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Let G=(V,E) be a connected finite graph and A, be the p-Laplacian on G with p > 1. We consider a perturbed p-th Yamabe
equation —A,u — MufP?u=hlu|**u+ef, where h,f : V— R are functions with &, f >0; 1<p<a;\ and € are two positive

constants. Using the variational method, we prove that there exists some positive constant €, such that for all € € (0, ¢,), the

above equation has two distinct solutions.

1. Introduction and Main Results

Let G=(V, E) be a finite graph, where V denotes the vertex
set and E denotes the edge set. Let 4 : V — R" be a finite
measure and w : E— R" be the weight of an edge. The
graph G satisfies the following properties.

(a) For any edge ij € E, w;; > 0 and w;; =w); (symmetric)

(b) For any i€ V, there are only finite j € V such that i
j € E (locally finite)

(c) For any i, j € V, there exist finite edges connecting i
and j (connected)

(d) There exists a constant g, >0 such that g, >pu_.
for all i € V (uniformly positive measure)

(e) The distance dij of two vertices i, j € V is defined by
the minimal number of edges which connect these
two vertices. For a subset 2 of V, the distance d;; is
uniformly bounded from above for any i,jeQ
(bounded domain)

To do various analysis works, some reasonable assump-
tions are made about the graph, which results in different
prominent features of the graph in different contexts. For
example, some similarities and differences in feature
between the metric graph and the graph mentioned above

can be found. The reader may refer to [1-3] and the refer-
ences therein for more details.

For any function u : V— R, p > 1, the p-Laplacian of u
is defined as

1 _
Au; = ;Zwij|uj—ui|P z(uj—ui), (1)
1]~l

where j~i denotes ij € E. A, is a nonlinear operator when
p#2.

In the case of p =2, Grigor’yan et al. used the mountain-
pass theorem to establish the existence results for the
Yamabe equation [4] and the Schrodinger equation [5] on
graphs. They also used a direct method of variation and
the method of upper and lower solutions to study the exis-
tence of solutions for the Kazdan-Warner equation [6] on
graphs. Later, Keller and Schwarz [7] studied the Kazdan-
Warner equation on canonically compact graphs. Zhang
and Zhao [8] studied the convergence of ground state solu-
tions for a nonlinear Schrédinger equation on graphs. In
the case of p>1, Ge [9] studied the existence of solutions
for the p-th Yamabe equation on graphs. One may refer to
[10-16] for more related works.

In this paper, we consider the multiplicity of solutions to a p
-th Yamabe equation on a graph. For any functionu : V— R,
the integral of u over V with respect to the vertex weight y is
defined by
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Jvud‘u: Z‘uiui. (2)

Set
J dy=Vol(G). (3)
14

For any function g defined on the edge set E, the integral of
g over E with respect to the edge weight w is defined by

J gdw = Zwijgij' (4)
E i~j
For any function u : V— R,

J \Vu\Pdw=Zwij’uj—ui b (5)
E

i~j

where [Vu|is defined on the edge set E, and [Vul,; = [u; — u;| for
each edge i ~ j.
Define

A =inffE|Vu|Pdw+fV|u\pd‘u
1™ %%0 ZIV|M|de

The well-known Yamabe equation [17, 18]
Au+ gu = khuN™! (7)

derives from the Yamabe problem: Given a compact
Riemannian manifold (M,[) of dimension n>3, find a
metric conformal to [ with constant scalar curvature, which
is to prove that there is a real number k and a function u
>0 satisfying the above Yamabe equation, where g, h are
functions on M with h >0 and N =2n/(n-2).

In [9], Ge studied the following p-th discrete Yamabe
equation

Ayu+ g™ = khu*! (8)

on a finite graph G, where g, h are functions with h>0;
a>p>1. Using a direct method of variation, the author
showed that (8) always has a positive solution for some con-
stant k. We consider the following p-th Yamabe equation

—Apu—/\|u|"_2u:h|u|"‘_2u+ef, 9)

where h, f : V— R are functions with h, f >0; 1 <p<a;
A and ¢ are positive constants. Note that, in equation (9),
we add a perturbed term ef. In order to make our deriva-
tion possible, we have to set g = A. By using the mountain-
pass theorem, which is due to Ambrosetti and Rabinowitz
[19], and a direct method of variation, we prove that (9)
has two distinct solutions. Now, we can state the theorem
as follows.
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Theorem 1. Let G=(V,E) be a finite graph and h,f : V
—> R be functions with h, f > 0. Assume that 1<p<a,I
<A< A,. Then, there exists €; > 0 such that for any € € (0,
€;), (9) has two distinct solutions.

In case p =2, we have the following result.

Corollary 2. Let G=(V,E) be a finite graph and h,f : V
— R be functions with h, f > 0. Assume that a>2,1<A
< A,. Then, there exists €, > 0 such that for any € € (0, €;),
the following Yamabe equation

—Au—Au=hlu/*u+ef (10)
has two distinct solutions.

The multiplicity of solutions to certain equations on a
graph was extensively studied by Grigor'yan et al. [5], Liu
and Yang [12], Huang et al. [20], and Liu [21]. More results
have been obtained in the Euclidean space; we refer the

reader to [22-27] and the references therein.

2. Preliminaries

Define a Sobolev space and a norm on it by

W (G) = {u :V— ]R\J \Vu\pdw+J |u|pdy<+oo},
E \%4
p
s = (] outraw« | upae)
E 1%

Since G is a finite graph, then W'*(G) is exactly the set
of all functions on V, a finite dimensional linear space. This
implies the following Sobolev embedding.

(11)

Lemma 3 (Sobolev embedding theorem, see [4]). Let G =
(V,E) be a finite graph and p > 1. Then, W™ (G) is embed-
ded in LY(G) for all 1< q<+00. In particular, there exists a
constant C, ; depending only on p and G such that

4]l 36) < Cpallullwie(a)> (12)

for all 1<q<+0o and for all ue W"(G). Moreover, the
Sobolev space W' (G) is precompact; namely, if {u,} is
bounded in W' (G), then there exists some u € W (G) such
that, up to a subsequence, u, — u in W (G).

The functional related to (9) is

Je(u)= ij |VulPdw - &J |ufPdy — iJ h|u|"‘dy—€J Sfudp.
Ple plv v 14

(13)

The existence of solutions of (9) is transformed into find-
ing the critical points of J..
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Let (X, ||||) be a Banach space; we say that ] : X — R
satisfies the (PS). condition for some real number c if, for
any sequence of functions u, : X — R such that J(u,) —
c and J'(u,) — 0 for all $ € W (G) as n — +oo, there
holds up to a subsequence u,, — u in X. To prove Theorem
1, we need the following mountain-pass theorem.

Theorem 4 (mountain-pass theorem, see [19]). Let (X, ||-||)
be a Banach space, ] € C' (X, R), e € X, and r > 0 be such that
lle|| > r and

b= inf J(u)>J(0)

jnf, >J(e). (14)

If ] satisfies the (PS),
max,e( /(y(t)), where

condition with c:=inf,

= {yeC(01,X): y(0)=0,y()=¢},  (15)

then c is a critical value of J.

3. Proof of the Main Results

Lemma 5. There exist positive constants r, and 8, such that
Je(u) 28, for all ue WH(G) with rIp < ||ullyyu(g) <7 if 0

< €< € for a sufficiently small €.

Proof. Let f, =max;,f;>0. For p>1, by the Holder
inequality, we have

(p-Dlp lp
J fudu<fy <J 1”’("”&1#) (J |uff du)
14 14 14

_ 16
< FurVOl(G) T Py, (16)

=Crpllull WL2(G)

where Cy, ;> 0 is a constant depending on f, p, G
Let h); = max;. h; > 0. By Lemma 3, there exists some
constant C, ; depending on p and G such that

|| mutvaas el = Gromlelivng, (17)

From (16) and (17), and noting that 1 <A < A, we have

1 1/A
gtz | [Vt (- [ )

Gl

||”H$v1vp<c) - eCprH”HwLp(G)

pG M
2 [[ullwie (PII [ [ e ECf,p,G)’

(18)
(A, =A)IA,. Let r.=€', then (1/p)e'’f<

[l () < €''P. For 1 < p < a, we have

where 7=

(t/pP)e~1)P — (ngGhM/oc) eV —eCp

(t/pr)ep-Dip =1

(19)

lim

e—0*

Thus, there exists some sufficiently small €, such that 0
<e<eg and

T e Cpclu

> . elP VP (20)

el P — €CfPG = 2pp+1

Let 8, = te/2pP*?; we get J (u) =6, for0<e<e. O
Lemma 6. ] satisfies the (PS) . condition for any real number c.
Proof. For any c€R, take {u,} ¢ W'*(G) such that ],

(u,) —c and J' (u,)(¢) — 0 for all ¢p€ W'(G) as
n—> +00. Namely,

e N R e e
Pl p
=c+o,(1),

(21)

‘JV (_Apun - /\|un|p72un - h|un|a72un - €f)¢d[4’
:On(1)||¢”w14’(c)

for all ¢ € W (G).
Taking {u,} as the test function ¢ in (22), we have

(22)

j |Vun|Pdw—Aj |un|Pdu—j h|un|“dy—ej Fuydp
E Vv Vv A%

= 0, ()|t [l s )

(23)

From (21) and (23), we obtain that

QJ Vu Pdw:MJ u 1Pd +MJ u.d
I e W e

+ 040, (1) [t o) + 04(1)

a-p p
s p(X (A H n”wlP Jv‘un| d‘“)

ela—1)
T Crpcllunllwio) +c+04(1),
(24)
which implies that
( ) L ela-1)
" Crpclltnllwog) +c+0a(1).
(25)



Suppose that {u,} is unbounded in W'*(G). For 1<p
< a, we have

( ) _ela-1)

o

H nHWllJ Cf,p,G””nHW‘*P(G) —ct On(l) — 100,

(26)
as n— +00, which contradicts (25). Hence, {u,} is
bounded in W'?(G).

Taking a function u* € W*(G) with u*=0 and passing
to the limit f — +00, we have

Je(ty=" | v |
- —J h|u*|“du—teJ fu*dy——-co.
@)y 14

It is obvious that J, € CY(W"(G), ||-||), J.(0) =0; ] (u)
>8>0 with [[ul|ypG =re/ps Je(t1) <O for some u with

[l s (G) > re/p- Moreover, ], satisfies the (PS), condition

with ¢ = min . max, /¢ (y(t)), where

r={yecC([0,1, W”(G)): y(0) = 0,y(1) =},  (28)

hus, there exists a solution

and ¢ is a critical value of ] (u )
=c>6,.>0. O

#in W (G) such that J (i)

Next, we prove that there exists another solution # such that
J (@) =¢ < 0, where € is another critical value of J_(u).

Lemma 7. There exist some p and ue W' (G) with
[ull o) = 1 such that J(tu) <0 if 0<t<p.

Proof. Consider the equation
—Apu—A|u|p’2u=f, (29)
in W'*(G). Define the functional
1 P A I
1= | vupdw=2[ jupdu- | fuds.  (30)
Pl ply 14

Note that

A
OE —llullww) o Wy~ 1| = Gy

ﬁ“@

= » H”HWU’) Coans

(31)

where 1/p+1/q=1;n>0 is a sufficiently small constant;
Cyqns is @ constant depending on p,q,7, f; and we use
Young’s inequality in the proof of the first inequality. Hence,
J has a lower bound in WP (G) for a sufficiently small #.

Let m;=inf ¢y J(4) and taking a sequence {u,}

Journal of Function Spaces

satisfies J(u,) — m, as n— +0o. Moreover, {u,} is

bounded in W'*(G). By Lemma 3, there exists some u, €
WU (G) up to a subsequence u, — u, in W"(G). Then,

Jiup)= lim Jy(u,)=my, (32)

n—+00

and u, is a solution of (29). It follows that

J |V”0|Pdw_/\J |”0\PdM=J fuogdp =7ty |10 ) > 0-
E v v

(33)
Now, we consider the derivative of J_(tu,):
d -1 -1
a]e(tuo) =t |VupPdw - AP | |ugPdu
t“’lj hlu,|*dy — eJ fuydy.
v v
By (33), we get
d Jo(tug) <0 (35)
dt -0 E( 0) N
Let u=uy/||ty || 10 ()> and we finish the proof. 0

Now, we prove that there exists another solution €
W' (G) with [|@]| s () < 7e/p such that

Je()=c=

|l whP(G)

(u) <0, (36)

€
<re

for 0 < € < €, where r, = €'?. By Lemma 5, we know that
Je(u) has a lower bound on B, = {ue W(G): ||u||W1,,,(G)
<r.}. By Lemma 7, we get that ianu”Wl,p(G)57€]5(u) =¢<0.

Take the sequence {u,} ¢ W'P(G) with [|u, [, <Te
such that J_(u,) — € as n — +00. Since {u, } is bounded
in W'?(G), by Lemma 3, there exists some % € W'?(G) up
to a subsequence u, — @ in W'*(G). Moreover,

ngngoollu ||w1p = ||a||w1w(c)’
i | o= | fapa
n—+00 Vv Vv
(37)
lim eJ fundpt:ej fudu,
n—-+00 \'4 74

lim J h|un|“dy=J h|a|*du.
14

n—+00 4
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Then,

Je(#)= lim J (u,)=¢<0, (38)

n—+00

and # is the minimizer of J () on B, . Lemma 5 implies that
|l[yy1p(G) < re/p. Calculating the Euler-Lagrange equation
of J(@1) for ¢ € W(G), we get that

0 =% z=0]€(a +tg) = JV(—APa - AafPa - h|a|**a - ef ) ¢du.
(39)

Hence,
~Ai— MalPa=hja**a + ef. (40)

Thus, % is a solution of (9). This ends the proof of
Theorem 1.
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