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In this paper, we investigate an orthogonal L⋆-contraction map concept and prove the fixed-point theorem in an orthogonal
complete Branciari metric space (OCBMS). We also provide illustrative examples to support our theorems. We demonstrated
the existence of a uniqueness solution to the fourth-order differential equation using a more orthogonal L⋆ contraction
operator in OCBMS as an application of the main results.

1. Introduction

The Branciari metric (BM) concept was introduced by
Branciari [1] in the year 2000. The generalization is via the
fact that the triangle inequality is replaced by the rectangular
inequality bðλ1, λ2Þ ≤ bðλ1, λ3Þ + bðλ3, λ4Þ + bðλ4, λ2Þ for all
pairwise distinct points λ1, λ2, λ3, λ4 of P . Afterwards, many
authors studied and elaborated the existence of old fixed-
point theorems in the BMS (briefly Branciari metric spaces)
[2–7]. The Θ-contraction concept was introduced by Jleli
and Samet [8] in 2014. Later, some authors provided a vari-
ety of results based on Θ-contraction [9, 10]. Saleh et al. [11]
introduced the concept of generalized L and L∗-contrac-
tions. And also proved fixed-point theorems in CBMS.
Eshraghisamani et al. [12] initiated new contractive map
and proved fixed-point theorem in BMS.

An orthogonality notion in metric spaces is presented by
Gordji et al. in 2017 [13, 14]. Recently, many authors estab-
lished a variety of fixed-point results in generalized orthogo-

nal metric space (OMS). Nazam et al. [15] demonstrated the
concept of ðΨ,ΦÞ-orthogonal interpolation contraction
mappings. The notion of B metric-like space via a hybird
pair of operators was introduced by Ali et al. [16] in
2022. In 2021, Hussain [17] presented another family of
fractional symmetric α-η-contractions and builds up some
new results for such contraction in the context of F-met-
ric space. Mukheimer et al. [18] initiated the concept of
orthogonal L-contraction mapping and proved fixed-point
results in OBMS.

From the above motivation, we prove some fixed-point
results in the direction of OBMS. We also give some exam-
ples to argue that our results correctly generalize certain
results in the literature.

In this article, we present basic definitions and examples
in Section 2, prove some fixed-point theorems by orthogonal
L∗-contractive mapping in an OCBMS in Section 3, and
finally, obtain a unique solution of differential equation
using orthogonal L⋆ contraction operator in Section 4.
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2. Preliminaries

Throughout this article, we denote by P , ℕ, and ℝ+ the
nonempty set, the set of positive integers, and the set of pos-
itive real numbers, respectively.

The Branciari metric space was introduced by Branciari
[1] as follows.

Definition 1. Let P ≠∅ and a function b : P ×P ⟶ℝ+ s.t
(briefly such that) ∀λ1, λ2 ∈P and all λ3 ≠ λ4 ∈P /fλ1, λ2g:

(BM1) bðλ1, λ2Þ = 0, iff λ1 = λ2;
(BM2) bðλ1, λ2Þ = bðλ2, λ1Þ;
(BM3) bðλ1, λ2Þ ≤ bðλ1, λ3Þ + bðλ3, λ4Þ + bðλ4, λ2Þ:
The pair ðP , bÞ is called a BMS with Branciari metric b.

The following example is on the Branciari metric space
(BMS).

Example 1. Let P = f0, 2g ∪ fð1/ıÞ: ı ∈ℕg, where E = f0, 2g
and G = fð1/ıÞ: ı ∈ℕg. Define b : P ×P ⟶ℝ+ as

b ℘1, ℘2ð Þ =

0, if ℘1 = ℘2,
1, if ℘1 ≠ ℘2 and ℘1, ℘2f g ⊂ E or ℘1, ℘2f g ⊂G,
℘2, if ℘1 ∈ E and℘2 ∈G,
℘1, if ℘1 ∈Gand℘2 ∈ E:

8>>>>><
>>>>>:

ð1Þ

Then, ðP , bÞ is a CBMS (briefly complete Branciari met-
ric space). However, we get

(1) limı⟶∞bðð1/ıÞ, ð1/2ÞÞ ≠ bð0, ð1/2ÞÞalthough limı⟶∞
ð1/ıÞ = 0, and hence, b is discontinuous

(2) There is nonexistence ℓ > 0 s.t Gℓð0Þ ∩Gℓð2Þ = ϕ,
and hence, the topology is not a Hausdorff

(3) Gð2/3Þ = f0, 2, ð1/3Þg ; however, there does not exist
ℓ > 0 s.t Gℓð0Þ ⊆Gð2/3Þð1/3Þ, and thus, an open ball
does not necessitate an open set

(4) f1/ıgı∈ℕ is not a Cauchy sequence since it converges
to both 0 and 2

Now, we give the following concepts, which are used in
this paper.

Definition 2. Let ðP , bÞ be a BMS and fαıg be a sequence in
P and λ1 ∈P .

(1) fαıg is convergent to λ1 ⟺ bðαı, αℓÞ⟶ 0 as ı
⟶∞. We denote this by αı ⟶ α;

(2) fαıg is Cauchy ⟺bðαı, αℓÞ⟶ 0 as ı, ℓ⟶∞;

(3) ðP , bÞ is complete ⟺ every Cauchy sequence in P

which converges to some element in P .

Eshraghisamani et al. [12] introduced the concept of
Θ-contraction as follows.

Definition 3. Let ðP , bÞ be a BMS. A map Φ : P ⟶P is
said to be Θ-contraction if there exist Θ ∈ Γ1,2,3 and ν ∈ ð0, 1Þ
s.t ð∀λ1, λ2 ∈P Þ

b Φλ1,Φλ2ð Þ > 0⟹Θ b Φλ1,Φλ2ð Þð Þ ≤ Θ b λ1, λ2ð Þð Þ½ �ν,
ð2Þ

where Γ1,2,3 is the family of all functionsΘ : ð0,∞Þ⟶ ð0,∞Þ
which satisfy the following axioms:

ðΘ1ÞΘ is increasing
ðΘ2Þ For each sequence fαıg ⊂ ð0,∞Þ, limı⟶∞ΘðαiÞ =

1⟺ lim
ı⟶∞

αı = 0+

ðΘ3ÞΘ is continuous.

Using Definition 3, Eshraghisamani et al. [12] proved the
following theorem.

Theorem 4. Let ðP , bÞ be a CBMS and Φ : P ⟶P a
Θ-contraction function. Then, Φ has a ufp (briefly unique
fixed point).

The below example supports Theorem 4.

Example 2. Let ςΦ,I : ½1,∞Þ × ½1,∞Þ⟶ R be two functions
defined as below:

ςΦ,I σ, σ1ð Þ = I σ1ð Þ
Φ σ1ð Þ ,∀σ, σ1 ≥ 1, ð3Þ

where Φ,I : ½1,∞Þ⟶ ½1,∞Þ are upper semicontinuous
from the right s.t IðσÞ < σ ≤ΦðσÞ, for all σ > 1: Then,
ςΦ,I ∈ L.

In Theorem 4, by replacing the condition (Θ3), we get
the following remark.

Remark 5. Let fuıg, fxıg, fyıg be the sequence of ℝ+ s.t
lim
ı⟶∞

uı = u, lim
ı⟶∞

xı = x and lim
ı⟶∞

yı = y. Then,

(1) lim
ı⟶∞

max fuı, xı, yıg =max fu, x, yg,

(2) lim
ı⟶∞

min fuı, xı, yıg =min fu, x, yg.

In 2017, Gordji et al. [13] introduced the concept of an
orthogonal set as follows.

Definition 6. Let P ≠∅ and ⊥⊆P ×P be a binary relation.
If ⊥ holds

∃λ10 ∈P : ∀λ1 ∈P , λ1⊥λ10ð Þ or ∀λ1 ∈P , λ10⊥λ1ð Þ, ð4Þ

then ðP ,⊥Þ is called an orthogonal set.
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The following example and Figure 1 are satisfied by
Definition 6.

Example 3. Let P = Z and define λ2⊥λ1 if ∃ν ∈ Z : λ2 = νλ1.
It is clear that 0⊥λ1, ∀λ1 ∈ Z. Hence, ðP ,⊥Þ is an orthogonal
set.

Example 4. A wheel graph W ı with ı edge for every ı ≥ 4, a
node connect to each node to every edge of ðı − 1Þ -cycle.
Let P be the set of all edge of W ı for every ı ≥ 4. Define λ1
⊥λ2 if there is a connection from λ1 to λ2. Then, ðP , ⊥Þ is
an orthogonal set.

The following orthogonal sequence definition was intro-
duced by Gordji et al. [13] which will be utilized in this
paper to prove main results.

Definition 7. Let ðP , ⊥Þ be an orthogonal set. A sequence
fλ1ıg is called an orthogonal sequence (shortly,O -sequence)
if

∀ı ∈ℕ, λ1ı⊥λ1ı+1ð Þ or ∀ı ∈ℕ, λ1ı+1⊥λ1ıð Þ: ð5Þ

Again, the concepts of orthogonal continuous also intro-
duced by Gordji et al. [13].

Definition 8. Let ðP ,⊥,bÞ be a OMS. Then, a mapping
Φ : P ⟶P is called orthogonal continuous in λ1 ∈P if for
every O -sequence fλ1ıg in P with λ1ı ⟶ λ1 as ı⟶∞,
we have Φðλ1ıÞ⟶Φðλ1Þ as ı⟶∞.

Definition 9. Let ðP ,⊥,bÞ be a OBMS.

(1) fλ1ιg, an orthogonal sequence in P , converges at a
point λ1 if

lim
ι⟶∞

Φ λ1ι , λ1
À Á

= 0: ð6Þ

(2) fλ1ιg, fλ1mg are orthogonal sequences in P and are
said to be orthogonal Cauchy sequence if

lim
ι,m⟶∞

Φ λ1ι , λ1m
À Á

<∞: ð7Þ

Gordji et al. [13] introduced the concept of an orthogo-
nal complete as follows.

Definition 10. Let ðP ,⊥,bÞ be a OMS. Then, P is called an
orthogonal complete, if every orthogonal Cauchy sequence
is convergent.

Finally, the following orthogonal-preserving concepts
introduced by Gordji et al. [13] is of importance in this
paper.

Definition 11. Let ðP , ⊥Þ be an orthogonal set. A function
Φ : P ⟶P is called a ⊥ -preserving if Φλ1⊥Φλ2 whenever
λ1⊥λ2, ∀λ1, λ2 ∈P .

Lemma 12. Let fλ1ıg be an orthogonal Cauchy sequence in
BMS ðP , bÞ s.t lim

ı⟶∞
bðλ1ı, λ1Þ = 0, for some λ1 ∈P . Then,

lim
ı⟶∞

bðλ1ı, λ2Þ = bðλ1, λ2Þ, for all λ1, λ2 ∈P , with λ1⊥λ2.

Eshraghisamani et al. [12] proved fixed-point result on
Branciari metric space as follows.

Theorem 13. Let ðP , bÞ be a complete generalized metric
space and a map Φ : P ⟶P . Suppose that there exist
ℓ ∈ ð0, 1Þ and function π : R+ ⟶R+, satisfying the follow-
ing conditions:

(i) For every fβıg ⊂ ð0,∞Þ and nonconstant

lim
ı⟶∞

π βıð Þ = 0⟺ lim
ı⟶∞

βı = 0: ð8Þ

(ii) For every fβıg ⊂ ð0,∞Þ that βı ⟶ 0+, limsupı⟶∞ffiffiffiffiffiffiffiffiffiffiffi
πðβıÞı

p
< 1⟹∑∞

1 βı <∞, such that

π b Φλ1,Φλ2ð Þð Þ ≤ ℓπ b λ1, λ2ð Þð Þ, ð9Þ

then ϕ has a ufp.

3. Main Results

Before presenting our main result of this section, we are
inspired by the concept of L∗ contraction mapping defined
by Saleh et al. [11]; we introduce a new concept of an
orthogonal L∗-contraction mapping. Then, we prove a
fixed-point results in OCBMS.
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Figure 1: A wheel graph.
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Definition 14. Let ðP ,⊥,bÞ be a OBMS and Φ : P ⟶P .
Then, Φ is called an orthogonal L∗ -contraction w.r.t ζ ∈ L
if ∃Θ ∈Ω1,2,3 s.t.

∀λ1, λ2 ∈P with λ1⊥λ2, b Φλ1,Φλ2ð Þ
> 0⟹ ζ Θ b Φλ1,Φλ2ð Þð Þ,Θ M λ1, λ2ð Þð Þ½ � ≥ 1,

ð10Þ

where Mðλ1, λ2Þ =max fbðλ1, λ2Þ, bðλ1,Φλ1Þ, bðλ2,Φλ2Þg:

Motivated by Theorem 13, we prove the below theorem.

Theorem 15. Let ðP ,⊥,bÞ be a OCBMS and Φ is a self-map
on P . Suppose that ∃ℓ ∈ ð0, 1Þ and a function π : R+ ⟶
R+ hold the axioms:

(i) Φ is orthogonal-preserving

(ii) For every fβıg ⊂ ð0,∞Þ and nonconstant

lim
ı⟶∞

π βıð Þ = 0⟺ lim
ı⟶∞

βı = 0: ð11Þ

(iii) Φ⊥ with for every fβıg ⊂ ð0,∞Þ that βı ⟶ 0+, lim
supı⟶∞

ffiffiffiffiffiffiffiffiffiffiffi
πðβıÞı

p
< 1⟹∑∞

1 βı <∞such that

∀λ1, λ2 ∈P with λ1⊥λ2 ⟹ π b Φλ1,Φλ2ð Þð Þ ≤ ℓπ b λ1, λ2ð Þð Þ,
ð12Þ

then Φ has a ufp.

Proof. Since ðP , ⊥Þ is orthogonal set,

∃λ2 ∈P : ∀λ1 ∈P , λ1⊥λ2ð Þ or ∀λ1 ∈P , λ2⊥λ1ð Þ: ð13Þ

It follows that λ2⊥Φλ2 or Φλ2⊥λ2. Let

λ11 =Φλ2, λ12 =Φλ11 =Φ2λ2 ⋯⋯, λ1ı+1
=Φλ1ı =Φı+1λ2,∀ı ∈ℕ ∪ 0f g:

ð14Þ

If λ1ı0 = λ1ı0+1 for any ı ∈ℕ ∪ f0g, then it is easy to see
that λ10 is a fixed point of Φ. Consider that λ1ı0 ≠ λ1ı0+1 for
all ı ∈ℕ ∪ f0g. Since Φ is ⊥-preserving, we have

λ1ı0⊥λ1ı0+1or λ1ı0+1⊥λ1ı0∀ı ∈ℕ ∪ 0f g: ð15Þ

This implies that fbðλı, λı+1Þg > 0 is an O-sequence.
First, we show that limı⟶∞bðλı, λı+1Þ = 0. Since Φ

satisfies (12), for all ı ∈ℕ, we have

π b λ1ı, λ1ı+1ð Þð Þ ≤ ℓπ b λ1ı−1, λ1ıð Þð Þ: ð16Þ

Since ℓ ∈ ð0, 1Þ, we have

π b λ1ı, λ1ı+1ð Þð Þ ≤ ℓπ b λ1ı−1, λ1ıð Þð Þ ≤ π b λ1ı−1, λ1ıð Þð Þ,∀ı ∈ℕ:

ð17Þ

Thus, fπðbðλı+1, λıÞÞg is a decreasing sequence; hence, it
is convergent and

lim
ı⟶∞

π b λ1ı+1, λ1ıð Þð Þ = u ≥ 0: ð18Þ

Now, we show that u = 0. From (17), we have

π b λ1ı+1, λ1ıð Þð Þ ≤ ℓπ b λ1ı, λ1ı−1ð Þð Þ ≤⋯⋯≤ℓıπ b λ11 , λ10
À ÁÀ Á

,
ð19Þ

since 0 < ℓ < 1; therefore, limı⟶∞πðbðλ1ı+1, λ1ıÞÞ = 0. So,
limı⟶∞bðλ1ı+1, λ1ıÞ = 0 by (ii).

On the other hand from (19), we have

π b λ1ı+1, λ1ıð Þð Þ ≤ ℓıπ b λ11 , λ10
À ÁÀ Á

,∀ı ∈ℕ: ð20Þ

Then,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π b λ1ı+1, λ1ıð Þð Þı

p
≤ ℓı

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π b λ11 , λ10
À ÁÀ Á

ı

q
,∀ı ∈ℕ: ð21Þ

Thus,

lim
ı⟶∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π b λ1ı+1, λ1ıð Þð Þı

p
≤ ℓ < 1: ð22Þ

Put βı = bðλ1ı+1, λ1ıÞ; using (22), and condition (iii) of π,
we get

〠
∞

1
βı <∞ and also βı ⟶ 0: ð23Þ

Now, we will show that bðλ1ı, λ1ı+2Þ⟶ 0 as ı⟶∞.

0 < π b λ1ı+2, λ1ıð Þð Þ ≤ ℓπ b λ1ı+1, λ1ı−1ð Þð Þ
≤⋯ ≤ ℓıπ b λ12 , λ10

À ÁÀ Á
:

ð24Þ

Therefore, bðλ1ı+2, λ1ıÞ⟶ 0, as ı⟶∞.

Now, to prove that the sequence fλ1ıg is Cauchy, we
consider two cases.

Case 1. If m = 2p + 1, p ≥ 1, then

b λ1ı, λ1ı+mð Þ ≤ b λ1ı, λ1ı+1ð Þ + b λ1ı+1, λ1ı+2ð Þ
+ ::⋯ + b λ1ı+2p, λ1ı+2p+1

À Á
≤ 〠

ı+2p+1

ı

βı < 〠
∞

ı

βı:

ð25Þ
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Case 2. If m = 2p, p ≥ 2, then

b λ1ı, λ1ı+mð Þ ≤ b λ1ı, λ1ı+2ð Þ + b λ1ı+2, λ1ı+3ð Þ + ::⋯

+ b λ1ı+2p−1, λ1ı+2p
À Á

≤ 〠
ı+2p+1

ı

βı < 〠
∞

ı

βı:

ð26Þ

Thus, combining these two cases and using (23), when
ı⟶∞, we have

b λ1ı, λ1ı+mð Þ ≤ 〠
∞

ı

βı ⟶ 0, as ı⟶∞: ð27Þ

Thus, we deduce that fΦıλ1g is an orthogonal Cauchy
sequence.

Completeness of ðP ,⊥,bÞ ensures limm⟶∞λ1ı = z for
some z ∈P .

Now, we want to show that z is a fixed point of P . From
(12), we have

π b Φλ1ı,Φzð Þð Þ ≤ π b λ1ı, zð Þð Þ: ð28Þ

Hence, bðλ1ı, zÞ⟶ 0, and πðbðλ1ı, zÞÞ⟶ 0, and
therefore, limı⟶∞πðbðλ1ı+1,ΦzÞÞ = 0 as ı⟶∞. Again,

lim
ı⟶∞

b λ1ı+1,Φzð Þ = 0, ð29Þ

by using (ii).

b z,Φzð Þ ≤ b z, λ1ıð Þ + b λ1ı, λ1ı+1ð Þ + b λ1ı+1,Φzð Þ: ð30Þ

Thus, z =Φz, and hence, z is a fixed point on Φ.
Now, we prove that Φ is unique. Conversely, assume that

any two fixed points s.t bðλ1, zÞ = bðΦλ1,ΦzÞ > 0. From
(12), since Φ is preserving, ∀Φλ1⊥Φz, we have

Φıλ1⊥Φ
ıλ2 andΦıλ1⊥Φ

ızð Þ or
Φıλ1⊥Φ

ız andΦıλ1⊥Φ
ıλ2ð Þ,∀ı ∈ℕ:

ð31Þ

Now,

b λ2, zð Þ = b Φıλ2,Φızð Þ ≤ b Φıλ2,Φıλ1ð Þ + b Φıλ1,Φızð Þ:
ð32Þ

This implies that

π b λ2, zð Þð Þ < π b λ2, zð Þð Þ: ð33Þ

This is a contradiction. Then Φ has a ufp.
The below example validates the proof of Theorem 15.

Example 5. Let P = ½−2,−1� ∪ ½1, 2� and b : P ×P ⟶ ½0,∞Þ
defined as follow bðλ1, λ1Þ = 0, for all λ1 ∈P

b 1, 2ð Þ = b 2, 1ð Þ = 3, b 1,−1ð Þ = b −1, 1ð Þ
= b −1, 2ð Þ = b 2,−1ð Þ = 1,

ð34Þ

we define the relation λ1⊥λ2 and bðλ1, λ2Þ = jλ1 − λ2j,
otherwise.

We observe that

b 1, 2ð Þ > b 1,−1ð Þ + b −1, 2ð Þ: ð35Þ

Hence, Φ⊥-preserving, bðλ1, λ2Þ is not a BMS. It is obvi-
ous that bðλ1, λ2Þ is a OCBMS.

Let Φ : P ⟶P be a map defined by

Φλ1 =
3
4 λ1, λ1 ∈ −2,− 32

� �
∪

3
2 , 2
� �

,

0, otherwise:

8><
>: ð36Þ

Now, we define π : ½0,∞Þ⟶ ½0,∞Þ by πðβÞ = ffiffiffi
β

p
.

Easily, we can show that π satisfies conditions (ii) and
(iii) of Theorem 15, Φ satisfies (12), and λ∗1 = 0 is fixed point
of Φ.

Saleh et al. [11] proved a new contractive maps and their
fixed points on BMS as follows:

Theorem 16. Let ðP , bÞ be a BMS and Φ : P ⟶P be an
L∗ -contraction w.r.t (briefly with respect to) ζ ∈ L. Then, Φ
has a ufp.

In the following theorem, we are going to prove fixed-
point theorem on an orthogonal L∗-contraction mapping
using continuity hypothesis of Φ.

Theorem 17. Let ðP ,⊥,bÞ be a OCBMS with an orthogonal
element λ2 and a function Φ : P ⟶P , orthogonal L∗ -con-
traction w.r.t ζ ∈ L, the following axioms are satisfy:

(i) Φ is orthogonal-preserving.

(ii) Φ is Φ⊥ with L∗-contraction mapping.

Then, Φ has a ufp.

Proof. Since ðP , ⊥Þ is orthogonal set,

∃λ2 ∈P : ∀λ1 ∈P , λ1⊥λ2ð Þ or ∀λ1 ∈P , λ2⊥λ1ð Þ: ð37Þ

It follows that λ2⊥Φλ2 or Φλ2⊥λ2. Let

λ11 =Φλ2, λ12 =Φλ11 =Φ2λ2 ⋯⋯, λ1ı+1 =Φλ1i =Φı+1λ2,
ð38Þ

for all ı ∈ℕ ∪ f0g.
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If λ1ı0 = λ1ı0+1 for any ı ∈ℕ ∪ f0g, then it is easy to see that
λ10 is a fixed point of Φ. Consider λ1ı0 ≠ λ1ı0+1, ∀ı ∈ℕ ∪ f0g.
Since Φ is ⊥-preserving, we have

λ1ı0⊥λ1ı0+1 or λ1ı0+1⊥λ1ı0 , ð39Þ

for all ı ∈ℕ ∪ f0g. Which implies that fλ1ıg is a O-sequence.

Using equation (10) and ðζ∗2 Þ, we have

1 ≤ ζ Θ b Φλ1ı−1,Φλ1ıð Þð Þ,Θ M λ1ı−1, λ1ıð Þð Þ½ �
= ζ Θ b λ1ı, λ1ı+1ð Þð Þ,Θ M λ1ı−1, λ1ıð Þð Þ½ �
< Θ M λ1ı−1, λ1ıð Þð Þ

Θ b λ1ı, λ1ı+1ð Þð Þ :

ð40Þ

Consequently, we obtain that

Θ b λ1ı, λ1ı+1ð Þð Þ <Θ M λ1ı−1, λ1ið Þð Þ,∀ı ∈ℕ, ð41Þ

where

M λ1ı−1, λ1ıð Þ
=max b λ1ı−1, λ1ıð Þ, b λ1ı−1,Φλ1ı−1ð Þ, b λ1ı,Φλ1ıð Þf g
=max b λ1ı−1, λ1ıð Þ, b λ1ı, λ1ı+1ð Þf g:

ð42Þ

If Mðλ1ı−1, λ1ıÞ = bðλ1ı, λ1ı+1Þ, then inequality (41)
becomes

Θ b λ1ı, λ1ı+1ð Þð Þ <Θ b λ1ı, λ1ı+1ð Þð Þ,∀ı ∈ℕ: ð43Þ

This is a contradiction. Hence, we must have Mðλ1ı−1,
λ1ıÞ = bðλ1ı−1, λ1ıÞ, for all ı ∈ℕ. Therefore, inequality (41)
becomes

Θ b λ1ı, λ1ı+1ð Þð Þ <Θ b λ1ı−1, λ1ıð Þð Þ,∀ı ∈ℕ, ð44Þ

which implies from ðΘ1Þ that

b λ1ı, λ1ı+1ð Þ < b λ1ı−1, λ1ıð Þ,∀ı ∈ℕ: ð45Þ

Thus, fbðλ1ı−1, λ1ıÞg is decreasing sequence and bound-
ary below by 0, so ∃r ≥ 0 s.t limı⟶∞bðλ1ı−1, λ1ıÞ = r. Suppose
that r ≠ 0, then from ðΘ2Þ

lim
ı⟶∞

Θ b λ1ı−1, λ1ıð Þð Þ > 1: ð46Þ

Taking αı =Θðbðλ1ı, λ1ı+1ÞÞ and bı =Θðbðλ1ı−1, λ1ıÞÞ,
∀ı ∈ℕ, it is clear from (44), (46), and (Θ3) that αı < bı, ∀ı ∈ℕ,
and limı⟶∞αı = limı⟶∞bı > 1. Hence, using ðζ∗3 Þ, we get

1 ≤ limsup
ı⟶∞

ζ αı, bıð Þ < 1: ð47Þ

This is a contradiction. Therefore, r = 0, we have

lim
ı⟶∞

b λ1ı−1, λ1ıð Þ = 0,∀ı ∈ℕ: ð48Þ

Now, let us assume that λ1m = λ1ı, for some m > ı. Then,
we have λ1m+1 = λ1ı+1. Using (44), we get

Θ b λ1m, λ1m+1ð Þð Þ
<Θ b λ1m−1, λ1mð Þð Þ <Θ b λ1m−2, λ1m−1ð Þð Þ
<⋯⋯ <Θ b λ1ı, λ1ı+1ð Þð Þ =Θ b λ1m, λ1m+1ð Þð Þ:

ð49Þ

This is a contradiction. To summarize λ1m ≠ λ1ı, for all
m ≠ ı.

Next, to prove fλ1ıg is a orthogonal Cauchy sequence in
ðP ,⊥,bÞ. Now, we consider it as not an orthogonal Cauchy;
then, we can find two subsequences fλ1ıℓg, and fλ1mℓ

g of
fλ1ıg s.t ıℓ is the smallest integer for which

ıℓ >mℓ > ℓ,

b λ1mℓ
, λ1ıℓ

� �
≥ ε,

b λ1mℓ
, λ1ıℓ−2

� �
< ε:

ð50Þ

By using a similar argument, we obtain

lim
ℓ⟶∞

b λ1mℓ
, λ1ıℓ

� �
= ε = lim

ℓ⟶∞
b λ1mℓ−1, λ1ıℓ−1
� �

: ð51Þ

Now, using (10) and ðζ∗2 Þ, we have

1 ≤ ζ Θ b Φλ1mℓ−1,Φλ1ıℓ−1
� �� �

,Θ M λ1mℓ−1, λ1ıℓ−1
� �� �h i

= ζ Θ b λ1mℓ
, λ1ıℓ

� �� �
,Θ M λ1mℓ−1, λ1ıℓ−1

� �� �h i

<
Θ M λ1mℓ−1, λ1ıℓ−1

� �� �
Θ b λ1mℓ

, λ1ıℓ
� �� � ,

ð52Þ

which implies that

Θ b λ1mℓ
, λ1ıℓ

� �� �
<Θ M λ1mℓ−1, λ1ıℓ−1

� �� �
,∀ℓ ∈ℕ, ð53Þ

where

M λ1mℓ−1, λ1ıℓ−1
� �

=max b λ1mℓ−1, λ1ıℓ−1
� �

, b
n

Á λ1mℓ−1, λ1mℓ

� �
, b λ1ıℓ−1, λ1ıℓ
� �o

:

ð54Þ

From (48), (51), and Remark 5, we get

lim
ℓ⟶∞

M λ1mℓ−1, λ1ıℓ−1
� �

=max ε, 0, 0f g = ε: ð55Þ
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Now, let αℓ =Θðbðλ1mℓ
, λ1ıℓÞÞ, and bℓ =ΘðMðλ1mℓ−1,

λ1ıℓ−1ÞÞ, for all ℓ ∈ℕ. In view of (51), (53), (55), and ðΘ3Þ,
we have αℓ < bℓ, for all ℓ ∈ℕ and lim

ℓ⟶∞
αℓ = lim

ℓ⟶∞
bℓ > 1.

Therefore, using ðζ∗3 Þ, we obtain

1 ≤ limsup
ℓ⟶∞

ζ αℓ, bℓð Þ < 1, ð56Þ

which is contradiction. Hence, fλ1ıg ∈ ðP ,⊥,bÞ is orthogo-
nal Cauchy sequence. As ðP ,⊥,bÞ is complete, then there
exists ℓ ∈P s.t

lim
ı⟶∞

b λ1ı, ℓð Þð Þ = 0: ð57Þ

Without loss of generality, we consider λ1ı ≠ ℓ and
Φλ1ı ≠Φℓ, for all ı ∈ℕ. Suppose that bðℓ,ΦℓÞ > 0, it fol-
lows from (10) and ζ∗2 that

1 ≤ ζ Θ b Φλ1ı,Φℓð Þð Þ,Θ M λ1ı, ℓð Þð Þ½ �
= ζ Θ b λ1ı+1,Φℓð Þð Þ,Θ M λ1ı, ℓð Þð Þ½ �
< Θ M λ1ı, ℓð Þð Þ
Θ b λ1ı+1,Φℓð Þð Þ ,

ð58Þ

where Mðλ1ı, ℓÞ =max fbðλ1ı, ℓÞ, bðλ1ı, λ1ı+1Þ, bðℓ,ΦℓÞg,
which implies that

Θ b λ1ı+1,Φℓð Þð Þ <Θ M λ1ı, ℓð Þð Þ: ð59Þ

From Remark 5 and Lemma 12, we have

lim
ı⟶∞

b λ1ı+1,Φℓð Þ = lim
ı⟶∞

M λ1ı, ℓð Þ = b ℓ,Φℓð Þ > 0: ð60Þ

Let αı =Θðbðλ1ı+1,ΦℓÞÞ, and bı =ΘðMðλ1ı, ℓÞÞ, for all
ı ∈ℕ; it follows from (10) and ζ∗3 that

1 ≤ limsup
ı⟶∞

ζ αı, bıð Þ < 1: ð61Þ

This is a contradiction. Therefore, summarize ℓ =Φℓ,
that is, ℓ is a fixed point of Φ. Finally, prove that Φ is ufp.

Consider two different fixed points ℓ and z in P .
Then, bðℓ, zÞ = bðΦℓ,ΦzÞ > 0, since Φ is an orthogonal-

preserving, ∀Φℓ⊥Φz.
Using (10) and ζ∗2 , we deduce that

1 ≤ ζ Θ b Φℓ,Φzð Þð Þ,Θ M ℓ, zð Þð Þ½ �
= ζ Θ b ℓ, zð Þð Þ,Θ M ℓ, zð Þð Þ½ � < Θ M ℓ, zð Þð Þ

Θ b ℓ, zð Þð Þ ,
ð62Þ

where Mðℓ, zÞ =max fbðℓ, zÞ, bðℓ,ΦℓÞ, bðz,ΦzÞg = bðℓ, zÞ,
which implies that

Θ b ℓ, zð Þð Þ <Θ M ℓ, zð Þð Þ =Θ b ℓ, zð Þð Þ: ð63Þ

This is a contradiction. Therefore, Φ has a ufp.

Corollary 18. Let ðP ,⊥,bÞ be a OCBMS and Φ : P ⟶P .
Assume that ðfor all λ1, λ2 ∈P with λ1⊥λ2Þ:

(i) Φ is orthogonal-preserving

(ii) bðΦλ1,Φλ2Þ > 0⟹

Θ b Φλ1,Φλ2ð Þð Þ ≤M λ1, λ2ð Þ − φ M λ1, λ2ð Þð Þ,∀λ1, λ2
∈P with λ1⊥λ2,

ð64Þ

where Mðλ1, λ2Þ =max fbðλ1, λ2, bðλ1,Φλ1Þ, bðλ2,Φλ2ÞÞg,
and φ : ½0,∞Þ⟶ ½0,∞Þ is nondecreasing and lower semi-
continuous s.t φ−1ðf0gÞ = 0. Then, Φ has a ufp.

Proof. Let ΘðαÞ = eα, for all α > 0. From (64), we have

Θ b Φλ1,Φλ2ð Þð Þ = e b Φλ1,Φλ2ð Þð Þ ≤ eM λ1,λ2ð Þ−φ M λ1,λ2ð Þð Þ

= Θ M λ1, λ2ð Þð
eφ M λ1,λ2ð Þð Þ ,

ð65Þ

for all λ1, λ2 ∈P with λ1⊥λ2, and bðΦλ1,Φλ2Þ > 0. There-
fore, Φ is orthogonal-preserving.

Now, we define φðαÞ = InðΦðΘðαÞÞÞ, for all α > 0, where
Φ : ½1,∞Þ⟶ ½1,∞Þ is nondecreasing and lower semicon-
tinuous s.t Φ−1ðf1gÞ = 1.

From (65), we have

Θ b Φλ1,Φλ2ð Þð Þ ≤ Θ M λ1, λ2ð Þð Þ
Φ Θ M λ1, λ2ð Þð Þð Þ : ð66Þ

Taking ζðα, bÞ = ððb/αÞΦðbÞÞ and using (66), we have

1 ≤ Θ M λ1, λ2ð Þð Þ
Θ b Φλ1,Φλ2ð Þð ÞΦ Θ M λ1, λ2ð Þð Þð Þ

= ζ Θ b Φλ1,Φλ2ð Þð Þ,Θ M λ1, λ2ð Þð Þ½ �:
ð67Þ

Therefore, all conditions are satisfied in Theorem 17,
and hence, Φ has a ufp.

In the following example, validate the proof of Theorem 17.

Example 6. Let P =Π ∪Ψ, where Π = ½1, 2� and Ψ = fð1/ıÞ:
ı = 2, 3, 4, 5g: Define a map b : P ×P ⟶ ½0,∞Þ as follows:

(1) bð1/2, 1/3Þ = bð1/4, 1/5Þ = 3/10,
(2) bð1/2, 1/5Þ = bð1/3, 1/4Þ = 2/10,
(3) bð1/2, 1/4Þ = bð1/5, 1/3Þ = 6/10,
(4) bðλ1, λ1Þ = 0, bðλ1, λ2Þ = bðλ2, λ1Þ, ∀λ1, λ2 ∈Ψ, and
(5) bðλ1, λ2Þ = jλ1 − λ2j if λ1, λ2 ∈Π or λ1 ∈Π, λ2 ∈Ψ

or λ1 ∈Ψ, λ2 ∈Π:
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Here, the triangle inequality is not satisfied, so b is not a
metric on P ; we have

6
10 = b

1
5 ,

1
3

� �
> b

1
5 ,

1
4

� �
+ b

1
4 ,

1
3

� �
= 5
10 : ð68Þ

It is easy to verify that ðP , bÞ is a OCBMS. Let Φ : P
⟶P be defined as an orthogonality relation ⊥ on P by

Φλ1 =

1
5 , if λ1 ∈ 1, 32

� �
,

1
4 , if λ1 ∈

3
2 , 2
� �

∪Ψ:

8>>><
>>>:

ð69Þ

Since Φ is not continuous at λ1 = ð3/2Þ, and Φ − ⊥ is not
continuous, then Φ is neither orthogonal Θ-contraction nor
an orthogonal L∗-contraction.

Declare that Φ is an orthogonal L∗-contraction w.r.t
ζ : ½1,∞Þ × ½1,∞Þ⟶ℝ, where

ζℓ α, bð Þ = bℓ

α
,∀α, b ∈ 1,∞½ Þ, ℓ ∈ 3

8 , 1
� �

, ð70Þ

and Θ : ð0,∞Þ⟶ ð1,∞Þ, s.t ΘðαÞ = eα, ∀α ∈ ð0,∞Þ.
Indeed, for λ1 ∈ ½1, ð3/2Þ�, and λ2 ∈ ½ð3/2Þ, 2� ∪Ψ, we

have

b Φλ1,Φλ2ð Þ = b
1
4 ,

1
5

� �
= 3
10 > 0,

ζ Θ b Φλ1,Φλ2ð Þð Þ,Θ M λ1, λ2ð Þð Þ½ �

= ΘM λ1, λ2ð Þ½ �ℓ
Θ b Φλ1,Φλ2ð Þð Þ ≥

e4ℓ/5

e3/10
= e 1/5ð Þ 4ℓ− 3/2ð Þð Þ

≥ 1, for any ℓ ∈ 3
8 , 1
� �

:

ð71Þ

Hence, all the hypotheses are satisfied in Theorem 17,
and ℓ = 1/4 is the ufp of Φ.

4. An Application

The following BVP of a fourth-order differential equation is
taken from Saleh et al. [11].

In this section, as an application of Theorem 17, we pres-
ent the following result which provides an existence and
uniqueness solution to the BVP of a fourth-order differential
equation through an orthogonal L∗-contraction.

λ1″′′ αð Þ = g α, λ1 αð Þ, λ1′ αð Þ, λ1′′ αð Þ, λ1′′′ αð Þ
� �

, α ∈ 0, 1½ �,

λ1 0ð Þ = λ1′ 0ð Þ = λ1″ 1ð Þ = λ1″′ 1ð Þ = 0:

8<
:

ð72Þ

Let g : ½0, 1� ×ℝ4 ⟶ℝ is a continuous function. Let
P =C ½0, 1� represent the space of all continuous functions

defined on the interval [0,1]. Define a metric Φ : P ×P

⟶ℝ by

Φ λ1, λ2ð Þ = max
α∈ 0,1½ �

λ1 αð Þ − λ2 αð Þj j, for all λ1, λ2 ∈P : ð73Þ

It is known that ðP ,ΦÞ is a complete BMS. Define the
green function associated with (72)

G b, αð Þ =
1
6 α

2 3b − αð Þ, 0 ≤ α ≤ b ≤ 1,

1
6 b

2 3α − bð Þ, 0 ≤ b ≤ α ≤ 1:

8>><
>>: ð74Þ

Now, we provide the following result regarding the BVP
(72) solution.

Theorem 19. Assume that the following axioms are satisfied:
(P1) g : ½0, 1� ×ℝ4 ⟶ℝ is orthogonal continuous

function
(P2) there exist τ > 0 and s.t, for all λ1, λ2 ∈P , λ1⊥λ2,

and b ∈ ½0, 1�

g b, λ1, λ1′
� �

− g b, λ2, λ2′
� ���� ���

≤ 8e−τ max λ1 bð Þ − λ2 bð Þj j, λ1 bð Þjf½
−Φλ1 bð Þj, λ2 bð Þ −Φλ2 bð Þj jg�,

ð75Þ

where Φ : P ⟶P is defined by

Φλ1 αð Þ =
ð1
0
G α, bð Þg b, λ1 bð Þ, λ1′ bð Þ

� �
ds: ð76Þ

Then, (72) has a unique solution in P .

Proof. Define the binary relation ⊥ on P by

λ1⊥λ2 ⇐ λ1 σð Þλ2 σð Þ ≥ λ1 σð Þ or λ1 σð Þλ2 σð Þ
≥ λ2 σð Þ,∀σ ∈ 0, 1½ �: ð77Þ

Observe that λ1 ∈P is a solution of (72) iff λ1 ∈P is a
solution of the differential equation

λ1 αð Þ =
ð1
0
G α, bð Þg b, λ1 bð Þ, λ1′ bð Þ

� �
ds,∀λ1 ∈P : ð78Þ

Then, Φ is an orthogonal-continuous.
Now, we show that Φ is orthogonal-preserving, in (P2),

for all λ1, λ2 ∈P with bðΦλ1,Φλ2Þ > 0 and for all α ∈ ½0, 1�.
Then, Φ is an orthogonal-preserving.
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Next, we claim that Φ is orthogonal L⋆-contraction.
We have

Φλ1 αð Þ −Φλ2 αð Þj j

=
ð1
0
G α, bð Þg b, λ1 bð Þ, λ1′ bð Þ

� �
ds

����
−
ð1
0
G α, bð Þg b, λ2 bð Þ, λ2′ bð Þ

� �
ds
����

≤
ð1
0
G α, bð Þ g b, λ1 bð Þ, λ1′ bð Þ

� �
− g b, λ2 bð Þ, λ2′ bð Þ
� ���� ���ds

≤ 8e−τ
ð1
0
G α, bð Þ max λ1 − λ2j j, λ1 −Φλ1j j, λ2 −Φλ2j jf g½ �ds

≤ 8e−τ M λ1, λ2ð Þ½ � sup
α∈ 0,1½ �

ð1
0
G α, bð Þds

 !
,

ð79Þ

where Mðλ1, λ2Þ =max fbðλ1, λ2Þ, bðλ1,Φλ1Þ, bðλ2,Φλ2Þg.
As
Ð 1
0Gðα, bÞds = ðα4/24Þ − ðα3/6Þ + ðα2/4Þ, for all α ∈ ½0, 1�,

supα∈½0,1�
Ð 1
0Gðα, bÞds = 1/8, we obtain

b Φλ1,Φλ2ð Þ ≤ 8e−τ M λ1, λ2ð Þ½ �,

eb Φλ1,Φλ2ð Þ ≤ 8e−τ eM λ1,λ2ð Þ
� �eτ

:
ð80Þ

Observe that eτ ∈ ð0, 1Þ as τ > 0. It follows that Φ is an
orthogonal L⋆-contraction. Therefore, for all λ1, λ2 ∈P , we
obtain

ζ Θ b Φλ1,Φλ2ð Þð Þ,Θ M λ1, λ2ð Þð Þ½ �

= ΘM λ1, λ2ð Þ½ �ℓ
Θ b Φλ1,Φλ2ð Þð Þ ≥

eM λ1,λ2ð Þe−τ
� �
eb Φλ1,Φλ2ð Þ ≥ 1,

ð81Þ

where ΘðαÞ = eα, ζðα, bÞ = ðbℓ/αÞ, and ℓ = eτ. Thus, all the
axioms of Theorem 17 are fulfilled. Therefore, Φ has a ufp
in P which is a solution of (72).

5. Conclusion

In this paper, we proved the fixed-point results for orthogo-
nal L⋆-contraction map on OCBMS. Furthermore, we pre-
sented some examples to strengthen our main results. Also,
we provided an application to the BVP of a fourth-order dif-
ferential equation.

Khalehoghli et al. [19, 20] presented a real generaliza-
tion of the mentioned Banach’s contraction principle by
introducing R-metric spaces, where R is an arbitrary relation
on L. We note that in a special case, R can be considered as
R = ⪯ [partially ordered relation], R =⊥ [orthogonal relation],
etc. If one can find a suitable replacement for a Banach theo-
rem that may determine the values of fixed points, then many
problems can be solved in this R-relation. This will provide a
structural method for finding a value of a fixed point. It is an
interesting open problem to study the fixed-point results on
ℝ-complete R-metric spaces.
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