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The aim in this paper is to establish a new duality property of Morrey spaces and to discover the complex interpolation space between
Morrey spaces and Lebesgue spaces. For that purpose, a new spaceNs

p,qðRnÞ is introduced by using methods of tent spaces. The space
generalizes Morrey spaces and Lebesgue spaces. Furthermore, this scale of spaces is amenable to the complex interpolation space.

1. Introduction

The Morrey space Ms
qðRnÞ was introduced by Morrey [1] to

investigate the existence and differentiability properties of
solutions to the elliptic partial differential equations of second
order. Tent spaces were introduced by Coifman et al. [2] to
analyze Hardy spaces, and tent spaces have been applied for
the theory of parabolic partial differential equations in the pre-
vious research. The aim in this paper is to generalize Morrey
spaces by applying some properties of tent spaces. To our best
knowledge, it seems that tent spaces are not used for the study
of function spaces related to Morrey spaces.

As the motivation of this study, let us recall concrete
examples of equivalence of homogeneous Triebel-Lizorkin
spaces. The homogeneous Triebel-Lizorkin space _F

s
p,qðRnÞ

was introduced by Triebel (see [3]). The norm of _F
s
p,qðRnÞ

is characterized in terms of tent spaces. The space _F
s
p,qðRnÞ

generalizes Lebesgue spaces LpðRnÞð1 < p<∞Þ and the
bounded mean oscillation space BMOðRnÞ. Furthermore,
the following properties is known as a particular case:

L2 Rnð Þ L2 Rnð Þ, BMO Rnð ÞÂ Ã
1/2 BMO Rnð Þ

j j j j j j
_F
0
2,2 Rnð Þ _F

0
4,2 Rnð Þ _F

0
∞,2 Rnð Þ

j j j j j j
_F
0
2,2 Rnð Þ

� �∗
_F
0
4/3,2 Rnð Þ

� �∗
_F
0
1,2 Rnð Þ

� �∗
:

ð1Þ

Here, ½X, Y �θ is the complex interpolation space between
X and Y . Furthermore, ðXÞ∗ is the dual space of X.

In this paper, the new function space Ns
p,qðRnÞ is intro-

duced (see Section 2.2 below). The norm of the space
Ns

p,qðRnÞ is also defined via tent spaces like homogeneous
Triebel-Lizorkin spaces. The motivation of the study of
the space Ns

p,qðRnÞ is to construct the corresponding chart
for Lebesgue spaces and Morrey spaces. The following
chart summarizes arguments shown in this paper:

Lp Rnð Þ Lp Rnð Þ,Ms
q Rnð Þ

h i
θ

Ms
q Rnð Þ

j j j j j j
N0

p,p Rnð Þ Nθs
pθ ,qθ Rnð Þ Ns

∞,q Rnð Þ
j j j j j j

N0
p′ ,p′ R

nð Þ
� �∗

N−θs
pθ′,qθ ′

Rnð Þ
� �∗

N−s
1,q′ R

nð Þ
� �∗

:

ð2Þ

The explicit expressions of pθ and qθ are not given
here. We content ourselves with mentioning that there
are natural interpolation indices. One of important points
in the above chart is that the description of the complex
interpolation space between Lebesgue spaces and Morrey
spaces is given. A description of the complex interpolation
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space between two Morrey spaces is known (see Lemma
11). As far as we know, other descriptions of the complex
interpolation space between Morrey spaces and other
spaces are not known in the recent research.

1.1. Notations. We use the following notations in this paper:

(1) We denote by L0ðRnÞ the set of all measurable func-
tions on Rn

(2) For 1 ≤ p ≤∞, the conjugate number p′ of p is
defined by the number which realizes 1/p + 1/p′ = 1

(3) For x ∈ Rn and r > 0, Bðx, rÞ is the ball with radius r
centered at x

(4) For f ∈ L0ðRnÞ and x ∈ Rn, we define the Hardy-
Littlewood maximal operator M by

Mf xð Þ≔ sup
r>0

1
B x, rð Þj j

ð
B x,rð Þ

f yð Þj jdy: ð3Þ

More generally, for 0 < q <∞, we define its powered
version by

Mq fð Þ≔ M fj jqð Þð Þ1/q: ð4Þ

(5) The space L1ð0,∞;dt/tÞ consists of measurable func-
tions ϕ : ½0,∞Þ⟶ ½0,∞Þ satisfying

ϕk kL1 0,∞;dt/tð Þ ≔
ð∞
0
ϕ tð Þ dt

t
<∞: ð5Þ

1.2. Lebesgue Spaces and Morrey Spaces. In this subsection,
we shall introduce the definitions of Lebesgue spaces and
Morrey spaces. The most basic Banach spaces are Lebesgue
spaces LpðRnÞ defined as follows:

Let 1 ≤ p ≤∞. Then, the space LpðRnÞ is the set of all
functions f ∈ L0ðRnÞ satisfying

fk kp ≔
ð
Rn

f xð Þj jp dx
� �1/p

<∞ ð6Þ

for 1 ≤ p <∞ and

fk k∞ ≔ esssupx∈Rn f xð Þj j <∞ ð7Þ

for p =∞. Next, we recall the definition of Morrey spaces
which is the main function spaces in this paper.

Definition 1. Let 1 ≤ q <∞ and 0 ≤ s ≤ n/q. The Morrey
space Ms

qðRnÞ is the set of all functions f ∈ L0ðRnÞ satisfying

fk kMs
q
≔ sup

x,rð Þ∈Rn× 0,∞ð Þ
rs

1
B x, rð Þj j

ð
B x,rð Þ

f yð Þj jq dy
 !1/q

<∞:

ð8Þ

We note some properties of Morrey spaces.

Remark 2.

(1) Let ωn be the volume of the unit ball on Rn. Then,
the equation

fk kMn/p
p
= ω−1/p

n sup
x,rð Þ∈Rn× 0,∞ð Þ

ð
B x,rð Þ

f yð Þj jp dy
 !1/p

= ω−1/p
n fk kp

ð9Þ

implies that

Mn/p
p Rnð Þ = Lp Rnð Þ, ð10Þ

with equivalence of norms for 1 ≤ p <∞.

(2) For 1 ≤ q2 ≤ q1 <∞, the embedding

Ms
q1

Rnð Þ ⊂Ms
q2

Rnð Þ ð11Þ

follows from Hölder’s inequality.

(3) Combining (10) and (11), for any 1 ≤ q ≤ n/s, we
have

Ln/s Rnð Þ ⊂Ms
q Rnð Þ: ð12Þ

1.3. Dual Spaces. In the study of quasi-Banach spaces, the
duality argument plays an important role. We recall how
we identify the dual space of function spaces.

Definition 3. For a quasi-Banach space X, we write the dual
space of X as X∗. The Banach space X∗ is defined as the
set of all linear continuous functionals ℓ : X⟶C. We
define

ℓk kX∗ ≔ sup
fk kX=1

ℓ fð Þj j: ð13Þ

It is known that a dual space of quasi-Banach space is
also a quasi-Banach space with the above norm. We define
the following duality relation between quasi-Banach spaces
and their duals contained in L0ðRnÞ:
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Definition 4. For quasi-Banach spaces X, Y ⊂ L0ðRnÞ, we say
that X∗ = Y if it satisfies the following:

(0) If f ∈ X and g ∈ Y , then f · g ∈ L1ðRnÞ

(i) For g ∈ Y , we set

ℓg fð Þ =
ð
Rn
f xð Þg xð Þdx  f ∈ Xð Þ: ð14Þ

Then, we have ℓg ∈ X∗ and

ℓg


 



X∗ ≤ C gk kY : ð15Þ

(ii) For any ℓ ∈ X∗, there uniquely exists g ∈ Y satisfying

ℓ fð Þ =
ð
Rn
f xð Þg xð Þdx  f ∈ Xð Þ, ð16Þ

and we have

gk kY ≤ C ℓk kX∗ : ð17Þ

Usually, the notion of duality relation is considered for
Banach spaces of measurable functions. However, as we will
see, the ones for quasi-Banach spaces will be needed since we
would like to handle the quasi-Banach space Ns

p,qðRnÞ which
will be defined in Section 2.2 below. For quasi-Banach spaces
X and Y , we say that X is a predual space of Y if it satisfies
X∗ = Y . It is known that a predual space is not always
unique. For Lebesgue spaces, we have the following duality
property:

Lemma 5. Let 1 ≤ p <∞. Then,

Lp Rnð Þð Þ∗ = Lp′ Rnð Þ: ð18Þ

For the proof, see, e.g., Grafakos [4].
In the previous research, some predual spaces of Morrey

spaces are known. The following block spaces were found by
Long [5].

Definition 6. Let s ∈ R and 1 < q <∞. We say that a measur-
able function a is a ðq, sÞ-block in a ball B if a satisfies

(i) supp a ⊂ B,

(ii) kakq ≤ jBjðð−1/q′Þ−ðs/nÞÞ

The block space Bs
qðRnÞ is the set of all functions f ∈

L0ðRnÞ such that

fk kBsq ≔ inf 〠
j∈N

λj

�� ������� f = 〠
j∈N

λjaj, λ j

È É
j∈N ⊂ C, aj

È É
j∈N : q, sð Þ − blocks

( )

<∞,
ð19Þ

where the infimum is taken over all decompositions of f .
Here, each aj satisfies (i) and (ii) for B replaced by the ball
Bj. Note that Bj can vary according to j.

The dual space of B−s
q′ðRnÞ is the Morrey space Ms

qðRnÞ.

Lemma 7 (see [5]). Let 1 < q <∞ and 0 < s ≤ n/q. Then,

B−s
q′ R

nð Þ
� �∗

=Ms
q Rnð Þ: ð20Þ

We refer to Adams and Xiao [6] and Gogatishvili and
Mustafayev [7] for other representations of predual spaces
of Morrey spaces.

1.4. Complex Interpolation Spaces. The theory of complex
interpolation spaces plays an important role in operator
theory. Our second aim is to obtain the complex interpola-
tion between Morrey spaces and Lebesgue spaces. For this
purpose, we prepare the following.

For quasi-Banach function spaces X, Y , let X + Y be the
sum space such that

X + Y ≔ f = f1 + f2 : f1 ∈ X, f2 ∈ Yf g: ð21Þ

We define FðX, YÞ be the set of all mappings f :
C⟶ X + Y which are analytic in S≔ fz ∈ C : 0 < ReðzÞ <
1g, continuous on �S≔ fz ∈ C : 0 ≤ ReðzÞ ≤ 1g and satisfy

(i) f f ðzÞ: z ∈ Sg ⊂ X + Y

(ii) f f ðitÞ: t ∈ Rg ⊂ X, lim
t′⟶t

k f ðit ′Þ − f ðitÞkX = 0, for

each t ∈ R and sup
t∈R

k f ðitÞkX <∞

(iii) f f ð1 + itÞ: t ∈ Rg ⊂ Y , lim
t′⟶t

k f ð1 + it ′Þ − f ð1 + itÞkY
= 0, for each t ∈ R and sup

t∈R
k f ð1 + itÞkY <∞

Furthermore, introducing the norm of FðX, YÞ by

fk kF X,Yð Þ ≔max sup
t∈R

f itð Þk kX , sup
t∈R

f 1 + itð Þk kY
� �

, ð22Þ

we define the complex interpolation space ½X, Y �θ between X
and Y with respect to 0 ≤ θ ≤ 1, by

X, Y½ �θ ≔ x ∈ X + Y : x = f θð Þ, f ∈F X, Yð Þf g ð23Þ

equipped with norm

xk k X,Y½ �θ ≔ inf fk kF X,Yð Þ f ∈F X, Yð Þ, x = f θð Þj
n o

: ð24Þ

We can interpolate the operator norm of bounded
linear operator, which is the main thrust of investigating
interpolation spaces.
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Lemma 8 (Bergh and Löfström [8]). For pairs of Banach
spaces ðX1, X2Þ and ðY1, Y2Þ, assume that a linear operator
T is bounded from Xj to Y jðj = 1, 2Þ. Then, T is also bounded
from ½X1, X2�θ to ½Y1, Y2�θ and satisfies

Tk k X1 ,X2½ �θ⟶ Y1 ,Y2½ �θ ≤ Tk k1−θX1⟶Y1
Tk kθX2⟶Y2

, ð25Þ

for any 0 < θ < 1. Here, we define the operator norm by

Tk kX⟶Y ≔ sup
fk kX=1

T fk kY , ð26Þ

for an operator from a Banach space X to a Banach space Y .

We shall give another characterization of complex inter-
polation spaces by using Carderón product spaces defined as
follows:

Definition 9. For quasi-Banach spaces X, Y ⊂ L0ðRnÞ, and
0 ≤ θ ≤ 1, we define

X1−θYθ ≔ f ∈ X + Y : fk kX1−θYθ<∞
È É

, ð27Þ

where

fk kX1−θYθ = inf f1k k1−θX f2k kθY : f xð Þj j ≤ f1 xð Þj j1−θ f2 xð Þj jθ a:e:
n o

:

ð28Þ

The space X1−θYθ is called the Carderón product space
between X and Y with respect to θ.

Below, we recall the relationship between complex inter-
polation spaces and Calderón product spaces. We say that a
quasi-Banach space X is a quasi-Banach function lattice if it
satisfies

g xð Þj j ≤ f xð Þj j a:e:for g ∈ L0 Rnð Þ⟹ g ∈ X with gk kX ≤ fk kX ,
ð29Þ

for any f ∈ X. We say that a quasi-Banach space X satisfies
the Fatou property if

for f f kgk∈N ⊂ X. Furthermore, we say that a quasi-Banach
space X is r-convex for 0 < r <∞ if it satisfies

〠
k

j=1
f j
��� ���r

 !1/r















X

≤ 〠
k

j=1
f j



 


r

X

 !1/r

, ð31Þ

for f f jgkj=1 ⊂ X. In Kalton and Mitrea [9], it was shown that,

if two quasi-Banach function lattices X1 and X2 satisfy the
Fatou property, the ri-convexity (i = 1, 2), and if either of
X1 or X2 is separable, then

X1, X2½ �θ = X1−θ
1 Xθ

2, ð32Þ

for any 0 < θ < 1.
We recall two classical formulas on complex interpola-

tion for Lebesgue spaces and for Morrey spaces.

Lemma 10 (see [4]). Let 1 ≤ p1, p2 ≤∞ and 1 < θ < 1. Then,

Lp1 Rnð Þ, Lp2 Rnð Þ½ �θ = Lpθ Rnð Þ, ð33Þ

for 1/pθ = ð1 − θÞ/p1 + θ/p2.

The complex interpolation of Morrey spaces is more
complicated than that of Lebesgue spaces.

Lemma 11 (Hakim and Sawano [10]). Let 0 < θ < 1, 1 ≤ qi
<∞, and 0 < si ≤ n/piði = 1, 2Þ. If s1q1 = s2q2, then

Ms1
q1

Rnð Þ,Ms2
q2

Rnð Þ
h i

θ

= f ∈ �Msθ
qθ

Rnð Þ: lim
a⟶0+

χ fj j<af g f



 




Ms
q

= 0
� �

,
ð34Þ

for 1/qθ = ð1 − θÞ/q1 + θ/q2 and sθ = ð1 − θÞs1 + θs2. Here,
�Msθ
qθ
ðRnÞ denotes the closure with respect to Msθ

qθðRnÞ of the
set of all essentially bounded functions in Msθ

qθðRnÞ.

The organization of the remain part is as follows: In Sec-
tion 2, we introduce tent spaces and our new space Ns

p,qðRnÞ.
In Section 3, we shall state the main theorems. Further, in
Section 4, some properties and the proofs of the main theo-
rems are given and in Section 5, we present their application.

2. Tent Spaces and New Spaces

In this section, we recall the definition and some properties
of tent spaces, and after that, we introduce the new space
Ns

p,qðRnÞ. We organize this section as follows: In Section
2.1, we present the definition and investigate some proper-
ties of tent spaces. In Section 2.2, we give the definition of
the space Ns

p,qðRnÞ.

0 ≤ f k ∈ X and sup
k∈N

f kk kX <∞,with f k ⟶ f ∈ L0 Rnð Þ a:e:⟹ f ∈ X and  fk kX = lim
k⟶∞

f kk kX , ð30Þ
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2.1. Tent Spaces. In this section, we recall the definition and
some properties of tent spaces. Tent spaces were initially
introduced by Coifman et al. [2]. In the previous research,
tent spaces have been applied for study of boundedness of
Calderón-Zygmund operators (see Section 5 for the defini-
tion) and the theory of parabolic differential equations (see
David and Journé [11] and Koch and Tataru [12]). We write
Rn+1
+ ≔ Rn × ð0,∞Þ.

Definition 12. Let 1 ≤ p ≤∞, 1 ≤ q <∞, and s ∈ R. The tent
space Ts

p,qðRn+1
+ Þ is the set of all measurable functions

F : Rn+1
+ ⟶ C satisfying

Fk kTs
p,q
≔

ð∞
0

ð
B x,tð Þ

tsq F y, tð Þj jq dydt
tn+1

 !1/q











Lpx Rnð Þ

<∞,

ð35Þ

for p <∞, and

Fk kTs
∞,q

≔ sup
x,rð Þ∈Rn× 0,∞ð Þ

1
Bj j
ðr
0

ð
x−yj j<r−t

tsq F y, tð Þj jq dydt
t

 !1/q

<∞,

ð36Þ

for p =∞.

It is easy to show that the triangle inequality for k∗kTs
p,q

holds. Moreover, we note that by applying Fubini’s lemma,
we have

Fk kT0
p,p
~
ð
Rn+1
+

F x, tð Þj jp dxdt
t

 !1/p

, ð37Þ

for 1 ≤ p <∞ and F ∈ L0ðRn+1
+ Þ.

The following is the known duality theorem for tent
spaces based on Definition 4:

Lemma 13 (Huang [13]). Let 1 ≤ p <∞, 1 < q <∞, and s ∈ R.
If F ∈ Ts

p,qðRn+1
+ Þ and G ∈ T−s

p′ ,q′ðRn+1
+ Þ, then F ·G is integrable

with respect to the measure dxdt/t and

Ts
p,q Rn+1

+
À Á� �∗

= T−s
p′ ,q′ Rn+1

+
À Á ð38Þ

via the coupling

F,Gh i =
ð
Rn+1
+

F x, tð ÞG x, tð Þ dxdt
t

: ð39Þ

Furthermore, the following inequalities hold:

ð
Rn+1
+

F x, tð ÞG x, tð Þ dxdt
t

�����
����� ≤ C Fk kTs

p,q
Gk kT−s

p ′ ,q ′
, ð40Þ

for 1 < p <∞, and

ð
Rn+1
+

F x, tð ÞG x, tð Þ dxdt
t

�����
����� ≤ C Fk kT−s

1,q
Gk kTs

∞,q ′
, ð41Þ

for p = 1. Moreover, the inequality

F ·Gk kTs0
p0 ,q0

≤ C Fk kTs1
p1 ,q1

Gk kTs2
p2 ,q2

ð42Þ

holds for s0 = s1 + s2 ∈ R, 0 ≤ 1/p0 = 1/p1 + 1/p2 ≤ 1, and 0 <
1/q0 + 1/q1 + 1/q2 < 1 with 1 ≤ p1, p2 ≤∞, and 1 < q1, q2 <∞.

We note that Lemma 13 is a particular case of Theorem
4.3 in [13] where β0 = 0, β = s, and r = q.

We have also the Sobolev embedding theorem for tent
spaces as follows:

Lemma 14 (Amenta [14]). Let 1 < q <∞. For 1 < p1, p2 ≤∞
and s1 ≤ s2, if s1 + n/p1 = s2 + n/p2, one has

Ts1
p1 ,q Rn+1

+
À Á

⊂ Ts2
p2 ,q Rn+1

+
À Á

, ð43Þ

with a norm inequality

Fk kTs2
p2 ,q2

≤ C Fk kTs1
p1 ,q2

, ð44Þ

for any F ∈ Ts1
p1 ,p2ðRn+1

+ Þ.

The following lemma states that the Calderón product
for tent spaces can be calculated.

Lemma 15 (see [13]). Let 1 ≤ q1, q2 <∞, 1 ≤ p1, p2 ≤∞ðnot
both∞Þ, and s ∈ R. Then,

Ts1
p1 ,q1 Rn+1

+
À ÁÀ Á1−θ

Ts2
p2 ,q2 Rn+1

+
À ÁÀ Áθ = Ts0

p0 ,q0 Rn+1
+

À Á
, ð45Þ

where

s0 = 1 − θð Þs1 + θs2,
1
p0

= 1 − θ

p1
+ θ

p2
, and 

1
q0

= 1 − θ

q1
+ θ

q2
:

ð46Þ

2.2. The Definition of Ns
p,q-Spaces. In this section, we intro-

duce new function spaces called Ns
p,q-spaces by using tent

spaces defined in Section 2.1. First, we define the Ns
p,q-norms

with respect to ϕ ∈ L1ð0,∞;dt/tÞ.

Definition 16. Let ϕ ∈ L1ð0,∞;dt/tÞ. For 1 ≤ p ≤∞, 1 ≤ q <∞,
and s ≤ n/q, we define

fk kNs,ϕ
p,q
≔ ϕ tð Þ1/q f xð Þ

 



Ts
p,q

=
ð∞
0

ð
B x,tð Þ

tsqϕ tð Þ f yð Þj jq dydt
tn+1

 !1/q











Lpx Rnð Þ

,
ð47Þ
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for 1 ≤ p <∞, and

fk kNs,ϕ
∞,q

≔ ϕ tð Þ1/q f xð Þ

 


Ts
∞,q

= sup
x,rð Þ∈Rn× 0,∞ð Þ

1
Bj j
ðr
0

ð
x−yj j<r−t

tsqϕ tð Þ f yð Þj jq dydt
t

 !1/q

,

ð48Þ

for p =∞.
Using the above norm, we define the Ns

p,q-norm for s ≥ 0.

Definition 17. For 1 ≤ q <∞, q ≤ p ≤∞, and 0 ≤ s ≤ n/q − n/p,
we define

Ns
p,q Rnð Þ≔ f ∈ L0 Rnð Þ: fk kNs,ϕ

p,q
<∞for any ϕ ∈ L1 0,∞; dt

t

� �� �
,

ð49Þ

where

fk kNs
p,q
= sup

ϕk kL1 0,∞;dt/tð Þ=1
fk kNs,ϕ

p,q
: ð50Þ

Remark that for s ≥ 0, the definition of the Ns
p,q-norm

demanded q ≤ p. The way of defining the Ns
p,q-norm for p ≤ q

is different from the one for q ≤ p.

Definition 18. Let 1 ≤ p ≤ q ≤∞, n/q − n/p ≤ −s ≤ 0, and ϕ ∈
L1ð0,∞,dt/tÞ. We say that the function f tðxÞ is an ðN−s

p,q, ϕÞ-
atom if f tðxÞ ≥ 0 for all x ∈ℝn and t ∈ ð0,∞Þ and

ϕ tð Þ1/q f t xð Þ

 


T−s
p,q
≤ 1: ð51Þ

The space N−s
p,qðℝnÞ is the set of all f ∈ L0ðℝnÞ such that

there exists λ > 0 and an ðN−s
p,q, ϕÞ-atom f t for which

f xð Þj j ≤ λ
ð∞
0
ϕ tð Þf t xð Þ dt

t
, ð52Þ

for almost all x ∈ℝn. Let λðϕ, f tÞ be the infimum of such λ,
and let

fk kN−s
p,q
≔ inf λ ϕ, f tð Þ, ð53Þ

where the infimum is taken over all functions ϕ which satisfy
kϕkL1ð0,∞,dt/tÞ = 1 and all ðN−s

p,q, ϕÞ-atoms f t .

Remark that for s ≤ 0, the definition of the Ns
p,q-norm

demanded p ≤ q. For the case p = q, we defined the N0
p,p-

norm in two ways. However, those are essentially equivalent
(see Lemma 24 in Section 4.1 below). The definition of the
norm k f kN−s

p,q
is complicated; therefore, we introduce ~N

−s
p,q-

“norms” for convenience.

Definition 19. For 1 ≤ p ≤ q <∞ and n/q − n/p < −s ≤ 0, we
define

fk k~N
−s
p,q
≔ inf

ϕk kL1 0,∞;dt/tð Þ=1
fk kN−s,ϕ

p,q
, ð54Þ

for measurable function f . The space ~N
−s
p,qðRnÞ is the set

given by

~N
−s
p,q Rnð Þ≔ f ∈ L0 Rnð Þ: fk k~N

−s
p,q
<∞

n o
: ð55Þ

Then, we include the following:

Lemma 20. Assume that the parameters p, q, s satisfy the con-
ditions in Definition 18. Then, one has ~N

−s
p,qðRnÞ ⊂N−s

p,qðRnÞ,
with the inequality

fk kN−s
p,q
≤ fk k~N

−s
p,q
, ð56Þ

for f ∈ ~N
−s
p,qðRnÞ.

Proof. If f = 0, then the conclusion is clear. So, assume
otherwise. Let f ∈ ~N

−s
p,qðRnÞ. Then, for any ε > 0, there exists

ϕ ∈ L1ð0,∞;dt/tÞ satisfying kϕkL1ð0,∞;dt/tÞ = 1 such that

fk kN−s,ϕ
p,q

≤ fk k~N
−s
p,q
+ ε: ð57Þ

Subsequently, from kϕkL1ð0,∞;dt/tÞ = 1, we have

f xð Þj j =
ð∞
0
ϕ tð Þ f xð Þj j dt

t
= fk kN−s,ϕ

p,q

ð∞
0
ϕ tð Þ f xð Þj j

fk kN−s,ϕ
p,q

dt
t
:

ð58Þ

Then, trivially,

f
fk kN−s,ϕ

p,q













N−s,ϕ

p,q

= 1: ð59Þ

Thus, we obtain

fk kN−s
p,q
≤ fk kN−s,ϕ

p,q
≤ fk k~N

−s
p,q
+ ε, ð60Þ

for any ε > 0, which concludes the proof.

It is unclear that the ~N
−s
p,q-“norms” are quasinorms

because they do not satisfy the quasitriangle inequality
k f + gk~N

−s
p,q
≤ Cðk f k~N

−s
p,q
+ kgk~N

−s
p,q
Þ. Meanwhile, we claim that

the Ns
p,q-norms do satisfy the quasitriangle inequality. For

s ≥ 0, it is evident from Definition 17. Thus, we consider
the case where s ≤ 0. Let f , g ∈N−s

p,qðRnÞ. Then, for any

6 Journal of Function Spaces



ε1, ε2 > 0, there exists ϕ1, ϕ2 ∈ L1ð0,∞;dt/tÞ satisfying
kϕ1kL1ð0,∞;dt/tÞ = kϕ2kL1ð0,∞;dt/tÞ = 1, and we have

f xð Þj j ≤ fk kN−s
p,q
+ ε1

� �ð∞
0
ϕ1 tð Þf t xð Þ dt

t
,

g xð Þj j ≤ gk kN−s
p,q
+ ε2

� �ð∞
0
ϕ2 tð Þgt xð Þ dt

t
,

ð61Þ

for some ðN−s
p,q, ϕ1Þ-atom f t and ðN−s

p,q, ϕ2Þ-atom gt . Note that

ϕ1 tð Þ1/q f t


 



T−s
p,q
, ϕ2 tð Þ1/qgt


 



N−s,ϕ2
p,q

≤ 1: ð62Þ

If we put ϕ0ðtÞ = ðϕ1ðtÞ + ϕ2ðtÞÞ/2, then kϕ0kL1ð0,∞;dt/tÞ =
1, and we obtain

f xð Þ + g xð Þj j ≤ 21/q′ fk kN−s
p,q
+ gk kN−s

p,q
+ ε3

� �ð∞
0
ϕ0 tð Þ 1

21/q′

Á ϕ1 tð Þ
ϕ0 tð Þ f t xð Þ + ϕ2 tð Þ

ϕ0 tð Þgt xð Þ
� �

dt
t
,

ð63Þ

where we put ε3 = ε1 + ε2. The triangle inequality in tent
spaces implies that

ϕ0 tð Þ1/q 1
21/q′

ϕ1 tð Þ
ϕ0 tð Þ f t +

ϕ2 tð Þ
ϕ0 tð Þgt

� �









T−s
p,q

≤ ϕ0 tð Þ1/q 1
21/q′

ϕ1 tð Þ
ϕ0 tð Þ f t











T−s
p,q

+ ϕ0 tð Þ1/q 1
21/q′

ϕ2 tð Þ
ϕ0 tð Þ gt











T−s
p,q

:

ð64Þ

Then, from (62), we obtain

ϕ0 tð Þ1/q 1
21/q′

ϕ1 tð Þ
ϕ0 tð Þ f t











T−s
p,q

= 1
2

ϕ1 tð Þ
ϕ1 tð Þ + ϕ2 tð Þð Þ1/q′

f t













T−s
p,q

≤
1
2 :

ð65Þ

Similarly, we have

ϕ0 tð Þ1/q 1
21/q′

ϕ2 tð Þ
ϕ0 tð Þ gt











T−s
p,q

≤
1
2 : ð66Þ

Thus, the function ððϕ1/ϕ0ÞðtÞf t + ðϕ2/ϕ0ÞðtÞgtÞ/21/q′ is
an ðN−s

p,q, ϕ0Þ-atom so that we get

f + gk kN−s
p,q
≤ 21/q′ fk kN−s

p,q
+ gk kN−s

p,q
+ ε3

� �
, ð67Þ

for any ε3 > 0. This shows that the norm k∗kN−s
p,q
satisfies the

quasitriangle inequality.

3. Main Theorems

In this section, we introduce our main theorems. The first
result is the duality theorem of Ns

p,q-spaces. This derives
the duality theorem on Morrey spaces by combining with
Proposition 31 in Section 4.1 below.

Theorem 21. Let 1 < p ≤∞, 1 ≤ q <∞, and 0 ≤ s < n/q − n/p.
Then, one has ðN−s

p′ ,q′ðRnÞÞ∗ =Ns
p,qðRnÞ in the sense of

Definition 4.
(0) Let f ∈N−s

p′ ,q′ðRnÞ and g ∈Ns
p,qðRnÞ. Then,·g ∈ L1ðRnÞ

(i) For g ∈Ns
p,qðRnÞ, set

ℓg fð Þ =
ð
Rn
f xð Þg xð Þdx: ð68Þ

Then, ℓg ∈ ðN−s
p′,q′ðRnÞÞ∗ and kℓgkðN−s

p ′ ,q ′
Þ∗ ≤ CkgkNs

p,q
.

(ii) For any ℓ ∈ ðN−s
p′ ,q′ðRnÞÞ∗, there uniquely exists g ∈

Ns
p,qðRnÞ satisfying ℓ = ℓg, and one has kgkNs

p,q
≤

CkℓkðN−s
p ′ ,q ′

Þ∗ .

Letting p =∞ and combining Theorem 21 with Prop-
osition 31 in Section 4.1 below, we obtain the following
corollary:

Corollary 22. Let 1 < q <∞ and 0 ≤ s < n/q. Then,

N−s
1,q′ R

nð Þ
� �∗

=Ns
∞,q Rnð Þ =Ms

q Rnð Þ: ð69Þ

For homogeneous Triebel-Lizorkin spaces _F
s
p,qðRnÞ and

the bounded mean oscillation space BMOðRnÞ, it is known
that the duality ð _F0

1,2ðRnÞÞ∗ = BMOðRnÞ holds (see Sawano
[15] for their definitions and the precise statement of the
duality). Furthermore, it is generalized to the duality
ð _Fs

p,qðRnÞÞ∗ = _F
−s
p′ ,q′ðRnÞ (see Frazier and Jawerth [16]). For

Morrey spaces, Theorem 21 realizes the above generalization
of _F

s
p,qðRnÞ. There are several predual of Morrey spaces. The

block spaces described in Section 1.3 were first introduced
in [5]. Subsequently, other predual spaces were found (see
[6, 7]). The space N−s

1,q′ðRnÞ is the new one we found.

The second theorem concerns a complex interpolation
between Lebesgue spaces and Morrey spaces.

Theorem 23. Let 1 ≤ p, q <∞, 0 ≤ s ≤ n/q, and 0 ≤ θ ≤ 1.
Then,

Lp Rnð Þ,Ms
q Rnð Þ

h i
θ
=Nθs

pθ ,qθ Rnð Þ, ð70Þ

where pθ = p/ð1 − θÞ and 1/qθ = ð1 − θÞ/p + θ/q.
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We must assume s ≤ n/q − n/p in the definition of Ns
p,q-

norms when s ≥ 0. The above θs, pθ, and qθ satisfy the condi-
tion. In fact, from s ≤ n/q, we have

θs ≤
θn
q

= 1 − θð Þn
p

+ θn
q

−
1 − θð Þn

p
= n
qθ

−
n
pθ

: ð71Þ

Theorem 23 implies that Ns
p,q-spaces with s ≥ 0 can be

characterized by complex interpolation spaces between some
Lebesgue space and some Morrey space.

4. Proofs

In this section, we prove some lemmas of Ns
p,q-spaces, and

after that, we prove the main theorems introduced in Section
3. We organize this section as follows: In Section 4.1, we
investigate some properties of Ns

p,q-spaces. In Section 4.2,
we prove Theorem 21. In Section 4.3, we prove Theorem 23.

4.1. Properties. In this section, we prove some properties of
Ns

p,q-spaces. At first, we prove that the space N
s
p,qðRnÞ gener-

alizes Lebesgue spaces and Morrey spaces. This relation is
similar to the fact that homogeneous Triebel-Lizorkin space
_F
s
p,qðRnÞ generalizes LpðRnÞ and BMOðRnÞ. The coincidence

with Lebesgue spaces is the following. Here, we must keep in
mind that we defined k∗kN0

p,p
in two ways, which are Ns

p,p-

norms for s ≥ 0 and for s ≤ 0. We will show that Lemma 24
below holds in both senses.

Lemma 24. For 1 ≤ p <∞, we have LpðRnÞ =N0
p,pðRnÞ, and

the following equivalence holds:

fk kN0
p,p
~ fk kp, ð72Þ

for any f ∈ L0ðRnÞ.

Proof. Let f ∈ L0ðRnÞ. First, for Ns
p,q-norms for s ≥ 0, (37)

implies that

fk kN0
p,p
= sup

ϕk kL1 0,∞;dt/tð Þ=1
ϕ1/p f


 



T0
p,p
~ sup

ϕk kL1 0,∞;dt/tð Þ=1

Á
ð
Rn

ð∞
0
ϕ tð Þ f xð Þj jp dtdx

t

� �1/p

= fk kp:

ð73Þ

Conversely, for Ns
p,p-norms for s ≤ 0, Lemma 20 and (37)

imply that

fk kN0
p,p
≤ fk k~N

0
p,p
= inf

ϕk kL1 0,∞;dt/tð Þ=1
ϕ1/p f


 



T0
p,p
~ fk kp: ð74Þ

Meanwhile, if we assume f ∈N0
p,pðRnÞ in the sense of Def-

inition 18, then for any ε > 0, there exists ϕ ∈ L1ð0,∞;dt/tÞ
satisfying kϕkL1ð0,∞;dt/tÞ = 1 and ðN0

p,p, ϕÞ-atom f t such that

f xð Þj j ≤ fk kN0
p,p
+ ε

� �ð∞
0
ϕ tð Þf t xð Þ dt

t
: ð75Þ

Thus, by Hölder’s inequality for t, we have

fk kp ≤ fk kN0
p,p
+ ε

� � ð∞
0
ϕ tð Þf t

dt
t











p

≤ C fk kN0
p,p
+ ε

� � ð∞
0
ϕ tð Þ dt

t

� �1/p′
ϕ1/p f t


 



T0
p,p

≤ fk kN0
p,p
+ ε,

ð76Þ

for any ε > 0. It concludes the proof in both senses.

The scale Ns
p,qðRnÞ is monotone in 1 ≤ q <∞ as Lemma

25 shows, which is similar to homogeneous Triebel-Lizorkin
spaces _F

s
p,qðRnÞ for 1 ≤ q <∞.

Lemma 25. For any 1 ≤ p ≤∞, 1 ≤ q1 ≤ q2 <∞, and s ∈ R,
one has Ns

p,q2ðRnÞ ⊂Ns
p,q1ðRnÞ, and

fk kNs
p,q1

≤ C fk kNs
p,q2
, ð77Þ

for any f ∈Ns
p,q2ðRnÞ.

Proof. If suffices to show that k f kNs,ϕ
p,q1

≤ Ck f kNs,ϕ
p,q2

for any

ϕ ∈ L1ð0,∞;dt/tÞ satisfying kϕkL1ð0,∞;dt/tÞ = 1, it is easy to
show for p =∞ using Hölder’s inequality. So, we assume
that 1 ≤ p <∞. Setting 1/q1 = 1/q2 + 1/q3 and using Hölder’s
inequality twice, we learn

fk kNs,ϕ
p,q1

=
ð∞
0

ð
B x,tð Þ

tsq1ϕ tð Þ f yð Þj jq1 dydt
tn+1

 !1/q1











Lpx

≤ C
ð∞
0
ϕ tð Þ

ð
B x,tð Þ

tsq2 f yð Þj jq2 dy
tn

 !q1/q2 dt
t

 !1/q1















Lpx

≤ C
ð∞
0
ϕ tð Þ dt

t

� �1/q3 ð∞
0

ð
B x,tð Þ

tsq2ϕ tð Þ f yð Þj jq2 dydt
tn+1

 !1/q2











Lpx

= C fk kNs,ϕ
p,q2
,

ð78Þ

from kϕkL1ð0,∞;dt/tÞ = 1.
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The following is the Sobolev embedding in Ns
p,q-spaces:

Lemma 26. Let 1 < q <∞. For 1 < p1, p2 ≤∞, and 0 ≤ s1 ≤ s2
(or s1 ≤ s2 ≤ 0), if s1 + n/p1 = s2 + n/p2, then one has Ns1

p1 ,qðRnÞ
⊂Ns2

p2 ,qðRnÞ, and

fk kNs2
p2 ,q

≤ C fk kNs1
p1 ,q
, ð79Þ

for any f ∈Ns1
p1 ,qðRnÞ.

Lemma 26 is a direct consequence of Lemma 14. We
omit its proof. Lemmas 24 and 26 imply that N−s

p,qðRnÞ ⊂
LqðRnÞ for −s + n/p = n/q. The following lemma claims that
the converse embedding locally holds.

Lemma 27. Let 1 ≤ p ≤ q <∞, n/q − n/p < −s ≤ 0, and B =
Bðx0, rÞ ⊂ Rn be a ball. For f ∈ LqðRnÞ with supp f ⊂ B,
one has

fk k~N
−s
p,q
≤ Cr−s+n/p−n/q fk kq: ð80Þ

In particular, the following inequality holds:

fk k~N
−s
1,q
≤ Cr −s+ n/q′ð Þð Þ fk kq, ð81Þ

for 0 ≤ s < n/q′.
Before proving Lemma 27, we prepare the definition and

some properties of Lorentz spaces.

Definition 28. Let 0 < p <∞ and 0 < q ≤∞. For f ∈ L0ðRnÞ,
we define the decreasing rearrangement function f ∗ : ½0,∞Þ
⟶ ½0,∞� of f as

f ∗ tð Þ≔ inf α ∈ 0,∞ð Þ: df αð Þ ≤ t
È É

, ð82Þ

where df is the distribution function of f , given by

df αð Þ = x ∈ Rn : f xð Þj j > αf gj j α > 0ð Þ: ð83Þ

Here, inf∅ stands for ∞. Let f ∈ L0ðRnÞ. If 0 < q <∞,
then define

fk kLp,q ≔
ð∞
0

t1/p f ∗ tð ÞÀ Áq dt
t

� �1/q
: ð84Þ

If q =∞, then define

fk kLp,q ≔ sup
t>0

t1/p f ∗ tð Þ: ð85Þ

We define the Lorentz space Lp,qðRnÞ as the set of all func-
tions f ∈ L0ðRnÞ for which k f kLp,q <∞.

We note some properties of Lorentz spaces.

Remark 29.

(i) Let 1 < p1, p2, p3 <∞ satisfy 1/p3 = 1/p1 + 1/p2 and

1 ≤ q ≤∞. Then, for f ∈ Lp1,qðRnÞ and g ∈ Lp2,q′ðRn

Þ, we have

f gk kLp3 ≤ fk kLp1,q gk kLp2,q′ : ð86Þ

(ii) For 0 < q <∞ and f ∈ LqðRnÞ, we have

Mq fð Þ

 


Lq,∞

≤ C fk kq, ð87Þ

where Mq is the q-powered Hardy–Littlewood max-
imal operator (see Section 1.1).

(iii) For any 0 < p <∞ and ball B = Bðx0, rÞ ⊂ Rn, we
have

χBk kLp,1 ~ Bj jn/p: ð88Þ

See, e.g., [4] for the above properties.
All preparations to prove Lemma 27 were given.

Proof of Lemma 30. For a fixed α > sq, let ϕðtÞ = cχ½0,rÞðtÞtα/
rα, where c > 0 is a normalization parameter satisfying
kϕkL1ð0,∞;dt/tÞ = 1. Since supp f ⊂ Bðx0, rÞ, for y ∈ supp f ,
we get jy − x0j < r. Fix x ∈ Rn and 0 < t < r with supp f ∩
Bðx, tÞ ≠∅. Then, for y ∈ supp f ∩ Bðx, tÞ, we have

x − x0j j ≤ x − yj j + y − x0j j < t + r < 2r: ð89Þ

Keeping in mind that in Remark 29, we have

fk k~N
−s
p,q
≤

ð∞
0

ð
B x,tð Þ

t−sqϕ tð Þ f yð Þj jq dydt
tn+1

 !1/q











Lpx Rnð Þ

≤ C
ðr
0

ð
B x,tð Þ

tα−sq

rα
f yð Þj jq dydt

tn+1

 !1/q











Lpx B x0,2rð Þð Þ

≤ C r−sMq fð Þ

 


Lp B x0,2rð Þð Þ

≤ Cr−s Mq fð Þ

 


Lq,∞

χB x0,2rð Þ



 




Lp0,1

≤ Cr−s+n/p−n/q fk kq,
ð90Þ

where 1/p = 1/q + 1/p0.

The following proposition shows that Ns
p,q-spaces gener-

alize Morrey spaces.
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Proposition 31. For 1 ≤ q <∞ and 0 < s < n/q, one has
Ns

∞,qðRnÞ =Ms
qðRnÞ with the norm equivalence

fk kNs
∞,q

~ fk kMs
q
, ð91Þ

for any f ∈Ms
qðRnÞ.

Proof. We can easily show that k f kNs
∞,q

≤ k f kMs
q
for f ∈

Ms
qðRnÞ:

fk kNs
∞,q

= sup
ϕk kL1 0,∞;dt/tð Þ=1

sup
x,rð Þ∈Rn× 0,∞ð Þ

Á 1
Bj j
ðr
0

ð
x−yj j<r−t

tsqϕ tð Þ f yð Þj jq dydt
t

 !1/q

≤ sup
ϕk kL1 0,∞;dt/tð Þ=1

sup
x,rð Þ∈Rn× 0,∞ð Þ

Á rsq

Bj j
ð∞
0

ð
x−yj j<r

ϕ tð Þ f yð Þj jq dydt
t

 !1/q

= fk kMs
q
:

ð92Þ

Conversely, we assume f ∈Ns
∞,qðRnÞ. For B = Bðx0, rÞ ⊂

Rn, we have

fk kLq Bð Þ ~ sup
gk k

Lq ′ Bð Þ
=1

ð
B
f xð Þg xð Þdx

����
����: ð93Þ

Then, Lemma 27 implies gχB ∈ L
q′ðRnÞ ⊂N−s

1,q′ðRnÞ for

any g ∈ Lq′ðBÞ. Moreover, for any ε > 0, there exists ϕ ∈
L1ð0,∞;dt/tÞ satisfying kϕkL1ð0,∞;dt/tÞ = 1 such that

kϕ1/q′gχBkT−s
1,q′

≤ kgχBk~N
−s
1,q′

+ ε. Thus, Hölder’s inequality

and Lemmas 13 and 27 imply that

sup
gk k

Lq
′
Bð Þ
=1

ð
B
f xð Þg xð Þdx

����
����

= sup
gk k

Lq ′ Bð Þ
=1

ð∞
0

ð
Rn
ϕ tð Þf xð ÞgχB xð Þ dxdt

t

����
����

≤ C sup
gk k

Lq ′ Bð Þ
=1

ϕ1/q f


 



Ts
∞,q

ϕ1/q′gχB




 



T−s
1,q ′

≤ C sup
gk k

Lq ′ Bð Þ
=1

fk kNs
∞,q

gχBk k~N
−s
1,q ′

+ ε
� �

≤ C sup
gk k

Lq ′ Bð Þ
=1

fk kNs
∞,q

r−s+ n/qð Þ gχBk kq′ + ε
� �

= C r−s+ n/qð Þ fk kNs
∞,q
+ fk kNs

∞,q
ε

� �
,

ð94Þ

for any ε > 0. Consequently, the arbitrariness of ε > 0
implies that

rs− n/qð Þ fk kLq Bð Þ ≤ C fk kNs
∞,q
, ð95Þ

for any ball B = Bðx0, rÞ, and it concludes the proof.

Lemma 25 shows that the Ns
p,q-spaces are vested. We

combine Lemmas 25 and 26 and Proposition 31.

Remark 32. Let 1 ≤ q < p ≤∞ and 0 ≤ s ≤ n/q − n/p. Then,

Ns
p,q Rnð Þ ⊂Ns+ n/pð Þ

∞,q Rnð Þ =Ms+ n/pð Þ
q Rnð Þ: ð96Þ

Here, we used Lemma 26 and Proposition 31.
Furthermore, we obtain the following:

Remark 33. Let 1 ≤ p ≤ q <∞ and n/q − n/p < −s ≤ 0. Then,

N−s
p,q Rnð Þ ⊂N0

p0,q Rnð Þ ⊂ Lp0 Rnð Þ, ð97Þ

where p0 = ð1/p − s/nÞ−1 < q. Here, we used Lemmas 26
and 25.

4.2. Proof of Theorem 21. In this section, we prove
Theorem 21.

Proof of Theorem 34 (0), (i). Let f ∈N−s
p′ ,q′ðRnÞ and g ∈

Ns
p,qðRnÞ. Then, for any ε > 0, there exists ϕ ∈ L1ð0,∞;dt/tÞ

satisfying kϕkL1ð0,∞;dt/tÞ = 1 and ðN−s
p′ ,q′ , ϕÞ-atom f t such that

f xð Þj j ≤ fk kN−s
p ′ ,q ′

+ ε

� �ð∞
0
ϕ tð Þf t xð Þ dt

t
: ð98Þ

Thus, (40) implies that

ð
Rn

f xð Þkg xð Þj j dx

≤ fk kN−s
p ′ ,q ′

+ ε

� �ð∞
0

ð
Rn
ϕ tð Þf t xð Þ g xð Þj j dxdt

t

≤ C fk kN−s
p ′ ,q ′

+ ε

� �
ϕ1/q′ f t



 




T−s
p ′ ,q ′

ϕ1/qg


 



Ts
p,q

≤ fk kN−s
p ′ ,q ′

+ ε

� �
gk kNs

p,q
,

ð99Þ

for any ε > 0. Thus, we have

ð
Rn

f xð Þkg xð Þj j dx ≤ C fk kN−s
p ′ ,q ′

gk kNs
p,q
, ð100Þ
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and it concludes the proof of Theorem 34 (0). From (100),
we obtain

ℓg


 



N−s
p ′ ,q ′

� �∗ = sup
fk kN−s

p′,q′=1

ð
Rn
f xð Þg xð Þdx

����
���� ≤ C gk kNs

p,q
: ð101Þ

It shows Theorem 21 (i).
Proof of Theorem 34 (ii). We assume that ℓ is a bounded

linear functional of N−s
p′ ,q′ðRnÞ. Fix a ball B = Bðx0, rÞ. If f is

supported on Bðx0, rÞ, then

fk kN−s
p′,q′

≤ Cr−s+ n/qð Þ− n/pð Þð Þ fχB x0,rð Þ



 




q′
ð102Þ

from Lemma 27. Hence, ℓ induces a bounded linear func-

tional on Lq′ðBðx0, rÞÞ and acts with gB ∈ LqðBðx0, rÞÞ. By
taking Bj = Bð0, jÞ ðj ∈NÞ, we have gBj = gBj+1 on Bj, and thus
we obtain a unique function g on Rn that is locally in LqðRnÞ,
such that ℓð f Þ = Ð Rn f ðxÞgðxÞdx when f ∈N−s

p′ ,q′ðRnÞ is sup-
ported on some ball. We can extend ℓ as a global functional
over Rn using the following lemma:

Lemma 35. Let 1 ≤ p ≤ q <∞, and n/q − n/p < −s ≤ 0. For
f ∈N−s

p,qðRnÞ, let f j = fχBj
, where Bj = Bð0, jÞ ðj ∈NÞ. Then,

lim
j⟶∞

f − f j



 




N−s
p,q
= 0: ð103Þ

Proof. Because f ∈N−s
p,qðRnÞ, for any ε1 > 0, there exists ϕ ∈

L1ð0,∞;dt/tÞ satisfying kϕkL1ð0,∞;dt/tÞ = 1 and an ðN−s
p,q, ϕÞ-

atom f t such that

f − f j
��� ��� = fχ Bjð Þc

��� ��� ≤ fk kN−s
p,q
+ ε1

� �ð∞
0
ϕ tð Þf tχ Bjð Þc

dt
t
:

ð104Þ

From the dominated convergence theorem, for any ε2 > 0,
there exists N ∈N such that

ϕ1/q f tχ Bjð Þc



 




T−s
p,q
< ε2, ð105Þ

for j ≥N. Thus, the function f tχðBjÞc /ε2 is an ðN−s
p,q, ϕÞ-atom,

and we have

f − f j



 




N−s
p,q
≤ fk kN−s

p,q
+ ε1

� �
· ε2, ð106Þ

for j ≥N. This concludes the proof.

To prove Theorem 21 (ii), it suffices to prove kgkNs
p,q
≤

CkℓkðN−s
p ′ ,q ′

Þ∗ . At first, we prove kgkNs
∞,q

≤ CkℓkðN−s
1,q ′

Þ∗ , which

is the case when p =∞. Let B = Bðx0, rÞ. From Lemma 27,
we have

ð
B x0,rð Þ

g xð Þj jq dx
 !1/q

~ sup
fk k

Lq ′ Bð Þ
=1

ð
B
f xð Þg xð Þdx

����
����

≤ sup
fk k

Lq ′ Bð Þ
=1

ℓk k
N−s

1,q ′

� �∗ fχBk kN−s
1,q ′

≤ Cr−s+ n/qð Þ ℓk k
N−s

1,q ′

� �∗ ,

ð107Þ

for any x0 ∈ Rn and r > 0. Thus, we have kgkNs
∞,q

≤ C

kℓkðN−s
1,q ′

Þ∗ by Proposition 31. Next, we prove Theorem 21

(ii) for the case when 1 < p <∞. To prove kgkNs
p,q
≤

CkℓkðN−s
p ′ ,q ′

Þ∗ for 1 < p <∞, we present the following lemma.

Lemma 36. Let 1 < q ≤ p <∞ and n/q′ − n/p′ ≤ −s ≤ 0. For
ϕ ∈ L1ð0,∞;dt/tÞ satisfying kϕkL1ð0,∞;dt/tÞ = 1, define

πs,ϕ
q Fð Þ xð Þ =

ð∞
0
ϕ tð Þ1/qtsF x, tð Þ dt

t
: ð108Þ

Then,

πs,ϕ
q Fð Þ




 



N−s

p′,q′

≤ Fk kT0
p′,q′
, ð109Þ

for F ∈ T0
p′ ,q′ðRn+1

+ Þ.

Proof. From the definition of πs,ϕ
q ðFÞðxÞ, we get

πs,ϕ
q Fð Þ xð Þ

��� ��� ≤ Fk kT0
p ′ ,q ′

ð∞
0
ϕ tð Þ 1

Fk kT0
p ′ ,q ′

ϕ tð Þ−1/q′ ts F x, tð Þj j dt
t
:

ð110Þ

Note that

ϕ tð Þ1/q′ 1
Fk kTp ′ ,q ′

ϕ tð Þ−1/q′ ts F x, tð Þj j













T−s
p′,q′

= 1: ð111Þ

The function ð1/kFkTp ′ ,q ′
ÞϕðtÞ−1/q′ tsjFðx, tÞj is an ðN−s

p′ ,q′ ,
ϕÞ-atom, and we obtain

πs,ϕ
q Fð Þ




 



N−s

p′,q′

≤ Fk kT0
p′,q′
: ð112Þ
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We now prove that kgkNs
p,q
≤ CkℓkðN−s

p ′ ,q ′
Þ∗ for 1 < p <∞.

For any ϕ ∈ L1ð0,∞;dt/tÞ satisfying kϕkL1ð0,∞;dt/tÞ = 1, by
applying Lemma 13, (40), and Lemma 36, we have

gk kNs,ϕ
p,q
= tsϕ1/qg


 



T0
p,q
~ sup

Fk kT0
p′,q′=1

ð∞
0

ð
Rn
tsϕ tð Þ1/qg xð ÞF x, tð Þ dxdt

t

����
����

= sup
Fk kT0

p′,q′=1

ð
Rn
g xð Þπs,ϕ

q Fð Þ xð Þdx
����

����
≤ sup

Fk kT0
p ′,q ′ =1

ℓk k
N−s

1,q ′

� �∗ πs,ϕ
q Fð Þ




 



N−s

p′,q′

≤ C sup
Fk kT0

p ′,q ′ =1
ℓk k

N−s
1,q ′

� �∗ Fk kT0
p′,q′

= C ℓk k
N−s

1,q ′

� �∗ :

ð113Þ

Taking the supremum over ϕ ∈ L1ð0,∞;dt/tÞ satisfying
kϕkL1ð0,∞;dt/tÞ = 1, we obtain the conclusion.

4.3. Proof of Theorem 23. In this section, we prove Theorem
23. Notice that LpðRnÞð1 ≤ p<∞Þ and Ms

qðRnÞð0 ≤ s ≤ n/qÞ
are Banach function lattices, satisfy the Fatou property,
and are 1-convex. Furthermore, LpðRnÞð1 ≤ p<∞Þ is separa-
ble. Thus, thanks to (32), it suffices to demonstrate the
following:

Theorem 37. Let 1 ≤ p, q <∞, 0 ≤ s ≤ n/q, and 0 ≤ θ ≤ 1.
Then,

Lp Rnð Þð Þ1−θ Ms
q Rnð Þ

� �θ
=Nθs

p/ 1−θð Þ,qθ Rnð Þ ð114Þ

where 1/qθ = ð1 − θÞ/p + θ/q.

Before proving Theorem 37, we check the consistency of
Theorem 37 for the critical cases s = 0 and s = n/q.

Lemma 38. Let 1 ≤ p <∞. Then,

fk kN0
p,q
~ fk kp, ð115Þ

for any 1 ≤ q ≤ p and f ∈ L0ðRnÞ.

Proof. From Lemmas 24 and 25, we have

fk kN0
p,q
≤ fk kp, ð116Þ

for any q ≤ p. Conversely, we set

ϕε tð Þ = εn+δ

tn+δ
χ ε,∞½ Þ tð Þ, ð117Þ

for some fixed δ > 0. We also set

c1 ≔
ð∞
1

1
tn+δ

dt
t
 and c2 ≔

ð∞
1

1
tδ
dt
t
: ð118Þ

Then, by Lebesgue differentiation theorem and c1 =
kϕεkL1ð0,∞;/dt/tÞ, we have

fk kp = lim inf
ε⟶0

1
εn

ð
B x,εð Þ

f yð Þj jq dy
 !1/q












Lpx

= 1
c1

lim inf
ε⟶0

ð∞
0

ð
B x,εð Þ

ϕε tð Þ 1
εn

f yð Þj jq dydt
t

 !1/q











Lpx

≤
1
c1
lim inf
ε⟶0

ð∞
0

ð
B x,tð Þ

εδ

tδ
χ ε,∞½ Þ tð Þ f yð Þj jq dydt

tn+1

 !1/q











Lpx

≤
c2
c1

fk kN0
p,q
:

ð119Þ

So, we are done.

Letting s = 0 in Theorem 37, we see that the property
M0

qðRnÞ = L∞ðRnÞ for any 1 ≤ q <∞ yields

Lp Rnð Þð Þ1−θ L∞ Rnð Þð Þθ =N0
p/ 1−θð Þ,qθ Rnð Þ: ð120Þ

From Lemma 38, we have N0
p/1−θ,qθðRnÞ = Lp/1−θðRnÞ, and

it does not contradict Lemma 10. Furthermore, we have the
following.

Proposition 39. If s = n/q − n/p, one has

fk kNs
p,q
~ fk kq, ð121Þ

for any f ∈ LqðRnÞ.

Proof. From Proposition 31 and Lemma 26, we have

fk kq = fk kMn/q
q
~ fk kNn/q

∞,q
≤ C fk kN n/qð Þ− n/pð Þð Þ

p,q
: ð122Þ

Next, Lemmas 24 and 26 imply that

fk kN n/qð Þ− n/pð Þð Þ
p,q

≤ C fk kN0
q,q
= fk kq: ð123Þ

Setting s = n/q in Theorem 37, we learn that Mn/q
q ðRnÞ =

LqðRnÞ implies that

Lp Rnð Þð Þ1−θ Lq Rnð Þð Þθ =Nθ n/qð Þ
p/ 1−θð Þ,qθ Rnð Þ: ð124Þ
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From θn/q = n/qθ − ð1 − θÞn/p and Proposition 39, we

obtain Nθðn/qÞ
p/ð1−θÞ,qθðR

nÞ = LqθðRnÞ, and it does not contradict

Lemma 10.
We now prove Theorem 37. First, we prove that

ðLpðRnÞÞ1−θðMs
qðRnÞÞθ ⊂Nθs

p/ð1−θÞ,qθðR
nÞ. Let f ∈ ðLpðRnÞÞ1−θ

ðMs
qðRnÞÞθ. Then, for any ε > 0, there exists f1 ∈ L

pðRnÞ
and f2 ∈M

s
qðRnÞ such that j f ðxÞj ≤ j f1ðxÞj1−θj f2ðxÞjθ and

f1k k1−θLp f2jk kθMs
q
≤ fk k

Lpð Þ1−θ Ms
qð Þθ + ε: ð125Þ

It should be noted that k f θkTs
p,q
= k f kθTs/θ

θp,θq
for any θ > 0.

From (42), for any ϕ ∈ L1ð0,∞;dt/tÞ satisfying kϕkL1ð0,∞;dt/tÞ
= 1, we have

ϕ tð Þ1/qθ f xð Þ

 


Tθs
p/ 1−θð Þ,qθ

≤ ϕ tð Þ1/qθ f1 xð Þ1−θ f2 xð Þθ



 




Tθs
p/ 1−θð Þ,q0

≤ C ϕ tð Þ 1−θð Þ/p f1 xð Þ1−θ



 




T0
p/ 1−θð Þ,p/ 1−θð Þ

ϕ tð Þθ/q f2 xð Þθ



 




Tθs
∞,q/θ

≤ C f1k k1−θp f2k kθMs
q

≤ C fk k
Lpð Þ1−θ Ms

qð Þθ + ε

� �
,

ð126Þ

for any ε > 0. Thus, we obtain k f kNθs
p/ð1−θÞ,qθ

≤ Ck f kðLpÞ1−θðMs
qÞθ ,

which concludes the proof of ðLpðRnÞÞ1−θðMs
qðRnÞÞθ ⊂

Nθs
p/1−θ,qθðRnÞ.
Next, we must prove Nθs

p/ð1−θÞ,qθðR
nÞ ⊂ ðLpðRnÞÞ1−θ

ðMs
qðRnÞÞθ. Let ϕ0ðtÞ = c tαχ½0,1ÞðtÞ for a sufficiently large

α > 0, where c > 0 denotes the number that satisfies
kϕ0kL1ð0,∞;dt/tÞ = 1. We assume that f ∈Nθs

p/ð1−θÞ,qθðR
nÞ. Then,

we have ϕ0ðtÞ1/qθ f ðxÞ ∈ Tθs
p/ð1−θÞ,qθðR

n+1
+ Þ. Thus, Lemma 15

implies that for any ε > 0, there exists functions Fðx, tÞ ∈
T0
p,pðRn+1

+ Þ and Gðx, tÞ ∈ Ts
∞,qðRn+1

+ Þ, such that

ϕ0 tð Þ1/qθ f xð Þj j ≤ F x, tð Þj j1−θ G x, tð Þj jθ, ð127Þ

Fk k1−θT0
p,p

Gk kθTs
∞,q

≤ ϕ0 tð Þ1/qθ f xð Þ

 


Tθs
p/ 1−θð Þ,qθ

+ ε: ð128Þ

From (127), we obtain

ϕ0 tð Þ f xð Þj j ≤ ϕ0 tð Þ1/qθ′ F x, tð Þj j1−θ G x, tð Þj jθ: ð129Þ

Since kϕ0kL1ð0,∞;dt/tÞ = 1 and 1/qθ = ð1 − θÞ/p′ + θ/q′,
integrating both sides of the above inequality against the
measure dt/t and using Hölder’s inequality, we obtain

f xð Þj j ≤
ð∞
0
ϕ0 tð Þ1/qθ′ F x, tð Þj j1−θ G x, tð Þj jθ dt

t

≤
ð∞
0
ϕ0 tð Þ1/p′ F x, tð Þj j dt

t

� �1−θ ð∞
0
ϕ0 tð Þ1/q′ G x, tð Þj j dt

t

� �θ

≕ f1 xð Þj j1−θ f2 xð Þj jθ:
ð130Þ

Using kϕ0kL1ð0,∞;dt/tÞ = 1 and Hölder’s inequality again,

we obtain

f1k kp ≤
ð∞
0
ϕ0 tð Þ dt

t

� �1/p′ ð∞
0

F x, tð Þj j dt
t

� �1/p













p

~ Fk kT0
p,p
,

ð131Þ

where we used (37) in the last equality. Next, we estimate f2.
Using (41), we have

f2k kLq B x0,1ð Þð Þ ~ sup
gk k

Lq ′ B x0,1ð Þð Þ
=1

ð∞
0

ð
Rn
ϕ0 tð Þ1/q′ G x, tð Þj jg xð ÞχB x0,1ð Þ

dxdt
t

����
����

≤ C sup
gk k

Lq ′ B x0,1ð Þð
=1

Gk kTs
∞,q

ϕ0 tð Þ1/q′gχB x0,1ð Þ xð Þ



 




T−s
1,q ′

,

ð132Þ

for any x0 ∈ Rn. Using the argument in the proof of Lemma
27, we obtain

ϕ0 tð Þ1/q′gχB x0,1ð Þ xð Þ



 




T−s
1,q′

≤ C gk kLq ′ B x0,1ð Þð Þ, ð133Þ

which implies that

f2k kLq B x0,1ð Þð Þ ≤ C Gk kTs
∞,q
, ð134Þ

for any x0 ∈ Rn. By combining (131), (134), and (128), we
obtain that for any ε > 0, there exists functions f1 ∈ L

pðRnÞ
and f2 ∈ L

q
locðRnÞ, such that j f ðxÞj ≤ j f1ðxÞj1−θj f2ðxÞjθ and

f1k k1−θp sup
x0∈Rn

f2k kLq B x0,1ð Þð Þ

 !θ

≤ C Fk k1−θT0
p,p

Gk kθTs
∞,q

≤ ϕ
1/qθ
0 f




 



Tθs
p/ 1−θð Þ,qθ

+ ε,

ð135Þ
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for any f ∈Nθs
p/ð1−θÞ,qθðR

nÞ. Thus, we obtain

f1k k1−θp sup
x0∈Rn

f2k kLq B x0,1ð Þð Þ

 !θ

≤ C fk kNθs
p/ 1−θð Þ,qθ

: ð136Þ

To conclude, we investigate the dilation property.

Lemma 40. Let 1 ≤ p ≤∞, 1 ≤ q <∞, and 0 ≤ s ≤ n/q − n/p.
Define f rðxÞ = f ðx/rÞ for r > 0 and f ∈ L0ðRnÞ. Then,

f rk kNs
p,q
= rs+ n/pð Þ fk kNs

p,q
, ð137Þ

for any f ∈Ns
p,qðRnÞ.

Proof. Let f ∈Ns
p,qðRnÞ and ϕ ∈ L1ð0,∞;dt/tÞ satisfying

kϕkL1ð0,∞;dt/tÞ = 1. Considering that ϕðr · Þ ∈ L1ð0,∞;dt/tÞ
with kϕðr · ÞkL1ð0,∞;dt/tÞ = 1 for any r > 0, we have

f rk kNs,ϕ
p,q
=

ð∞
0

ð
B x,tð Þ

tsqϕ tð Þ f
y
r

� ���� ���q dydt
tn+1

 !1/q











Lpx

=
ð∞
0

ð
B x,tð Þ

rsq
t
r

� �sq

ϕ r
t
r

� �
f

y
r

� ���� ���q dydt
tn+1

 !1/q











Lpx

= r s+ n/pð Þð Þ
ð∞
0

ð
B x,tð Þ

tsqϕ rtð Þ f yð Þj jq dydt
tn+1

 !1/q











Lpx

= r s+ n/pð Þð Þ fk kNs,ϕ r·ð Þ
p,q

:

ð138Þ

Thus, we obtain k f rkNs
p,q
= rðs+ðn/pÞÞk f kNs

p,q
.

Now, all preparations to prove Nθs
p/ð1−θÞ,qθðR

nÞ ⊂
ðLpðRnÞÞ1−θðMs

qðRnÞÞθ have been provided. From Lemma

40, we have f ∈Nθs
p/ð1−θÞ,qθðR

nÞ if and only if f r ∈
Nθs

p/ð1−θÞ,qθðR
nÞ for any r > 0. We fix an arbitrary r > 0.

Then, from (136) and Lemma 40, we obtain

f1ð Þr


 

1−θ

p
sup
x0∈Rn

rs
1
rn

ð
B x0,rð Þ

f2ð Þr yð Þ�� ��q dy
 !1/q( )θ

= rθs+ n 1−θð Þ/pð Þ f1k kp sup
x0∈Rn

f2k kLq B x0,1ð Þð Þ

 !θ

≤ Crθs+ n 1−θð Þ/pð Þ fk kNθs
p/ 1−θð Þ,qθ

= f rk kNθs
p/ 1−θð Þ,qθ

:

ð139Þ

Note that

f xð Þj j ≤ f1 xð Þj j1−θ f2 xð Þj jθ ⇔ f r xð Þj j ≤ f1ð Þr xð Þ�� ��1−θ f2ð Þr xð Þ�� ��θ,
ð140Þ

for any r > 0. By replacing f r = g for any g ∈Nθs
p/ð1−θÞ,qθðR

nÞ,
there exist meaurable functions g1, g2 such that

g xð Þj j ≤ g1 xð Þj j1−θ g2 xð Þj jθ,

g1k k1−θp sup
x0∈Rn

rs
1
rn

ð
B x0,rð Þ

g2 yð Þj jq dy
 !1/q( )θ

≤ C gk kNθs
p/ 1−θð Þ,qθ

:

ð141Þ

Because r > 0 is arbitrary, we have the conclusion.

5. An Application of Complex
Interpolation Spaces

As basic properties of function spaces, we will prove the
boundedness of Calderón–Zygmund operators. Calderón–
Zygmund operators are defined by the following:

For a bounded linear operator T : L2ðRnÞ⟶ L2ðRnÞ, we
say that T is a Calderón–Zygmund operator if there exists a
kernel kðx, yÞ, and it satisfies the following conditions:

(i) Tf ðxÞ = Ð Rnkðx, yÞf ðyÞ dy for x ∉ suppf

(ii) jkðx, yÞj ≤ Cð1/jx − yjnÞ for any x, y ∈ Rn

(iii) jkðx, yÞ − kðz, yÞj + jkðy, xÞ − kðy, zÞj ≤ Cðjz − yj/
jx − yjn+1Þ whenever jz − yj < ð1/2Þjx − yj

In fact, these operators are bounded on Lebesgue spaces
LpðRnÞ (1 < p <∞) (see Stein [17]) and Morrey spaces
Ms

qðRnÞ (1 < q <∞, 0 < s < n/q) (see F. Chiarenza and M.
Frasca [18]). Using Theorem 37, we obtain the bounded-
ness in Ns

p,q-spaces.

Theorem 41. For 1 < p ≤∞, 1 < q <∞, and 0 ≤ s ≤ n/q − n/p,
any Calderón–Zygmund operator T are bounded onNs

p,qðRnÞ.

Proof. For the case where s = 0, it immediately follows by the
boundedness of T in Lebesgue spaces and Lemma 38. Fur-
thermore, for the case where p =∞, we use the boundedness
in Morrey spaces and Proposition 31. We prove the other
cases. Combining Lemma 8 with Theorem 23 and the
boundedness of T in LpðRnÞ and Ms

qðRnÞ, we see

Tk kNθs
p/ 1−θð Þ,qθ

⟶Nθs
p/ 1−θð Þ,qθ

≤ C Tk k1−θLp⟶Lp Tk kθMs
q⟶Ms

q
, ð142Þ

for any 0 < θ < 1, 1 < p, q <∞, and 0 < s < n/q. Thus, we
obtain kTkNs

p,q⟶Ns
p,q
<∞ for any 1 < p ≤∞, 1 < q <∞, and

0 ≤ s ≤ n/q − n/p.
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