
Research Article
Multiple Solutions of a p-th Yamabe Equation on Graph

Zhongqi Peng , Aimin Zhu , and Tingting Zhang

School of Management, Shenyang University of Technology, Shenyang 110870, China

Correspondence should be addressed to Aimin Zhu; peng1018@smail.sut.edu.cn

Received 28 November 2022; Revised 29 December 2022; Accepted 4 January 2023; Published 10 January 2023

Academic Editor: Gisele Mophou

Copyright © 2023 Zhongqi Peng et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let G = ðV , EÞ be a connected finite graph and Δp be the p-Laplacian on G with p > 1. We consider a perturbed p-th Yamabe
equation −Δpu − λjujp−2u = hjujα−2u + εf , where h, f : V ⟶ℝ are functions with h, f > 0; 1 < p < α ; λ and ε are two positive
constants. Using the variational method, we prove that there exists some positive constant ϵ1 such that for all ϵ ∈ ð0, ϵ1Þ, the
above equation has two distinct solutions.

1. Introduction and Main Results

Let G = ðV , EÞ be a finite graph, where V denotes the vertex
set and E denotes the edge set. Let μ : V ⟶ℝ+ be a finite
measure and w : E⟶ℝ+ be the weight of an edge. The
graph G satisfies the following properties.

(a) For any edge ij ∈ E, wij > 0 and wij =wji (symmetric)

(b) For any i ∈ V , there are only finite j ∈ V such that i
j ∈ E (locally finite)

(c) For any i, j ∈ V , there exist finite edges connecting i
and j (connected)

(d) There exists a constant μmin > 0 such that μi ≥ μmin
for all i ∈ V (uniformly positive measure)

(e) The distance dij of two vertices i, j ∈ V is defined by
the minimal number of edges which connect these
two vertices. For a subset Ω of V , the distance dij is
uniformly bounded from above for any i, j ∈Ω
(bounded domain)

To do various analysis works, some reasonable assump-
tions are made about the graph, which results in different
prominent features of the graph in different contexts. For
example, some similarities and differences in feature
between the metric graph and the graph mentioned above

can be found. The reader may refer to [1–3] and the refer-
ences therein for more details.

For any function u : V ⟶ℝ, p > 1, the p-Laplacian of u
is defined as

Δpui =
1
μi
〠
j~i
wij uj − ui

�� ��p−2 uj − ui
À Á

, ð1Þ

where j ~ i denotes ij ∈ E. Δp is a nonlinear operator when
p ≠ 2.

In the case of p = 2, Grigor’yan et al. used the mountain-
pass theorem to establish the existence results for the
Yamabe equation [4] and the Schrödinger equation [5] on
graphs. They also used a direct method of variation and
the method of upper and lower solutions to study the exis-
tence of solutions for the Kazdan-Warner equation [6] on
graphs. Later, Keller and Schwarz [7] studied the Kazdan-
Warner equation on canonically compact graphs. Zhang
and Zhao [8] studied the convergence of ground state solu-
tions for a nonlinear Schrödinger equation on graphs. In
the case of p > 1, Ge [9] studied the existence of solutions
for the p-th Yamabe equation on graphs. One may refer to
[10–16] for more related works.

In this paper, we consider themultiplicity of solutions to a p
-thYamabe equation on a graph. For any functionu : V ⟶ℝ,
the integral of u over V with respect to the vertex weight μ is
defined by
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ð
V
udμ =〠

i∈V
μiui: ð2Þ

Set

ð
V
dμ = Vol Gð Þ: ð3Þ

For any function g defined on the edge set E, the integral of
g over E with respect to the edge weightw is defined by

ð
E
gdw =〠

i~j
wijgij: ð4Þ

For any function u : V ⟶ℝ,

ð
E
∇uj jpdw =〠

i~j
wij uj − ui

�� ��p, ð5Þ

where j∇uj is defined on the edge set E, and j∇ujij = juj − uij for
each edge i ~ j.

Define

λ1 = inf
u≢0

Ð
E ∇uj jpdw + Ð

V uj jpdμ
2
Ð
V uj jpdμ : ð6Þ

The well-known Yamabe equation [17, 18]

Δu + gu = khuN−1 ð7Þ

derives from the Yamabe problem: Given a compact
Riemannian manifold ðM, lÞ of dimension n ≥ 3, find a
metric conformal to l with constant scalar curvature, which
is to prove that there is a real number k and a function u
> 0 satisfying the above Yamabe equation, where g, h are
functions on M with h > 0 and N = 2n/ðn − 2Þ:

In [9], Ge studied the following p-th discrete Yamabe
equation

Δpu + gup−1 = khuα−1 ð8Þ

on a finite graph G, where g, h are functions with h > 0 ;
α ≥ p > 1: Using a direct method of variation, the author
showed that (8) always has a positive solution for some con-
stant k: We consider the following p-th Yamabe equation

−Δpu − λ uj jp−2u = h uj jα−2u + ϵ f , ð9Þ

where h, f : V ⟶ℝ are functions with h, f > 0; 1 < p < α ;
λ and ε are positive constants. Note that, in equation (9),
we add a perturbed term ϵ f : In order to make our deriva-
tion possible, we have to set g ≡ λ. By using the mountain-
pass theorem, which is due to Ambrosetti and Rabinowitz
[19], and a direct method of variation, we prove that (9)
has two distinct solutions. Now, we can state the theorem
as follows.

Theorem 1. Let G = ðV , EÞ be a finite graph and h, f : V
⟶ℝ be functions with h, f > 0. Assume that 1 < p < α, 1
< λ < λ1. Then, there exists ϵ1 > 0 such that for any ϵ ∈ ð0,
ϵ1Þ, (9) has two distinct solutions.

In case p = 2, we have the following result.

Corollary 2. Let G = ðV , EÞ be a finite graph and h, f : V
⟶ℝ be functions with h, f > 0. Assume that α > 2, 1 < λ
< λ1. Then, there exists ϵ1 > 0 such that for any ϵ ∈ ð0, ϵ1Þ,
the following Yamabe equation

−Δu − λu = h uj jα−2u + ϵ f ð10Þ

has two distinct solutions.

The multiplicity of solutions to certain equations on a
graph was extensively studied by Grigor’yan et al. [5], Liu
and Yang [12], Huang et al. [20], and Liu [21]. More results
have been obtained in the Euclidean space; we refer the
reader to [22–27] and the references therein.

2. Preliminaries

Define a Sobolev space and a norm on it by

W1,p Gð Þ = u : V ⟶ℝj
ð
E
∇uj jpdw +

ð
V
uj jpdμ<+∞

� �
,

uk kW1,p Gð Þ =
ð
E
∇uj jpdw +

ð
V
uj jpdμ

� �1/p
:

ð11Þ

Since G is a finite graph, then W1,pðGÞ is exactly the set
of all functions on V , a finite dimensional linear space. This
implies the following Sobolev embedding.

Lemma 3 (Sobolev embedding theorem, see [4]). Let G =
ðV , EÞ be a finite graph and p > 1. Then, W1,pðGÞ is embed-
ded in LqðGÞ for all 1 ≤ q ≤ +∞: In particular, there exists a
constant Cp,G depending only on p and G such that

uk kLq Gð Þ ≤ Cp,G uk kW1,p Gð Þ, ð12Þ

for all 1 ≤ q ≤ +∞ and for all u ∈W1,pðGÞ: Moreover, the
Sobolev space W1,pðGÞ is precompact; namely, if fung is
bounded in W1,pðGÞ, then there exists some u ∈W1,pðGÞ such
that, up to a subsequence, un ⟶ u in W1,pðGÞ.

The functional related to (9) is

Jϵ uð Þ = 1
p

ð
E
∇uj jpdw −

λ

p

ð
V
uj jpdμ −

1
α

ð
V
h uj jαdμ − ϵ

ð
V
f udμ:

ð13Þ

The existence of solutions of (9) is transformed into find-
ing the critical points of Jε.
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Let ðX, k·kÞ be a Banach space; we say that J : X ⟶ℝ
satisfies the ðPSÞc condition for some real number c if, for
any sequence of functions un : X ⟶ℝ such that JðunÞ⟶
c and J ′ðunÞ⟶ 0 for all ϕ ∈W1,pðGÞ as n⟶ +∞, there
holds up to a subsequence un ⟶ u in X. To prove Theorem
1, we need the following mountain-pass theorem.

Theorem 4 (mountain-pass theorem, see [19]). Let ðX, k·kÞ
be a Banach space, J ∈ C1ðX,ℝÞ, e ∈ X, and r > 0 be such that
kek > r and

b≔ inf
uk k=r

J uð Þ > J 0ð Þ ≥ J eð Þ: ð14Þ

If J satisfies the ðPSÞc condition with c≔ inf γ∈Γ
maxt∈½0,1� JðγðtÞÞ, where

Γ≔ γ ∈ C 0, 1½ �, Xð Þ: γ 0ð Þ = 0, γ 1ð Þ = ef g, ð15Þ

then c is a critical value of J:

3. Proof of the Main Results

Lemma 5. There exist positive constants rϵ and δϵ such that
JϵðuÞ ≥ δϵ for all u ∈W1,pðGÞ with rϵ/p ≤ kukW1,pðGÞ ≤ rϵ if 0
< ϵ < ϵ1 for a sufficiently small ϵ1:

Proof. Let f M =maxi∈V f i > 0. For p > 1, by the Hölder
inequality, we have

ð
V
f udμ ≤ f M

ð
V
1p/ p−1ð Þdμ

� � p−1ð Þ/p ð
V
uj jpdμ

� �1/p

≤ f MVol Gð Þ p−1ð Þ/p uk kW1,p Gð Þ
= Cf ,p,G uk kW1,p Gð Þ,

ð16Þ

where Cf ,p,G > 0 is a constant depending on f , p,G.
Let hM =maxi∈Vhi > 0. By Lemma 3, there exists some

constant Cp,G depending on p and G such that

ð
V
h uj jαdμ ≤ hM uk kαLα Gð Þ ≤ Cα

p,GhM uk kαW1,p Gð Þ: ð17Þ

From (16) and (17), and noting that 1 < λ < λ1, we have

Jϵ uð Þ ≥ 1
p

ð
E
∇uj jpdw −

1
p

λ

λ1
uk kpW1,p Gð Þ −

ð
V
uj jpdμ

� �

−
Cα
p,GhM
α

uk kαW1,p Gð Þ − ϵCf ,p,G uk kW1,p Gð Þ

≥ uk kW1,p Gð Þ
τ

p
uk kp−1W1,p Gð Þ −

Cα
p,GhM
α

uk kα−1W1,p Gð Þ − ϵCf ,p,G

� �
,

ð18Þ

where τ = ðλ1 − λÞ/λ1. Let rϵ = ϵ1/p, then ð1/pÞϵ1/p ≤
kukW1,pðGÞ ≤ ϵ1/p. For 1 < p < α, we have

lim
ϵ⟶0+

τ/ppð Þϵ p−1ð Þ/p − Cα
p,GhM/α

� �
ϵ α−1ð Þ/p − ϵCf ,p,G

τ/ppð Þϵ p−1ð Þ/p = 1:

ð19Þ

Thus, there exists some sufficiently small ϵ1 such that 0
< ϵ < ϵ1 and

τ

pp
ϵ p−1ð Þ/p −

Cα
p,GhM
α

ϵ α−1ð Þ/p − ϵCf ,p,G ≥
τ

2pp+1 ϵ
p−1ð Þ/p: ð20Þ

Let δϵ = τϵ/2pp+2; we get JϵðuÞ ≥ δϵ for 0 < ϵ < ϵ1:

Lemma 6. Jϵ satisfies the ðPSÞc condition for any real number c:

Proof. For any c ∈ℝ, take fung ⊂W1,pðGÞ such that Jϵ
ðunÞ⟶ c and J′ϵðunÞðϕÞ⟶ 0 for all ϕ ∈W1,pðGÞ as
n⟶ +∞. Namely,

1
p

ð
E
∇unj jpdw −

λ

p

ð
V
unj jpdμ −

1
α

ð
V
h unj jαdμ − ϵ

ð
V
f undμ

= c + on 1ð Þ,
ð21Þ

ð
V

−Δpun − λ unj jp−2un − h unj jα−2un − ϵ f
À Á

ϕdμ
����

����
= on 1ð Þ ϕk kW1,p Gð Þ,

ð22Þ

for all ϕ ∈W1,pðGÞ:
Taking fung as the test function ϕ in (22), we have

ð
E
∇unj jpdw − λ

ð
V
unj jpdμ −

ð
V
h unj jαdμ − ϵ

ð
V
f undμ

= on 1ð Þ unk kW1,p Gð Þ:

ð23Þ

From (21) and (23), we obtain that

α − p
pα

ð
E
∇unj jpdw = λ α − pð Þ

pα

ð
V
unj jpdμ + ϵ α − 1ð Þ

α

ð
V
f undμ

+ c + on 1ð Þ unk kW1,p Gð Þ + on 1ð Þ

≤
α − p
pα

λ

λ1
unk kpW1,p Gð Þ −

ð
V
unj jpdμ

� �

+ ϵ α − 1ð Þ
α

Cf ,p,G unk kW1,p Gð Þ + c + on 1ð Þ,
ð24Þ

which implies that

τ α − pð Þ
pα

unk kpW1,p Gð Þ ≤
ϵ α − 1ð Þ

α
Cf ,p,G unk kW1,p Gð Þ + c + on 1ð Þ:

ð25Þ
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Suppose that fung is unbounded in W1,pðGÞ. For 1 < p
< α, we have

τ α − pð Þ
pα

unk kpW1,p Gð Þ −
ϵ α − 1ð Þ

α
Cf ,p,G unk kW1,p Gð Þ − c + on 1ð Þ⟶ +∞,

ð26Þ

as n⟶ +∞, which contradicts (25). Hence, fung is
bounded in W1,pðGÞ.

Taking a function u∗ ∈W1,pðGÞ with u∗≡0 and passing
to the limit t⟶ +∞, we have

Jϵ tu∗ð Þ = tp

p

ð
E
∇u∗j jpdw −

λtp

p

ð
V
u∗j jpdμ

−
tα

α

ð
V
h u∗j jαdμ − tϵ

ð
V
f u∗dμ⟶−∞:

ð27Þ

It is obvious that Jϵ ∈ C1ðW1,pðGÞ, k·kÞ, Jϵð0Þ = 0 ; JϵðuÞ
≥ δϵ > 0 with kukW1,pðGÞ = rϵ/p; Jϵð~uÞ < 0 for some ~u with
k~ukW1,pðGÞ > rϵ/p: Moreover, Jϵ satisfies the ðPSÞc condition
with �c =minγ∈Γ maxt∈½0,1� JϵðγðtÞÞ, where

Γ = γ ∈ C 0, 1½ �,W1,p Gð ÞÀ Á
: γ 0ð Þ = 0, γ 1ð Þ = ~u

È É
, ð28Þ

and �c is a critical value of JϵðuÞ: Thus, there exists a solution
�u in W1,pðGÞ such that Jϵð�uÞ =�c ≥ δϵ > 0:

Next, we prove that there exists another solution û such that
JϵðûÞ = ĉ < 0, where ĉ is another critical value of JϵðuÞ.

Lemma 7. There exist some ρ and u ∈W1,pðGÞ with
kukW1,pðGÞ = 1 such that JϵðtuÞ < 0 if 0 < t < ρ:

Proof. Consider the equation

−Δpu − λ uj jp−2u = f , ð29Þ

in W1,pðGÞ. Define the functional

J f uð Þ = 1
p

ð
E
∇uj jpdw −

λ

p

ð
V
uj jpdμ −

ð
V
f udμ: ð30Þ

Note that

J f uð Þ ≥ 1
p

uk kpW1,p Gð Þ −
λ

pλ1
uk kpW1,p Gð Þ −

η

p

ð
V
uj jpdμ − Cp,q,η,f

≥
τ − η

p
uk kpW1,p Gð Þ − Cp,q,η,f ,

ð31Þ

where 1/p + 1/q = 1 ; η > 0 is a sufficiently small constant;
Cp,q,η,f is a constant depending on p, q, η, f ; and we use
Young’s inequality in the proof of the first inequality. Hence,
J f has a lower bound in W1,pðGÞ for a sufficiently small η.
Let mf = infu∈W1,pðGÞ J f ðuÞ and taking a sequence fung

satisfies J f ðunÞ⟶mf as n⟶ +∞: Moreover, fung is
bounded in W1,pðGÞ. By Lemma 3, there exists some u0 ∈
W1,pðGÞ up to a subsequence un ⟶ u0 in W1,pðGÞ. Then,

J f u0ð Þ = lim
n⟶+∞

J f unð Þ =mf , ð32Þ

and u0 is a solution of (29). It follows that

ð
E
∇u0j jpdw − λ

ð
V
u0j jpdμ =

ð
V
f u0dμ ≥ τ u0k kW1,p Gð Þ > 0:

ð33Þ

Now, we consider the derivative of Jϵðtu0Þ:

d
dt

Jϵ tu0ð Þ = tp−1
ð
E
∇u0j jpdw − λtp−1

ð
V
u0j jpdμ

− tα−1
ð
V
h u0j jαdμ − ϵ

ð
V
f u0dμ:

ð34Þ

By (33), we get

d
dt

����
t=0

Jϵ tu0ð Þ < 0: ð35Þ

Let u = u0/ku0kW1,pðGÞ, and we finish the proof.

Now, we prove that there exists another solution û ∈
W1,pðGÞ with kûkW1,pðGÞ < rϵ/p such that

Jϵ ûð Þ = ĉ = inf
uk kW1,p Gð Þ≤rϵ

Jϵ uð Þ < 0, ð36Þ

for 0 < ϵ < ϵ1, where rϵ = ϵ1/p: By Lemma 5, we know that
JϵðuÞ has a lower bound on Brϵ

= fu ∈W1,pðGÞ: kukW1,pðGÞ
≤ rϵg. By Lemma 7, we get that infkukW1,pðGÞ≤rϵ JϵðuÞ = ĉ < 0:

Take the sequence fung ⊂W1,pðGÞ with kunkW1,pðGÞ ≤ rϵ
such that JϵðunÞ⟶ ĉ as n⟶ +∞: Since fung is bounded
in W1,pðGÞ, by Lemma 3, there exists some û ∈W1,pðGÞ up
to a subsequence un ⟶ û in W1,pðGÞ. Moreover,

lim
n⟶+∞

unk kW1,p Gð Þ = ûk kW1,p Gð Þ,

lim
n⟶+∞

ð
V
unj jpdμ =

ð
V
ûj jpdμ,

lim
n⟶+∞

ϵ
ð
V
f undμ = ϵ

ð
V
f ûdμ,

lim
n⟶+∞

ð
V
h unj jαdμ =

ð
V
h ûj jαdμ:

ð37Þ
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Then,

Jϵ ûð Þ = lim
n⟶+∞

Jϵ unð Þ = ĉ < 0, ð38Þ

and û is the minimizer of JϵðuÞ on Brϵ
. Lemma 5 implies that

kûkW1,pðGÞ < rϵ/p: Calculating the Euler–Lagrange equation

of JϵðûÞ for ϕ ∈W1,pðGÞ, we get that

0 = d
dt

����
t=0

Jϵ û + tϕð Þ =
ð
V

−Δpû − λ ûj jp−2û − h ûj jα−2û − ϵ f
À Á

ϕdμ:

ð39Þ

Hence,

−Δpû − λ ûj jp−2û = h ûj jα−2û + ϵ f : ð40Þ

Thus, û is a solution of (9). This ends the proof of
Theorem 1.
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