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Recently, conformable calculus has appeared in many abstract uses in mathematics and several practical applications in
engineering and science. In addition, many methods and numerical algorithms have been adapted to it. In this paper, we will
demonstrate, use, and construct the cubic B-spline algorithm to deal with conformable systems of differential boundary value
problems concerning two points and two fractional parameters in both regular and singular types. Here, several linear and
nonlinear examples will be presented, and a model for the Lane-Emden will be one of the applications presented. Indeed, we
will show the complete construction of the used spline through the conformable derivative along with the convergence theory,
and the error orders together with other results that we will present in detail in the form of tables and graphs using
Mathematica software. Through the results we obtained, it became clear to us that the spline approach is effective and fast, and
it requires little compulsive and mathematical burden in solving the problems presented. At the end of the article, we
presented a summary that contains the most important findings, what we calculated, and some future suggestions.

1. Introduction

At present, in addition to the past tens of years, the applica-
tions of FDPs have expanded to include many physical and
engineering applications [1–3]. In one place, we find appli-
cation for them in kinetics energy [4], anomalous diffusion
[5], movement of fluids [6], movement of waves [7], electri-
cal engineering [8], and some of the fields of computer
science [9], whilst in another place, we see some abstract
uses of theories and definitions, which are originally found
to organize the mathematical aspect of fractional derivatives

in solving several fractional models like cholera outbreak
[10] and partial FDPs [11]. From the definition of Riemann,
the fractional differential began, and then different definitions
appeared, such as Caputo, Fabrizio, and Atangana [12, 13].

Many of the definitions of fractional derivatives have
strong features that make them a target in the modeling of
many scientific phenomena, and at the same time, they have
weaknesses in some characteristics that made some
researchers search for a mathematically appropriate defini-
tion that is consistent with many of the laws and theorems
found in the classical derivative. Therefore, in this paper,
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we will use the definition of the CD as a new approach to
solving BVPs in their regular and singular states by adopting
the CBSA to it. Conformable calculus proposed by [14] and
theorized by [15] appears in several fields of applied sciences
and abstract analysis as stellar mathematical agents to char-
acterize hereditary behaviors with the memory of many sub-
stances. The CD has been successfully exercised in diverse
physical and engineering application fields (herein, we try
to list it briefly so that we do not prolong the reader and
do not increase the size of the paper as much as possible)
as in the formulation of fuzzy differential problems [16], in
Newton mechanics [17], in Burgers’ model [18], in popula-
tion growth model [19], and in traveling wave field [20].

Systems of BVPs which are a mixture of several FDPs
subject to given BCs represent very important issues in
solving real-world models. Because of this rise, studying
numerical and analytical solutions to these systems is an
enticing topic for scientists. These kinds of systems are usu-
ally difficult to solve analytically, especially for singular,
nonlinear, and nonhomogenous cases. To this end, exten-
sive research has been carried out to obtain numerical
schemes and various methods as utilized in the literature
as follows: n [21], the authors applied the Adomian decom-
position scheme; in [22], the authors described the sinc
collocation algorithm; and in [23] the authors utilized the
fractional Lagrangian approach.

The spline approach is an ongoing research subject in
various diverse and pervasive science areas such as numeri-
cal analysis, signal processing, and computational physics
[24–26]. It is a crucial method for solving-modeling many
FDPs like singular BVPs [27], nonfractional Bratu-type
BVPs [28], nonfractional LEP [29], and fractional physiol-
ogy problem [30] (herein, we try to list it briefly so that we
do not prolong the reader and do not increase the size of
the paper as much as possible). CBS is the most common
BS, which Schoenberg coined the expression BS, and it is
an abbreviation of the word “basis spline”. In computational
mathematics, BS is a spline function with the lowest descrip-
tion interval for a given degree of smoothness and domain
decomposition.

Here, we will show the complete construction of the used
CBSA through the CD along with the convergence theory
and other results that we will present in detail in the form
of tables and graphs using the Mathematica software. Any-
how, we will solve the following:

(i) Conformable system of FDPs of regular type:

Tθ1Ψ + a1 ςð ÞTδ1Ψ + a2 ςð ÞΨ + Tθ2Φ + a3 ςð ÞTδ2Φ

+ a4 ςð ÞΦ +N1 Ψ,Φð Þ
=F1 ςð Þ,

Tθ2Φ + b1 ςð ÞTδ2Φ + b2 ςð ÞΦ + Tθ1Ψ + b3 ςð ÞTδ1Ψ

+ b4 ςð ÞΨ +N2 Ψ,Φð Þ
=F2 ςð Þ,

ð1Þ

concerning the BC

Ψ að Þ = α1,Φ að Þ = α2,

Ψ bð Þ = β1,Φ bð Þ = β2:
ð2Þ

(ii) Conformable LEP of singular type as

Tθ1Ψ +
η1
ς
Tδ1Ψ + a2 ςð ÞΨ + a4 ςð ÞΦ +N1 Ψ,Φð Þ =F1 ςð Þ,

Tθ2Φ +
η2
ς
Tδ2Φ + b2 ςð ÞΦ + b4 ςð ÞΨ +N2 Ψ,Φð Þ =F2 ςð Þ,

ð3Þ

concerning the BC

Ψ 0ð Þ = ρ1,Φ 0ð Þ = ε1,

Ψ 1ð Þ = ρ2,Φ 1ð Þ = ε2:
ð4Þ

Herein, Ψ =ΨðςÞ, Φ =ΦðςÞ, 0 < δ1, δ2 ≤ 1, 1 < θ1, θ2 ≤ 2,
αp, βp, ρp, εp ∈ℝ, η1, η2 ≥ 0, and Tδ1 , Tδ2 , Tθ1 , Tθ2 stands
for CDs of order δ1, δ2, θ1, θ2, respectively; N1 and N2 are
nonlinear functions in Ψ, Φ, F1ðςÞ, and F2ðςÞ; and aqðςÞ
and bqðςÞ with q = 1:2:3:4 are continuous functions.

Further, the CD of TδHðςÞ is expressed as

TωH ςð Þ = lim
ξ⟶0

H ωd e−1ð Þ ς + ξς ωd e−ωÀ Á
−H ωd e−1ð Þ ςð Þ

ξ
, ð5Þ

with ω ∈ ðn,n + 1�, H : ½0,∞Þ⟶ℝ be n-differentiable
for all ς > 0, and TδHðςÞ = ςdδe−δH ðdδeÞðςÞ:

The motivation of our article can be summarized as
follows: Often, real solutions to FDPs are not available and
cannot be calculated or predicted because most of the prob-
lems are of nonlinear or nonhomogeneous type, or their coef-
ficients are variables and not constants. Therefore, dealing
with these issues, in this case, requires the utilization of
numerical methods and algorithms, and here in our paper,
we proposed the CBSA for ease of dealing with it and the ease
of writing its computer program and because it is also accu-
rate and does not require combining it with other numerical
methods to obtain the required approximation. In addition
to its convergence, its error order is guaranteed by the theo-
ries and results that we presented in our coming sections.

The basic structure herein was built as next. Section 2
proposes and formulates the CBSA for handling systems of
BVPs concerning the CD. Section 3 deals with solving a
singular system of conformable LEP by using the CBSA.
Section 4 explores and discusses the convergence analysis
together with the error order of the utilized CBSA. In Section
5, by using tables and graphs, some treatment examples are
examined to offer the accuracy and fineness of the CBSA
using Mathematica 11 software. At the end of the article,
we presented a summary that contains the most important
findings, what we calculated, and some future suggestions.
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2. Formulation of the CBSA for Handling
Systems of BVPs

In this section, the CBSA is used to construct and obtain
approximations of the mentioned systems of conformable
FDPs for both regular and singular types. Herein, we will
consider two computational cases according to the nature
of the shapes functions N1ðΨ,ΦÞ and N2ðΨ,ΦÞ.

Assume that Π : fa = ς0 < ς1 <⋯ < ςr−1 < ςr = bg be a
partition of ½a, b� with mesh points ςk = a +kh, k = 0, 1,

⋯, r wherein ς0 = a, ςr = b, and h = ðb − aÞ/r. By introduc-
ing knots ς−2 < ς−1 < ς0 and ςr < ςr+1 < ςr+2, Π becomes

Π : ς−2 < ς−1 < ς0 = a < ς1 <⋯ < ςr = b < ςr+1 < ςr+2f g: ð6Þ

Define ζ3ðΠÞ = fnðςÞ ∈ C2½a, b�g such that nðςÞ is piece-
wise, 3rd-degree polynomials around Π. Anyhow, the 3rd-
degree BSs is

To solve (1) and (2) together with (3) and (4) numer-
ically, TδBk,3ðςÞ and TθBk,3ðςÞ evaluation is needed,
where 0 < δ ≤ 1 and 1 < θ ≤ 2. Using the propositions of
CD, one has

TδBk,3 ςð Þ = ς1−δ

2h3

ς − ςk−2ð Þ2, ςk−2 ≤ ς < ςk−1,

−3 ς − ςk−1ð Þ2 + 2h ς − ςk−1ð Þ +h2, ςk−1 ≤ ς < ςk,

3 ςk+1 − ςð Þ2 − 2h ςk+1 − ςð Þ −h2, ςk ≤ ς < ςk+1,

− ςk+2 − ςð Þ2, ςk+1 ≤ ς < ςk+2,

0, otherwise:

8>>>>>>>><>>>>>>>>:
ð8Þ

TθBk,3 ςð Þ = ς2−θ

h3

ς − ςk−2, ςk−2 ≤ ς < ςk−1,

h − 3 ς − ςk−1ð Þ, ςk−1 ≤ ς < ςk,

h − 3 ςk+1 − ςð Þ, ςk ≤ ς < ςk+1,

ςk+2 − ςð Þ, ςk+1 ≤ ς < ςk+2,

0, otherwise:

8>>>>>>>><>>>>>>>>:
ð9Þ

To formulate the required approximation using the
CBSA, let

bΨ ςð Þ = 〠
r+1

k=−1
μkBk,3 ςð Þ,

bΦ ςð Þ = 〠
r+1

k=−1
νkBk,3 ςð Þ,

ð10Þ

be a cubic BS interpolating function of ΨðςÞ and ΦðςÞ,
respectively, with knots Π, where μk, νk are unknown,

and Bk,3ðςÞ are the 3rd-degree BS functions which are
defined in (7).

Therefore, from (7), (8), and (9) the value of bΨðςÞ, Tδ1bΨðςÞ, Tθ1 bΨðςÞ and bΦðςÞ, Tδ2 bΦðςÞ, Tθ2 bΦðςÞ at knot ςk
can be simplified as

bΨ ςkð Þ = 〠
r+1

k=−1
μkBk,3 ςkð Þ

= μk−1Bk−1,3 ςkð Þ + μkBk,3 ςkð Þ + μk+1Bk+1,3 ςkð Þ,

Tδ1 bΨ ςkð Þ = 〠
r+1

k=−1
μkT

δ1Bk,3 ςkð Þ

= μk−1T
δ1Bk−1,3 ςkð Þ + μkT

δ1Bk,3 ςkð Þ
+ μk+1T

δ1Bk+1,3 ςkð Þ,

Tθ1 bΨ ςkð Þ = 〠
r+1

k=−1
μkT

θ1Bk,3 ςkð Þ

= μk−1T
θ1Bk−1,3 ςkð Þ + μkT

θ1Bk,3 ςkð Þ
+ μk+1T

θ1Bk+1,3 ςkð Þ,

ð11Þ

where B’s, Tδ1B’s, and Tθ1B’s are given, respectively, as

Bk−1,3 ςkð Þ = 1
6
,

Bk,3 ςkð Þ = 2
3
,

Bk+1,3 ςkð Þ = 1
6
:

ð12Þ

Bk,3 ςð Þ = 1
6h3

ς − ςk−2ð Þ3, ςk−2 ≤ ς < ςk−1,

−3 ς − ςk−1ð Þ3 + 3h ς − ςk−1ð Þ2 + 3h2 ς − ςk−1ð Þ +h3, ςk−1 ≤ ς < ςk,

−3 ςk+1 − ςð Þ3 + 3h ςk+1 − ςð Þ2 + 3h2 ςk+1 − ςð Þ +h3, ςk ≤ ς < ςk+1,

ςk+2 − ςð Þ3, ςk+1 ≤ ς < ςk+2,

0, otherwise:

8>>>>>>>><>>>>>>>>:
ð7Þ
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Tδ1Bk−1,3 ςkð Þ = 1
2h

ς1−δ1k ,

Tδ1Bk,3 ςkð Þ = 0,

Tδ1Bk+1,3 ςkð Þ = −
1
2h

ς1−δ1k :

ð13Þ

Tθ1Bk−1,3 ςkð Þ = 1
h2 ς

2−θ1
k ,

Tθ1Bk,3 ςkð Þ = −
2
h2 ς

2−θ1
k ,

Tθ1Bk+1,3 ςkð Þ = 1
h2 ς

2−θ1
k :

ð14Þ

Anyhow, one can write

bΨ ςkð Þ = 1
6
μk−1 +

2
3
μk +

1
6
μk+1,

Tδ1 bΨ ςkð Þ = −
1
2h

ς1−δ1k μk−1 +
1
2h

ς1−δ1k μk+1,

Tθ1 bΨ ςkð Þ = 1
h2 ς

2−θ1
k μk−1 −

2
h2 ς

2−θ1
k μk +

1
h2 ς

2−θ1
k μk+1:

ð15Þ

Similarly, one can get the following regarding bΦ :

bΦ ςkð Þ = 1
6
νk−1 +

2
3
νk +

1
6
νk+1,

Tδ2 bΦ ςkð Þ = −
1
2h

ς1−δ2k νk−1 +
1
2h

ς1−δ2k νk+1,

Tθ2 bΦ ςkð Þ = 1
h2 ς

2−θ2
k νk−1 −

2
h2 ς

2−θ2
k νk +

1
h2 ς

2−θ2
k νk+1:

ð16Þ

Firstly, we will theorize the linear conformable BVP
systems. In this case, N1ðΨ,ΦÞ =N2ðΨ,ΦÞ = 0 in (1).
Thus, the approximation solutions (10) and their CDs
should satisfy the given differential equation at points ς
= ςk when k = 1, 2,⋯, r. This can be done by substituting
(10) with (1). Anyhow, the resulting formulas for k = 1,
2,⋯, r should be

with the BCs

bΨ ςkð Þ = α1, fork = a,bΨ ςkð Þ = β1, fork = b,bΦ ςkð Þ = α2, fork = a,bΦ ςkð Þ = β2, fork = b:

ð18Þ

To proceed more, (15) and (16) are substituted into (17)
and (18) and will be resulting in ½G�2ðr+3Þ×2ðr+3ÞB =Q system
of unknowns μ−1, μ0,⋯, μr+1, ν−1, and ν0,⋯, νr+1 with

B = μ−1, μ0,⋯,μr+1, ν−1, ν0,⋯,νr+1½ �T ,

Q = 6 α1,h2F1 ς0ð Þ,h2F1 ς1ð Þ,⋯,h2F1 ςrð Þ, β1, α2,h
2F2

Â
Á ς0ð Þ,h2F2 ς1ð Þ,⋯,h2F2 ςrð Þ, β2

Ã
:

ð19Þ

Herein, ½G�2ðr+3Þ×2ðr+3Þ and its corresponding elements
are provided by

G =

G1 ⋯ G2

⋮ ⋱ ⋮

G3 ⋯ G4

2664
3775: ð20Þ

G1 =

1 4 1 0 ⋯ 0 0

g1 ς0ð Þ p1 ς0ð Þ q1 ς0ð Þ 0 ⋯ 0 0

0 g1 ς1ð Þ p1 ς1ð Þ q1 ς1ð Þ 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 ⋯ ⋯ 0 g1 ςrð Þ p1 ςrð Þ q1 ςrð Þ
0 ⋯ ⋯ 0 1 4 1

2666666666664

3777777777775
,

ð21Þ

G2 =

0 0 0 0 ⋯ 0 0

g2 ς0ð Þ p2 ς0ð Þ q2 ς0ð Þ 0 ⋯ 0 0

0 g2 ς1ð Þ p2 ς1ð Þ q2 ς1ð Þ 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 ⋯ ⋯ 0 g2 ςrð Þ p2 ςrð Þ q2 ςrð Þ
0 ⋯ ⋯ 0 0 0 0

2666666666664

3777777777775
,

ð22Þ

Tθ1 bΨ ςkð Þ + a1 ςkð ÞTδ1 bΨ ςkð Þ + a2 ςkð Þ bΨ ςkð Þ + Tθ2 bΦ ςkð Þ + a3 ςkð ÞTδ2 bΦ ςkð Þ + a4 ςkð Þ bΦ ςkð Þ =F1 ςkð Þ,
Tθ2 bΦ ςkð Þ + b1 ςkð ÞTδ2 bΦ ςkð Þ + b2 ςkð Þ bΦ ςkð Þ + Tθ1 bΨ ςkð Þ + b3 ςkð ÞTδ1 bΨ ςkð Þ + b4 ςkð Þ bΨ ςkð Þ =F2 ςkð Þ,

(
ð17Þ
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G3 =

0 0 0 0 ⋯ 0 0

g3 ς0ð Þ p3 ς0ð Þ q3 ς0ð Þ 0 ⋯ 0 0

0 g3 ς1ð Þ p3 ς1ð Þ q3 ς1ð Þ 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 ⋯ ⋯ 0 g3 ςrð Þ p3 ςrð Þ q3 ςrð Þ
0 ⋯ ⋯ 0 0 0 0

2666666666664

3777777777775
,

ð23Þ

G4 =

1 4 1 0 ⋯ 0 0

g4 ς0ð Þ p4 ς0ð Þ q4 ς0ð Þ 0 ⋯ 0 0

0 g4 ς1ð Þ p4 ς1ð Þ q4 ς1ð Þ 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 ⋯ ⋯ 0 g4 ςrð Þ p4 ςrð Þ q4 ςrð Þ
0 ⋯ ⋯ 0 1 4 1

2666666666664

3777777777775
:

ð24Þ

Also, the coefficients in the submatrices G1, G2, G3, and
G4 have the form

g1 ςkð Þ = 6ς2−θ1k − a1 ςkð Þ3hς1−δ1k +h2a2 ςkð Þ,
p1 ςkð Þ = −12ς2−θ1k + 4h2a2 ςkð Þ,
q1 ςkð Þ = 6ς2−θ1k + a1 ςkð Þ3hς1−δ1k +h2a2 ςkð Þ:

ð25Þ

g2 ςkð Þ = 6ς2−θ2k + a3 ςkð Þ3hς1−δ2k +h2a4 ςkð Þ,
p2 ςkð Þ = −12ς2−θ2k + 4h2a4 ςkð Þ,
q2 ςkð Þ = 6ς2−θ2k + a3 ςkð Þ3hς1−δ2k +h2a4 ςkð Þ:

ð26Þ

g3 ςkð Þ = 6ς2−θ2k + b1 ςkð Þ3hς1−δ2k +h2b2 ςkð Þ,
p3 ςkð Þ = −12ς2−θ2k + 4h2b2 ςkð Þ,
q3 ςkð Þ = 6ς2−θ2k + b1 ςkð Þ3hς1−δ2k +h2b2 ςkð Þ:

ð27Þ

g4 ςkð Þ = 6ς2−θ1k + b3 ςkð Þ3hς2−δ1k +h2b4 ςkð Þ,
p4 ςkð Þ = −12ς2−θ1k + 4h2b4 ςkð Þ,
q4 ςkð Þ = 6ς2−θ1k + b3 ςkð Þ3hς1−δ1k +h2b4 ςkð Þ:

ð28Þ

Secondly, we will theorize the nonlinear conformable
BVP systems in this case of N1ðΨ,ΦÞ and N2ðΨ,ΦÞ are
nonlinear functions of Ψ and Φ differ from zero. Anyhow,
the substituting of (10) and its CDs in (1) and (2) at ς = ςk
when k = 0, 1,⋯, r will gives

F1 ςkð Þ = 〠
r+1

k=−1
μk Tθ1Bk,3 ςkð Þ + a1 ςkð ÞTδ1Bk,3 ςkð Þ + a2 ςkð ÞBk,3 ςkð Þ
h i

+ 〠
r+1

k=−1
νk Tθ2Bk,3 ςkð Þ + a3 ςkð ÞTδ2Bk,3 ςkð Þ + a4 ςkð ÞBk,3 ςkð Þ
h i

+N1 〠
r+1

k=−1
μkBk,3 ςkð Þ, 〠

r+1

k=−1
νkBk,3 ςkð Þ

 !
:

ð29Þ

F2 ςkð Þ = 〠
r+1

k=−1
νk Tθ2Bk,3 ςkð Þ + b1 ςkð ÞTδ2Bk,3 ςkð Þ + b2 ςkð ÞBk,3 ςkð Þ
h i

+ 〠
r+1

k=−1
μk Tθ1Bk,3 ςkð Þ + b3 ςkð ÞTδ1Bk,3 ςkð Þ + b4 ςkð ÞBk,3 ςkð Þ
h i

+N2 〠
r+1

k=−1
μkBk,3 ςkð Þ, 〠

r+1

k=−1
νkBk,3 ςkð Þ

 !
:

ð30Þ

subject to the same BCs (18).
Recalling, the BS functions at fςkgrk=0 are determined by

substitution (12), (13), and (14) in (29), (30), and (18).

3. The CBSA for Handling Singular
Systems of CDs

Now, we will spend the CBSA to build a numerical solution
for the singular conformable LEP. We start by overcoming
the singularity at ς = 0 and then employing our proposed
procedure scheme.

To solve the singular LEP in its CD case, we first write
(3) in the standard form as

Tθ1Ψ ςð Þ + η1
ς
Tδ1Ψ ςð Þ +Q1 ς,Ψ ςð Þ,Φ ςð Þð Þ = 0,

Tθ2Φ ςð Þ + η2
ς
Tδ2Φ ςð Þ +Q2 ς,Ψ ςð Þ,Φ ςð Þð Þ = 0,

ð31Þ

concerning the BC

Ψ 0ð Þ = ρ1,Φ 0ð Þ = ε1,

Ψ 1ð Þ = ρ2,Φ 1ð Þ = ε2,
ð32Þ

where the set functions Q1 and Q2 are given as

Q1 ς,Ψ ςð Þ,Φ ςð Þð Þ = a2 ςð ÞΨ ςð Þ + a4 ςð ÞΦ ςð Þ +N1 Ψ ςð Þ,Φ ςð Þð Þ −F1 ςð Þ,
Q2 ς,Ψ ςð Þ,Φ ςð Þð Þ = b2 ςð ÞΦ ςð Þ + b4 ςð ÞΨ ςð Þ +N2 Ψ ςð Þ,Φ ςð Þð Þ −F2 ςð Þ:

ð33Þ

More focused, to take off the singularity ς = 0, one can be
employing the following next steps:
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Multiplying (31) with ς gives

ςTθ1Ψ ςð Þ + η1T
δ1Ψ ςð Þ + ςQ1 ς,Ψ ςð Þ,Φ ςð Þð Þ = 0,

ςTθ2Φ ςð Þ + η2T
δ2Φ ςð Þ + ςQ2 ς,Ψ ςð Þ,Φ ςð Þð Þ = 0:

ð34Þ

(i) Taking the CD of order δ1 and δ2, respectively, from
both sides of (34), one has

Tδ1 ςTθ1Ψ ςð Þ
� �

+ η1T
δ1Tδ1Ψ ςð Þ + Tδ1 ςQ1 ς,Ψ ςð Þ,Φ ςð Þð Þð Þ = 0,

Tδ2 ςTθ2Φ ςð Þ
� �

+ η2T
δ2Tδ2Φ ςð Þ + Tδ2 ςQ2 ς,Ψ ςð Þ,Φ ςð Þð Þð Þ = 0:

ð35Þ

(ii) Using the properties of the CD, one obtains

ς1−δ1Tθ1Ψ ςð Þ + ςTδ1Tθ1Ψ ςð Þ + η1T
δ1Tδ1Ψ ςð Þ

+ ς1−δ1Q1 ς,Ψ ςð Þ,Φ ςð Þð Þ + ςTδ1Q1 ς,Ψ ςð Þ,Φ ςð Þð Þ = 0,

ς1−δ2 Tθ2Φ ςð Þ + ςTδ2Tθ2Φ ςð Þ + η2T
δ2Tδ2Φ ςð Þ

+ ς1−δ2Q2 ς,Ψ ςð Þ,Φ ςð Þð Þ + ςTδ2Q2 ς,Ψ ςð Þ,Φ ςð Þð Þ = 0:
ð36Þ

(iii) Substituting θ1 = θ2 = 2 and δ1 = δ2 = 1 in (36) at ς
= 0, one gets

η1 + 1ð ÞΨ′′ 0ð Þ +Q1 0,Ψ ςð Þ,Φ ςð Þð Þ = 0,

η2 + 1ð ÞΦ′′ 0ð Þ +Q2 0,Ψ ςð Þ,Φ ςð Þð Þ = 0:
ð37Þ

Putting (10) in (31), (32), and (37) at ς = ςk it follows
that

Tθ1 bΨ ςkð Þ + η1
ςk

Tδ1 bΨ ςkð Þ +Q1 ςk, bΨ ςkð Þ, bΦ ςkð Þ
� �

= 0, fork = 1,⋯, r,

η1 + 1ð Þ bΨ ′′ 0ð Þ +Q1 0, bΨ ςkð Þ, bΦ ςkð Þ
� �

= 0, fork = 0,

Tθ2 bΦ ςkð Þ + η2
ςk

Tδ2 bΦ ςkð Þ +Q2 ςk, bΨ ςkð Þ, bΦ ςkð Þ
� �

= 0, fork = 1,⋯, r,

η2 + 1ð Þ bΦ ′′ 0ð Þ +Q2 0, bΨ ςkð Þ, bΦ ςkð Þ
� �

= 0, fork = 0,

bΨ ς0ð Þ = ρ1, for ς0 = 0,bΨ ςrð Þ = ρ2, for ςr = 1,bΦ ς0ð Þ = ε1, for ς0 = 0,bΦ ςrð Þ = ε2, for ςr = 1:

ð38Þ

This drives a system of 2ðr + 3Þ equations with the
same number of unknowns which can be treated to obtain
the vectors μk and νk; consequently an approximation of
ΨðςÞ and ΦðςÞ.

4. Error and Convergence Analysis

Herein, to guarantee the behavior of the approximate CBSA
solutions, we utilized two main analyses: the first one
concerning error analysis and the second one concerning
convergence analysis.

Using the CBSA approximations (15) and (16), the
following relations can be established:

h

6
1
6

� �bΨ ′ ςk−1ð Þ + 2
3

� �bΨ ′ ςkð Þ + 1
6

� �bΨ ′ ςk+1ð Þ
� �
=
1
2
ς1−δ1k

bΨ ςk+1ð Þ + bΨ ςk−1ð Þ
h i

,
ð39Þ

h2Tθ1 bΨ ςkð Þ = ς2−θ1k 6 bΨ ςk+1ð Þ + bΨ ςkð Þ
� �h

− 2h 2 bΨ ′ ςkð Þ + bΨ ′ ςk+1ð Þ
� �i

:
ð40Þ

In notation for the operator Eεð bΨðςkÞÞ = bΨðςk+ϵÞ with
ϵ ∈ℤ, we can write (39) and (40) as

h

6
1
6

� �
E−1 +

2
3

� �
I +

1
6

� �
E

� � bΨ ′ ςkð Þ = 1
2
ς1−δ1k E + E−1Â Ã

Ψ ςkð Þ,

ð41Þ

h2Tθ1 bΨ ςkð Þ = ς2−θ1k 6 E + Ið ÞΨ ςkð Þ − 2h 2I + Eð ÞΨ′ ςkð Þ
h i

:

ð42Þ

Moreover, if Λ = d/dς, we have got

E bΨ ςkð Þ
� �

= bΨ ςk +hð Þ = 〠
∞

k=0

hk bΨ kð Þ
ςkð Þ

k!

= 〠
∞

k=0

hΛð Þk
k!

bΨ ςkð Þ = e hΛð Þ bΨ ςkð Þ:
ð43Þ

It implies that E = ehΛ. Similarly, we have E−1 = e−hΛ and
we can get

E + E−1 = 2 1 +
hΛð Þ2
2!

+
hΛð Þ4
4!

+
hΛð Þ6
6!

+⋯
 !

,

E − E−1 = 2 hΛ +
hΛð Þ3
3!

+
hΛð Þ5
5!

+
hΛð Þ7
7!

+⋯
 !

:

ð44Þ
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Thus, (39) can be represented serially as

1 +
1
3

hΛð Þ2
2!

+
hΛð Þ4
4!

+
hΛð Þ6
6!

+⋯
 !" # bΨ ′ ςkð Þ

= ς1−δ1k Λ +
h2Λ3

3!
+
h4Λ5

5!
+
h6Λ7

7!
+⋯

� �
Ψ ςkð Þ,

ð45Þ

bΨ ′ ςkð Þ = ς1−δ1k Λ +
h2Λ3

3!
+
h4Λ5

5!
+
h6Λ7

7!
+⋯

� �
Á 1 +

hΛð Þ2
6

+
hΛð Þ4
72

+
hΛð Þ6
2160

+⋯
 !" #−1

Ψ ςkð Þ,

ð46Þ

bΨ ′ ςkð Þ = ς1−δ1k Λ +
h2Λ3

3!
+
h4Λ5

5!
+
h6Λ7

7!
+⋯

� �
Á 1 −

hΛð Þ2
6

+
hΛð Þ4
72

+
hΛð Þ6
2160

+⋯
 !"

+
hΛð Þ2
6

+
hΛð Þ4
72

+⋯
 !2

+⋯
#
Ψ ςkð Þ

= ς1−δ1k Λ +
h2Λ3

3!
+
h4Λ5

5!
+
h6Λ7

7!
+⋯

� �
Á 1 −

hΛð Þ2
6

+
hΛð Þ4
72

−
hΛð Þ6
2160

+⋯
 !

Ψ ςkð Þ

= ς1−δ1k Λ −
h4Λ5

180
+ h6Λ7

1512
−⋯

� �
Ψ ςkð Þ:

ð47Þ

Hence, after ranking, one can write

Tδ1 bΨ ςkð Þ = ς1−δ1k Ψ′ ςkð Þ − h4

180
ς1−δ1k Ψ 5ð Þ ςkð Þ+⋯

= Tδ1Ψ ςkð Þ − h4

180
ς1−δ1k Ψ 5ð Þ ςkð Þ+⋯:

ð48Þ

By applying the same technique as (40), we may extract

Tθ1 bΨ ςkð Þ = ς2−θ1k Ψ′′ ςkð Þ − h2

12
ς2−θ1k Ψ 4ð Þ ςkð Þ + h4

360
ς2−θ1k Ψ 6ð Þ ςkð Þ+⋯

= Tθ1Ψ ςkð Þ − h2

12
ς2−θ1k Ψ 4ð Þ ςkð Þ + h4

360
ς2−θ1k Ψ 6ð Þ ςkð Þ+⋯:

ð49Þ

Let us now describe the expression e1ðςÞ =ΨðςÞ − bΨðςÞ
for error. Using (48) and (49) in eðςkÞ expansion of the
Taylor series, one gets

e1 ςk +hð Þ = e ςkð Þ +he′ ςkð Þ + h2

2!
e′′ ςkð Þ+⋯

= Ψ ςkð Þ − bΨ ςkð Þ
� �

+h Ψ′ ςkð Þ − bΨ ′ ςkð Þ
� �

+
h2

2!
Ψ′′ ςkð Þ − bΨ ′′ ςkð Þ
� �

+⋯

= Ψ ςkð Þ − bΨ ςkð Þ
� �

+hςδ1−1k Tδ1 bΨ ςkð Þ − Tδ1Ψ ςkð Þ
� �

+
h2

2!
ςθ1−2k Tθ1 bΨ ςkð Þ − Tθ1Ψ ςkð Þ

� �
+⋯:

ð50Þ

Hence,

e1 ςk +hð Þ = −
h4

24
Ψ 4ð Þ ςkð Þ + h5

180
Ψ 5ð Þ ςkð Þ + h6

720
Ψ 6ð Þ ςkð Þ+⋯:

ð51Þ

Similarly, we have

e2 ςk +hð Þ = −
h4

24
Φ 4ð Þ ςkð Þ + h5

180
Φ 5ð Þ ςkð Þ + h6

720
Φ 6ð Þ ςkð Þ+⋯:

ð52Þ

As a score, it is obvious that our CBSA approximation is
Oðh4Þ accurate.

In the convergence approach, we will prove the conver-
gence of the CBSA for Dirichlet BC. Let ΨðςÞ and ΦðςÞ be
the exact solutions of (1) and (2). Also, let bΨðςÞ and bΦðςÞ
in (10) be the cubic BS approximations to ΨðςÞ and ΦðςÞ,
respectively. Due to round-off errors in computations, we
will assume that S1ðςÞ =∑r+1

k=−1bμkBk,3ðςÞ and S2ðςÞ =
∑r+1

k=−1bνkBk,3ðςÞ be the computed BS approximations to bΨ
ðςÞ and bΦðςÞ, respectively, where bμk = ðbμ−1, bμ0,⋯,bμr+1Þ
and bνk = ðbν−1, bν0,⋯,bνr+1Þ.

To estimate the errors kðΨðςÞ,ΦðςÞÞ − ð bΨðςÞ, bΦðςÞÞk∞
we must estimate kðΨðςÞ,ΦðςÞÞ − ðS1ðςÞ, S1ðςÞÞk∞ and

kðS1ðςÞ, S1ðςÞÞ − ð bΨðςÞ, bΦðςÞÞk∞, wherein k:k represents
the ∞-norm.

Firstly, we will consider the linear cases as follows:

L1 bΨ , bΦ� �
=F1 ςð Þ,

L2 bΨ , bΦ� �
=F2 ςð Þ,

ð53Þ

with the BCs (2) will lead to the linear system GB =Q.

L1 S1, S2ð Þ =F∗
1 ςð Þ,

L2 S1, S2ð Þ =F∗
2 ςð Þ,

ð54Þ

with the BCs (2) will lead to the linear system GB∗ =Q∗.
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Then it follows that GðB − B∗Þ = ðQ −Q∗Þ, where

B − B∗ = bμ−1 − μ−1ð Þ,⋯, bμr+1 − μr+1ð Þ, bν−1 − ν−1ð Þ,⋯, bνr+1 − νr+1ð Þ½ �T ,
ð55Þ

Q −Q∗ = 6h2 0, F1 ς0ð Þ −F∗
1 ς0ð Þð Þ,⋯, F1 ςrð Þð½

−F∗
1 ςrð ÞÞ, 0, 0, F2 ς0ð Þð

−F∗
2 ς0ð ÞÞ,⋯, F2 ςrð Þ −F∗

2 ςrð Þð Þ, 0�:
ð56Þ

Theorem 1. Suppose that ΨðςÞ,ΦðςÞ ∈ C5½a, b� and Π : fa
= ς0 < ς1 <⋯ < ςr−1 < ςr = bg be the equally spaced partition
of ½a, b� with step size h. If S is the cubic BS function that
interpolates the values of the function u at the knots ς0,⋯,
ςr ∈Π, then there exist constants γq which do not depend
on h such that for ς ∈ ½a, b� with b > a ≥ 0, we have

Ψ ςð Þ,Φ ςð Þð Þ − S1 ςð Þ, S1 ςð Þð Þk k∞ ≤ γ1h
4,

Tδ Ψ ςð Þ,Φ ςð Þð Þ − Tδ S1 ςð Þ, S1 ςð Þð Þ
 

∞
≤ γ2h

4, 0 < δ ≤ 1,

Tθ Ψ ςð Þ,Φ ςð Þð Þ − Tθ S1 ςð Þ, S1 ςð Þð Þ
 

∞
≤ γ3h

2, 1 < θ ≤ 2:

ð57Þ

Proof. Using the prior results, one can find

F1 ςkð Þ −F∗
1 ςkð Þj j = L1 bΨ , bΦ� �

− L1 S1, S2ð Þ
��� ���

≤ Tθ1 bΨ ςkð Þ − Tθ1S1 ςkð Þ
��� ���
+ a1 ςkð Þj j Tδ1 bΨ ςkð Þ − Tδ1S1 ςkð Þ

��� ���
+ a2 ςkð Þj j bΨ ςkð Þ − S1 ςkð Þ

��� ���
+ Tθ2 bΦ ςkð Þ − Tθ2S2 ςkð Þ
��� ���

+ a3 ςkð Þj j Tδ2 bΦ ςkð Þ − Tδ2S2 ςkð Þ
��� ���

+ a4 ςkð Þj j bΦ ςkð Þ − S2 ςkð Þ
��� ���:

ð58Þ

Again, one can write

F1 ςkð Þ −F∗
1 ςkð Þj j ≤ γ3h

2 + a1 ςkð Þk k∞ γ2h
4

+ a2 ςkð Þk k∞ γ1h
4 + γ3′h2

+ a3 ςkð Þk k∞γ2′h4 + a4 ςkð Þk k∞γ1′h4:

ð59Þ

Since h≪ 1, one has

F1 ςkð Þ −F∗
1 ςkð Þk k ≤Mh2, ð60Þ

F2 ςkð Þ −F∗
2 ςkð Þk k ≤M1h

2: ð61Þ

From (60) and (61), we can find

Q −Q∗k k∞ ≤ 6h4M: ð62Þ

The matrix G is monotone and thus nonsingular [31].
Hence, we can write

B − B∗ð Þ =G−1 Q −Q∗ð Þ: ð63Þ

Now, we determine row sums S−1, S0,⋯, S2ðr+2Þ of the
matrix G as follows:

S−1 = 6,

Sp = 〠
r

q=0
apq = 6h2a2 ςkð Þ + 6h2a4 ςkð Þ,p = 0,⋯, r + 1,

Sr+1 = 6,

Sr+2 = 6,

Sp
′ = 〠

2r+3

q=r+3
apq = 6h2b2 ςkð Þ + 6h2b4 ςkð Þ,p = r + 3,⋯, 2r + 3,

S2r+4 = 6:
ð64Þ

Thus, if akq indicates the ðk,qÞth element of the matrix
G, then we can write

Sk = 〠
2r+4

q=−1
akq,k = −1,⋯, 2r + 4: ð65Þ

Let a−1pk indicates the ðk,qÞth element of G−1. Then, the
matrix norms are defined as

G−1  = max
−1≤p≤2r+4

〠
2r+4

k=−1
a−1pk

�� ��: ð66Þ

So, we have

I =G−1G = 〠
2r+4

k=−1
a−1pkakq,p = −1,⋯, 2r + 4,q = −1,⋯, 2r + 4,

ð67Þ

and kG−1Gk = 1 which gives also

〠
2r+4

q=−1
〠
2r+4

k=−1
a−1pkakq = 1,p = −1,⋯, 2r + 4,

〠
2r+4

k=−1
a−1pk 〠

2r+4

q=−1
akq

 !
= 1,p = −1,⋯, 2r + 4,

〠
2r+4

k=−1
a−1pkSk = 1,p = −1,⋯, 2r + 4: ð68Þ

8 Journal of Function Spaces



Let S∗
k =min Sk. Then we get

〠
2r+4

k=−1
a−1pk ≤

1
S∗

k

, ð69Þ

where S∗
k = 6h2 min ða2ðςkÞ + a4ðςkÞ, b2ðςkÞ + b4ðςkÞÞ = 6

h2M. Thus

B − B∗k k = G−1  Q −Q∗ðk k ≤h2M̂: ð70Þ

Using the definition of cubic BS basis functions in (7),
one can obtain that

〠
r+1

k=−1
Bk,3 ςð Þ�� �� ≤ 5

3
, a ≤ ς ≤ b, ð71Þ

S1 ςð Þ − bΨ ςð Þ, S2 ςð Þ − bΦ ςð Þ
� � 

∞

= 〠
r+1

k=−1
bμkBk,3 ςð Þ − 〠

r+1

k=−1
μkBk,3 ςð Þ, 〠

r+1

k=−1
bνkBk,3 ςð Þ − 〠

r+1

k=−1
νkBk,3 ςð Þ

 !


= bμk − μk, bνk − νkð Þk k 〠
r+1

k=−1
Bk,3 ςð Þ�� �� ≤ 5

3
h2M̂:

ð72Þ

Hence,

S1 ςð Þ, S1 ςð Þð Þ − bΨ ςð Þ, bΦ ςð Þ
� � 

∞

= S1 ςð Þ − bΨ ςð Þ, S2 ςð Þ − bΦ ςð Þ
� � 

∞

≤
5
3
h2M̂:

ð73Þ

Thus, kðΨðςÞ,ΦðςÞÞ − ðS1ðςÞ, S1ðςÞÞk∞ ≤ γ1h
4 and

kðΨðςÞ,ΦðςÞÞ − ð bΨðςÞ, bΦðςÞÞk∞ ≤wh2.

5. Application and Numerical Simulation

To highlight the importance and strength of what we pre-
sented in terms of analysis and mathematical construction
concerning the CBSA, we need to discuss several practical
examples, and this is what we will present in this special part.

Hither, bΨðςkÞ, bΦðςkÞ will approximate ΨðςkÞ,ΦðςkÞ,
respectively. Indeed, AΨðςkÞ = jΨ − bΨjðςkÞ and AΦðςkÞ = j
Φ − bΦjðςkÞ denote the absolute errors, whilst RΨðςkÞ = jΨ
− bΨjjΨj−1ðςkÞ and RΦðςkÞ = jΦ − bΦjjΦj−1ðςkÞ denote the
relative errors.

Example 2.We test the following conformable linear system:

T4/3Ψ ςð Þ − 3ς3T1/2Ψ ςð Þ + T5/4Φ ςð Þ
+ T1/3Φ ςð Þ + 1 + ςð ÞΦ ςð Þ =F1 ςð Þ,

T5/4Φ ςð Þ + cosh ςð ÞT1/3Φ ςð Þ + ς3

ς2 1 − ςð Þ + 1
Φ ςð Þ + T4/3Ψ ςð Þ

+ T1/2Ψ ςð Þ + 2ς2 − 3ς
À Á

Ψ ςð Þ =F2 ςð Þ,

ð74Þ

F1 ςð Þ = −2ς2/3 − 2ς3/4 − 2ς5/3 + 6ς7/4

− ς2 + 3ς8/3 − 3ς7/2 + ς4 + 6ς9/2,

F2 ςð Þ = 1 − 2ςð Þ ffiffi
ς

p
− ς2/3 + 2ς3/4 −1 + 3ςð Þ

+ ς3 3 − 5ς + 2ς2
À Á

−
−1 + ςð Þς4
1 + ς2 − ς3

+ ς5/3 −2 + 3ςð Þ cosh ςð Þ,

ð75Þ

concerning the BCs

Ψ 0:5ð Þ = 0:25,Φ 0:5ð Þ = −0:125,

Ψ 1ð Þ =Φ 1ð Þ = 0:
ð76Þ

Herein, the exact solutions are

Ψ ςð Þ = ς 1 − ςð Þ,
Φ ςð Þ = ς2 ς − 1ð Þ:

ð77Þ

Concerning Example 2 and using CBSA, the related
numerical solutions for r = 10 are displayed in Table 1.
Additionally, the graphics of AΨðςkÞ and AΦðςkÞ for r =
10 are given in Figure 1. Hither, it can be observed from
the figure and table that the result data is sufficient accuracy
and are firmly connected.

Example 3.We test the following conformable nonlinear sys-
tem:

T3/2Ψ ςð Þ + T1/4Ψ ςð Þ + T3/2Ψ ςð ÞΨ ςð Þ
+ exp Φ ςð Þð Þ + cos ςð ÞΦ ςð Þ =F1 ςð Þ,

T3/2Φ ςð Þ + T1/4Φ ςð Þ + T1/2Ψ ςð ÞT1/4Φ ςð Þ
+ ln Ψ ςð Þð Þ + 2ςΦ ςð Þ =F2 ςð Þ, ð78Þ

F1 ςð Þ = e−2ς2 e2ς2 1 + ς2 + cos ςð Þ ln 1 + ς2
À ÁÀ ÁÀ Áh

+ 2
ffiffi
ς

p
−1 + 2ς2
À Á

+ 2
ffiffi
ς

p
eς2 −1 − ς5/4 + 2ς2
À �,

F2 ςð Þ = 1
1 + ς2

−
2 ffiffi

ς
p 1 − ς2
À Á
1 + ς2

+ 2ς7/4 − 4eς2ς13/4
� �

+ e−2ς2 + 2ς ln 1 + ς2
À Á

,
ð79Þ
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concerning the BCs

Ψ 1ð Þ = e−1,Φ 1ð Þ = ln 2ð Þ,
Ψ 2ð Þ = e−4,Φ 2ð Þ = ln 5ð Þ:

ð80Þ

Herein, the exact solutions are

Ψ ςð Þ = e−ς2 ,

Φ ςð Þ = ln 1 + ς2
À Á

:
ð81Þ

Table 1: Solutions result with r = 10 in Example 2.

ςk Ψ ςkð Þ bΨ ςkð Þ AΨ ςkð Þ Φ ςkð Þ bΦ ςkð Þ AΦ ςkð Þ
0.50 0.2500 0.2500 0 -0.125000 -0.125000 0

0.55 0.2475 0.2475 0 -0.136125 -0.136125 1:1102 × 10−16

0.60 0.2400 0.2400 1:9429 × 10−16 -0.144000 -0.144000 2:4980 × 10−16

0.65 0.2275 0.2275 2:7756 × 10−17 -0.147875 -0.147875 1:3045 × 10−15

0.70 0.2100 0.2100 9:4369 × 10−16 -0.147000 -0.147000 3:0531 × 10−16

0.75 0.1875 0.1875 1:1102 × 10−16 -0.140625 -0.140625 1:1657 × 10−15

0.80 0.1600 0.1600 9:4369 × 10−16 -0.128000 -0.128000 8:3267 × 10−17

0.85 0.1275 0.1275 2:7756 × 10−17 -0.108375 -0.108375 1:3739 × 10−15

0.90 0.0900 0.0900 1:1935 × 10−15 -0.081000 -0.081000 2:3592 × 10−16

0.95 0.0475 0.0475 1:2490 × 10−16 -0.045125 -0.045125 1:2212 × 10−15

1.00 0 0 0 0 0 0

0.5 0.80.70.6 0.9 1.0
𝜍
k

2. ⨯ 10–16

4. ⨯ 10–16

6. ⨯ 10–16

8. ⨯ 10–16

1. ⨯ 10–15

1.2⨯10–15

A
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Figure 1: Graphical results with r = 10 in Example 2: (a) AΨðςkÞ and (b) AΦðςkÞ.
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Concerning Example 3 and to show the compatibility
between ðΨðςkÞ,ΦðςkÞÞ and ð bΦðςkÞ, bΨðςkÞÞ, the values of
AΨðςkÞ and AΦðςkÞ are summarized in Tables 2 and 3,
respectively, for r = f10,20,40,80,160g. Additionally, the
graphics of AΨðςkÞ and AΦðςkÞ for r = 160 are given in
Figure 2. Whilst, the graphics of ðΨðςkÞ, bΨðςkÞÞ and ðΦð
ςkÞ, bΦðςkÞÞ for r ∈ f20, 40g are given in Figure 3. Again, it
can be observed from the figure and table that the result data
is sufficient accuracy and firmly connected.

Example 4. We test the following linear conformable LEP
system:

T4/3Ψ ςð Þ + 2
ς
T1/2Ψ ςð Þ + ςΦ ςð Þ + eςΨ ςð Þ =F1 ςð Þ,

T4/3Φ ςð Þ + 1
ς
T1/2Φ ςð Þ + 2 sin ςð ÞΦ ςð Þ + 2ςΨ ςð Þ =F2 ςð Þ,

ð82Þ

F1 ςð Þ = eς + ς − ς2 + ς3 + 2π 1 + 2ς1/6
À Á

cos πςð Þ
+ 4

ffiffi
ς

p
+ 2ς2/3 + ς2eς − π2ς8/3

À Á
sin πςð Þ,

F2 ςð Þ = 2 ς5/6 − ς−1/4 1 + 2ςð Þ + 2 1 − ς + ς2
À Á

sin ςð Þ
+ 2ς 1 + ς2

À Á
sin πςð Þ,

ð83Þ

concerning the BCs

Ψ 0ð Þ =Φ 0ð Þ = 1,

Ψ 1ð Þ =Φ 1ð Þ = 1:
ð84Þ

Herein, the exact solutions are

Ψ ςð Þ = ς2 sin πςð Þ + 1,

Φ ςð Þ = ς2 − ς + 1:
ð85Þ

Concerning Example 4 and to show the compatibility
between ðΨðςkÞ,ΦðςkÞÞ and ð bΦðςkÞ, bΨðςkÞÞ, the values of
ðAΨðςkÞ,RΨðςkÞÞ and ðAΦðςkÞ,RΦðςkÞÞ are summarized
together in Table 4 for r = 60. Whilst the graphics of
ðAΨðςkÞ,RΨðςkÞÞ and ðAΦðςkÞ,RΦðςkÞÞ for r = 60 are
given in Figure 4. Indeed, the graphics of ðΨðςkÞ, bΨðςkÞÞ
and ðΦðςkÞ, bΦðςkÞÞ for r ∈ f60, 80g are given in Figure 5.
Hither, it can be observed from the figure and table that the
result data is sufficient accuracy and are firmly connected.

Example 5. We test the following nonlinear singular LEP
system:

T5/4Ψ ςð Þ + 2
ς
T1/5Ψ ςð Þ + sinh ςð ÞΦ2 ςð Þ + Ψ ςð Þ

Ψ2 ςð Þ + 1
=F1 ςð Þ,

T5/4Φ ςð Þ − 1
ς
T1/5Φ ςð Þ + 2 cos Ψ ςð Þð Þ =F2 ςð Þ,

ð86Þ

F1 ςð Þ = ς3/4 −3 + 6ςð Þ + ς−1/5 1 − 6ς + 6ς2
À Á

+
2 + ς − 3ς2 + 2ς3

2 + 0:5 2 + ς − 3ς2 + 2ς3ð Þ2
+ cos2 ςð Þ sinh ςð Þ,

F2 ςð Þ = −ς3/4 − cos 0:5 2 + ς − 3ς2 + 2ς3
À ÁÀ Á

+ ς−1/5 sin ςð Þ,
ð87Þ

concerning the BCs

Ψ 0ð Þ =Φ 0ð Þ = 1,

Ψ 1ð Þ = 1,Φ 1ð Þ = cos 1ð Þ:
ð88Þ

Herein, the exact solutions are

Ψ ςð Þ = ς3 − 1:5ς2 + 0:5ς + 1,

Φ ςð Þ = cos ςð Þ:
ð89Þ

Table 2: Solutions result of AΨðςkÞ with r = f10,20,40,80,160g in Example 3.

ςk r = 10 r = 20 r = 40 r = 80 r = 160
1 0 0 0 0 0

1.1 1:41417 × 10−4 3:53949 × 10−5 8:85131 × 10−6 2:21299 × 10−6 5:53257 × 10−7

1.2 2:17765 × 10−4 5:44737 × 10−5 1:36205 × 10−5 3:40526 × 10−6 8:51323 × 10−7

1.3 2:41486 × 10−4 6:03663 × 10−5 1:50913 × 10−5 3:77281 × 10−6 9:43202 × 10−7

1.4 2:27054 × 10−4 5:67117 × 10−5 1:41747 × 10−5 3:54349 × 10−6 8:85859 × 10−7

1.5 1:88993 × 10−4 4:71574 × 10−5 1:17837 × 10−5 2:94558 × 10−6 7:36374 × 10−7

1.6 1:40251 × 10−4 3:49512 × 10−5 8:73088 × 10−6 2:18229 × 10−6 5:45546 × 10−7

1.7 9:11547 × 10−5 2:26784 × 10−5 5:66277 × 10−6 1:41527 × 10−6 3:53789 × 10−7

1.8 4:89733 × 10−5 1:21551 × 10−5 3:03330 × 10−6 7:57986 × 10−7 1:89475 × 10−7

1.9 1:80044 × 10−5 4:45136 × 10−6 1:10975 × 10−6 2:77246 × 10−7 6:92995 × 10−8

2 0 0 0 0 0
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Table 3: Solutions result of AΦðςkÞ with r = f10,20,40,80,160g in Example 3.

ςk r = 10 r = 20 r = 40 r = 80 r = 160
1 0 0 0 0 0

1.1 3:76804 × 10−7 1:68330 × 10−8 6:23761 × 10−10 4:57952 × 10−10 1:33368 × 10−16

1.2 3:49244 × 10−6 1:00246 × 10−6 2:58702 × 10−7 6:51818 × 10−8 1:63269 × 10−8

1.3 9:15243 × 10−6 2:44919 × 10−6 6:22382 × 10−7 1:56226 × 10−7 3:90960 × 10−8

1.4 1:47071 × 10−5 3:85284 × 10−6 9:74249 × 10−7 2:44253 × 10−7 6:11065 × 10−8

1.5 1:86288 × 10−5 4:83271 × 10−6 1:21920 × 10−6 3:05490 × 10−7 7:64158 × 10−8

1.6 1:97846 × 10−5 5:10561 × 10−6 1:28643 × 10−6 3:22237 × 10−7 8:05984 × 10−8

1.7 1:76475 × 10−5 4:54048 × 10−6 1:14322 × 10−6 2:86312 × 10−7 7:16099 × 10−8

1.8 1:25707 × 10−5 3:22885 × 10−6 8:12645 × 10−7 2:03502 × 10−7 5:08967 × 10−8

1.9 5:94475 × 10−6 1:52547 × 10−6 3:83849 × 10−7 9:61176 × 10−8 2:40391 × 10−8

2 0 0 0 0 0
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Figure 2: Graphical results with r = 160 in Example 3: (a) AΨðςkÞ and (b) AΦðςkÞ.
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Figure 3: Graphical results of ðΨðςkÞ, bΨðςkÞÞ and ðΦðςkÞ, bΦðςkÞÞ in Example 3 as red: Ψ, blue: Φ, black stars: ð bΨ , bΦÞ: (a) r = 10 and (b)
r = 40.
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Table 4: Solutions result with r = 60 in Example 4.

ςk bΨ ςkð Þ AΨ ςkð Þ RΨ ςkð Þ bΦ ςkð Þ AΦ ςkð Þ RΦ ςkð Þ
0 0 0 0 0 0 0

0.1 1.00322 1:257708 × 10−4 1:253833 × 10−4 0:910011 1:123178 × 10−5 1:234262 × 10−5

0.2 1.02363 1:163980 × 10−4 1:137241 × 10−4 0:840011 1:091802 × 10−5 1:299764 × 10−5

0.3 1.07291 9:657157 × 10−5 9:001727 × 10−5 0:790009 9:231926 × 10−6 1:168598 × 10−5

0.4 1.15223 6:463408 × 10−5 5:609774 × 10−5 0:760007 6:638852 × 10−6 8:735332 × 10−6

0.5 1.25002 2:332187 × 10−5 1:865750 × 10−5 0:750004 3:618730 × 10−6 4:824973 × 10−6

0.6 1.34238 2:035114 × 10−5 1:516049 × 10−5 0:760001 7:687164 × 10−7 1:011469 × 10−6

0.7 1.39636 5:596469 × 10−5 4:007731 × 10−5 0:789999 1:289339 × 10−6 1:632074 × 10−6

0.8 1.37611 7:143946 × 10−5 5:191132 × 10−5 0:839998 2:083354 × 10−6 2:480184 × 10−6

0.9 1.25025 5:543125 × 10−5 4:433423 × 10−5 1:25025 1:502923 × 10−6 1:651564 × 10−6

1 1 0 0 1 0 0
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Figure 4: Graphical results with r = 60 in Example 4 as black: A and blue: R: (a) ðAΨðςkÞ,RΨðςkÞÞ and (b) ðAΦðςkÞ,RΦðςkÞÞ.
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Figure 5: Graphical results of ðΨðςkÞ, bΨðςkÞÞ and ðΦðςkÞ, bΦðςkÞÞ in Example 4 as blue: Ψ, red: Φ, and black stars: ð bΨ , bΦÞ: (a) r = 60, and
(b) r = 80.
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Concerning Example 5 and to show the compatibility
between ðΨðςkÞ,ΦðςkÞÞ and ð bΦðςkÞ, bΨðςkÞÞ, the values of
ðAΨðςkÞ,RΨðςkÞÞ and ðAΦðςkÞ,RΦðςkÞÞ are summarized
together in Table 5 for r = 60. Indeed, the graphics of
ðΨðςkÞ, bΨðςkÞÞ and ðΦðςkÞ, bΦðςkÞÞ for r = 60 are given
in Figure 6. Hither, it can be observed from the figure
and table that the result data is sufficient accuracy and
are firmly connected.

6. Summary and Future Suggestions

Throughout this study, the CBSA is used to get soft and fine-
ness approximations of BVPs for conformable systems
concerning two points and two fractional parameters in both
regular and singular types. Several linear and nonlinear
examples will be examined, and a model for the Lane-
Emden will be one of the applications presented. The
complete construction of the used spline through the CD
along with the convergence theory, and the error orders
together with other results are utilized in detail in the form
of tables and graphs using Mathematica 11 software. From
the reported results, it can be concluded that CBSA is a very

effective scheme that obtains numerical approximations to
conformable systems of BVPs. The main characteristics
noted here are that the spline approach is effective and fast,
and it requires little compulsive and mathematical burden
in solving the problems presented. In the coming work, we
will apply the CBSA to solve the Lotka-Volterra model
despite CD.

Abbreviations

CD: Conformable derivative
BVP: Boundary value problem
CBSA: Cubic B-spline algorithm
FDP: Fractional differential problem
BS: B-spline
LEP: Lane-Emden problem
BC: Boundary condition.
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Table 5: Solutions result with r = 60 in Example 5.

ςk bΨ ςkð Þ AΨ ςkð Þ RΨ ςkð Þ bΦ ςkð Þ AΦ ςkð Þ RΦ ςkð Þ
0 1 0 0 1 0 0

0.1 1.036 4:687946 × 10−7 4:525045 × 10−7 0:995004 4:007344 × 10−7 4:027465 × 10−7

0.2 1.048 4:781665 × 10−7 4:562657 × 10−7 0:980066 1:038737 × 10−6 1:059864 × 10−7

0.3 1.042 4:717943 × 10−7 4:527776 × 10−7 0:955335 1:677880 × 10−6 1:756324 × 10−6

0.4 1.024 4:499979 × 10−7 4:394512 × 10−7 0:921059 2:198900 × 10−6 2:387355 × 10−6

0.5 1.000 4:099687 × 10−7 4:099687 × 10−7 0:877580 2:526306 × 10−6 2:878711 × 10−6

0.6 0.976 3:505588 × 10−7 3:591791 × 10−7 0:825333 2:609380 × 10−6 3:161598 × 10−6
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Figure 6: Graphical results with r = 60 in Example 5 as red: Ψ, blue: Φ, and black stars: ð bΨ , bΦÞ: (a) ðΨðςkÞ, bΨðςkÞÞ and (b) ðΦðςkÞ, bΦðςkÞÞ.
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numerical simulation of the related mathematical equations
in the manuscript.
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