A. Almoneef, “Further midpoint
inequalities via generalized fractional operators in Riemann-
Liouville sense,” Fractal and Fractional, vol. 6, no. 9, p. 496,
2022.

[40] A. Barani, S. Barani, and S. S. Dragomir, “Hermite-Hadamard
inequality for functions whose derivatives absolute values are
preinvex,” Journal of Inequalities and Applications, vol. 2012,
no. 1, 2012.

[41] A. Barani, S. Barani, and S. S. Dragomir, “Refinements of
Hermite-Hadamard inequalities for functions when a power
of the absolute value of the second derivative is P -convex,”
Journal of Applied Mathematics, vol. 2012, Article ID 615737,
10 pages, 2012.

[42] P. O. Mohammed and M. Z. Sarikaya, “On generalized frac-
tional integral inequalities for twice differentiable convex func-
tions,” Journal of Computational and Applied Mathematics,
vol. 372, article 112740, 2020.

[43] M. Z. Sarikaya and N. Aktan, “On the generalization of some
integral inequalities and their applications,” Mathematical and
Computer Modelling, vol. 54, no. 9-10, pp. 2175–2182, 2011.

[44] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, “Theory and
applications of fractional differential equations,” inNorth-Hol-
land Mathematics Studies, vol. 204, Elsevier, Amsterdam,
2006.

[45] M. Caputo and M. Fabrizio, “A new definition of fractional
derivative without singular kernel,” Progress in Fractional Dif-
ferentiation & Applications, vol. 1, no. 2, pp. 73–85, 2015.

[46] J. Losada and J. J. Nieto, “Properties of a new fractional deriv-
ative without singular kernel,” Progress in Fractional Differen-
tiation and Applications, vol. 1, no. 2, pp. 87–92, 2015.

[47] H. Desalegn, J. B. Mijena, E. R. Nwaeze, and T. Abdi, “Simp-
son’s type inequalities for s-convex functions via a generalized
proportional fractional integral,” Foundations, vol. 2, no. 3,
pp. 607–616, 2022.

[48] F. Jarad, T. Abdeljawad, and J. Alzabut, “Generalized fractional
derivatives generated by a class of local proportional deriva-
tives,” The European Physical Journal Special Topics, vol. 226,
no. 16-18, pp. 3457–3471, 2017.

[49] F. Gao and X. J. Yang, “Fractional Maxwell fluid with frac-
tional derivative without singular kernel,” Thermal Science,
vol. 20, Supplement 3, pp. 871–877, 2016.

[50] T. Abdeljawad, “On conformable fractional calculus,” Journal
of Computational and Applied Mathematics, vol. 279, pp. 57–
66, 2015.

[51] F. Jarad, T. Abdeljawad, and D. Baleanu, “On the generalized
fractional derivatives and their Caputo modification,” The
Journal of Nonlinear Sciences and Applications, vol. 10, no. 5,
pp. 2607–2619, 2017.

[52] U. N. Katugampola, “New approach to a generalized fractional
integral,” Applied Mathematics and Computation, vol. 218,
no. 3, pp. 860–865, 2011.

[53] S. Kermausuor, “Simpson’s type inequalities via the Katugam-
pola fractional integrals for S-convex functions,” Kragujevac
Journal of Mathematics, vol. 45, no. 5, pp. 709–720, 2021.

11Journal of Function Spaces


	A Study on the New Class of Inequalities of Midpoint-Type and Trapezoidal-Type Based on Twice Differentiable Functions with Conformable Operators
	1. Introduction
	2. Preliminaries
	3. Trapezoid-Type Inequalities Based on Conformable Fractional Integrals
	4. Midpoint-Type Inequalities Based on Conformable Fractional Integrals
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments



