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The aim in this paper is to establish a new duality property of Morrey spaces and to discover the complex interpolation space between
Morrey spaces and Lebesgue spaces. For that purpose, a new space N, (R") is introduced by using methods of tent spaces. The space
generalizes Morrey spaces and Lebesgue spaces. Furthermore, this scale of spaces is amenable to the complex interpolation space.

1. Introduction

The Morrey space M;(R") was introduced by Morrey [1] to

investigate the existence and differentiability properties of
solutions to the elliptic partial differential equations of second
order. Tent spaces were introduced by Coifman et al. [2] to
analyze Hardy spaces, and tent spaces have been applied for
the theory of parabolic partial differential equations in the pre-
vious research. The aim in this paper is to generalize Morrey
spaces by applying some properties of tent spaces. To our best
knowledge, it seems that tent spaces are not used for the study
of function spaces related to Morrey spaces.

As the motivation of this study, let us recall concrete
examples of equivalence of homogeneous Triebel-Lizorkin

spaces. The homogeneous Triebel-Lizorkin space F;,q(R")
was introduced by Triebel (see [3]). The norm of F;, q(R”)

is characterized in terms of tent spaces. The space F;’q(R”)

generalizes Lebesgue spaces LP(R")(1<p<co) and the
bounded mean oscillation space BMO(R"). Furthermore,
the following properties is known as a particular case:

L*(RY) [L*(R"),BMO(R")],,  BMO(R")
I I |
Fy,(R") Fyp(R") Foga(R) (1)
I I I
(Fam) (Famn) (FLry)

Here, [X, Y], is the complex interpolation space between
X and Y. Furthermore, (X)" is the dual space of X.

In this paper, the new function space N, .(R") is intro-
duced (see Section 2.2 below). The norm of the space
N, ,(R") is also defined via tent spaces like homogeneous
Triebel-Lizorkin spaces. The motivation of the study of
the space N, .(R") is to construct the corresponding chart
for Lebesgue spaces and Morrey spaces. The following
chart summarizes arguments shown in this paper:

IP(R") [LP(R"), M;(R”)} . MR
|1 |1 I
Npp(R") NorayR") N (R")

| I [
(V) (NEm))T (N R)
2)

The explicit expressions of p, and g, are not given
here. We content ourselves with mentioning that there
are natural interpolation indices. One of important points
in the above chart is that the description of the complex
interpolation space between Lebesgue spaces and Morrey
spaces is given. A description of the complex interpolation
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space between two Morrey spaces is known (see Lemma
11). As far as we know, other descriptions of the complex
interpolation space between Morrey spaces and other
spaces are not known in the recent research.

1.1. Notations. We use the following notations in this paper:

(1) We denote by L°(R") the set of all measurable func-
tions on R”

(2) For 1<p<oo, the conjugate number p' of p is
defined by the number which realizes 1/p + 1/p' =1

(3) For x e R" and r > 0, B(x, r) is the ball with radius r
centered at x

(4) For f€L°(R") and x €R", we define the Hardy-
Littlewood maximal operator M by

1
MF) = sp | O )

More generally, for 0 < g < co, we define its powered
version by

M, (f) = (M(If|")". (4)

(5) The space L'(0,00:dt/t) consists of measurable func-
tions ¢ : [0,00) — [0,00) satisfying

0 dt

1611 g = || 805 <e0. (9

1.2. Lebesgue Spaces and Morrey Spaces. In this subsection,
we shall introduce the definitions of Lebesgue spaces and
Morrey spaces. The most basic Banach spaces are Lebesgue
spaces LP(R") defined as follows:

Let 1 <p<oco. Then, the space L?(R") is the set of all
functions f € L°(R") satisfying

11, = (] 1w an) " <oo ©
for 1 <p < oo and

f(x)] <00 (7)

1/l = esSSUPegr

for p = co. Next, we recall the definition of Morrey spaces
which is the main function spaces in this paper.
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Definition 1. Let 1<g<oco and 0<s<n/q. The Morrey
space M;(R") is the set of all functions f € L°(R") satisfying

£

1/q
1
I P R
My (x,r)€R"x(0,00) <|B(x>7') B(x,r)| W
(8)

We note some properties of Morrey spaces.
Remark 2.

(1) Let w,, be the volume of the unit ball on R". Then,
the equation

1/p
[ fllype = " sup J fO)IF dy
? (xr)€R"x(0,00) \ J B(x,r)

=, ?|If,

©)

implies that
My"(R") = L/ (R"), (10)

with equivalence of norms for 1 < p < oo.

(2) For 1 <g, <¢q, <00, the embedding
M; (R") cM; (R") (11)

follows from Hoélder’s inequality.

(3) Combining (10) and (11), for any 1<g<n/s, we
have

L"8(R") c M;(R"). (12)

1.3. Dual Spaces. In the study of quasi-Banach spaces, the
duality argument plays an important role. We recall how
we identify the dual space of function spaces.

Definition 3. For a quasi-Banach space X, we write the dual
space of X as X*. The Banach space X* is defined as the
set of all linear continuous functionals € : X — C. We
define

1€l = sup [e(f)[- (13)

Ifx=1

It is known that a dual space of quasi-Banach space is
also a quasi-Banach space with the above norm. We define
the following duality relation between quasi-Banach spaces
and their duals contained in L°(R"):
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Definition 4. For quasi-Banach spaces X, Y ¢ L°(R"), we say
that X* =Y if it satisfies the following:
(0) If fe X and g€ Y, then f - g€ L'(R")

(i) For ge Y, we set

eg<f>=j Fogwdx (fex).  (14)

R?’l
Then, we have £ g€ X* and

18]l = Clglly- (15)
(ii) For any € € X*, there uniquely exists g € Y satisfying

e<f>=j f@a@dxs (feX),  (16)

.
and we have

lally =cClle

- (17)

Usually, the notion of duality relation is considered for
Banach spaces of measurable functions. However, as we will
see, the ones for quasi-Banach spaces will be needed since we
would like to handle the quasi-Banach space Ny, q(R”) which

will be defined in Section 2.2 below. For quasi-Banach spaces
X and Y, we say that X is a predual space of Y if it satisfies
X*=Y. It is known that a predual space is not always
unique. For Lebesgue spaces, we have the following duality

property:
Lemma 5. Let 1 <p < co. Then,
(LF(RY)" =1 (R). (18)
For the proof, see, e.g., Grafakos [4].
In the previous research, some predual spaces of Morrey

spaces are known. The following block spaces were found by
Long [5].

Definition 6. Let s € R and 1 < g < 0co. We say that a measur-
able function a is a (g, s)-block in a ball B if a satisfies

(i) supp acCB,
(i) [|all, < |B|((-1/a")=(sm)

The block space B;(R") is the set of all functions f €
L°(R") such that

11l = inf { 24l

jeN

f= Z)tjaj, {)Lj}jeN cC, {aj}jeN :(gr8) - blocks}
jeN
<00,

(19)

where the infimum is taken over all decompositions of f.
Here, each a; satisfies (i) and (ii) for B replaced by the ball

B;. Note that B; can vary according to j.
The dual space of B;f (R") is the Morrey space M;(R").

Lemma 7 (see [5]). Let 1 < g <00 and 0<s<nlq. Then,
(B;(R")) = Mi(R"). (20)

We refer to Adams and Xiao [6] and Gogatishvili and
Mustafayev [7] for other representations of predual spaces
of Morrey spaces.

1.4. Complex Interpolation Spaces. The theory of complex
interpolation spaces plays an important role in operator
theory. Our second aim is to obtain the complex interpola-
tion between Morrey spaces and Lebesgue spaces. For this
purpose, we prepare the following.

For quasi-Banach function spaces X, Y, let X + Y be the
sum space such that

X+Y={f=fi+f,:fieX.f,eY} (21)

We define #(X,Y) be the set of all mappings f :

C — X +Y which are analytic in §:={ze€C:0<Re(z) <
1}, continuous on S:={z € C: 0 <Re(z) < 1} and satisfy

() {f(z):zeS}cX+Y

(i) {f(it): teR} X, lim||f(it") - f(it)[x =0, for
t—vt
each f € R and sup||f(it)||yx < 00
teR

(iii) {f(1+it): teR}CY, lim|f(1+it")—f(1+it)|y
t‘ﬁ
=0, for each t € R and sup||f(1 +it)||, < 00
teR

Furthermore, introducing the norm of #(X,Y) by

s = max {supl i) supl 1+ )] . (22

we define the complex interpolation space [X, Y], between X
and Y with respect to 0<6< 1, by

X, Y], ={xeX+Y :x=f(0).f ¢ F(X,Y)}  (23)

equipped with norm
#ll .y, = i0f {1l f € FOGY)x=£0) ). (24)

We can interpolate the operator norm of bounded
linear operator, which is the main thrust of investigating
interpolation spaces.



Lemma 8 (Bergh and Lofstrom [8]). For pairs of Banach
spaces (X, X,) and (Y, Y,), assume that a linear operator
T is bounded from X; to Y,(j =1, 2). Then, T is also bounded

from [X,;, X,], to [Y}, Y,y and satisfies

1-6 0
1T, )y, gy < Tl 1T M,y (25)

for any 0< 0 < 1. Here, we define the operator norm by

ITllx—y= sup ||Tf] (26)

[1£11x=1

Y’

for an operator from a Banach space X to a Banach space Y.
We shall give another characterization of complex inter-
polation spaces by using Carderdn product spaces defined as

follows:

Definition 9. For quasi-Banach spaces X, Y ¢ L°(R"), and
0<0<1, we define

XY= {feX Y i |flgoppco0},  (27)
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where

Loy = inf {IA 1K UAIE < 1] < 1A G Ifo(0) ae. ).
(28)

The space X'?Y? is called the Carderén product space
between X and Y with respect to 6.

Below, we recall the relationship between complex inter-
polation spaces and Calder6n product spaces. We say that a
quasi-Banach space X is a quasi-Banach function lattice if it
satisfies

|9(x)| <|f(x)] a.efor g € L°(R") = g € X with |||y < || ||
(29)

for any f € X. We say that a quasi-Banach space X satisfies
the Fatou property if

0<fy e Xand sup|f, [l <conith f, — f € I°(R") ae. = feX and [[flly = lim [[fy]], (30)
keN 0

for {fi}icn € X. Furthermore, we say that a quasi-Banach
space X is r-convex for 0 < r < oo if it satisfies

k r v k . 1r
H@‘f") S(;HfJHX> SN

for {f; };(:1 C X. In Kalton and Mitrea [9], it was shown that,

if two quasi-Banach function lattices X, and X, satisfy the
Fatou property, the r;-convexity (i=1,2), and if either of
X, or X, is separable, then

(X1 Xo]g = Xiiexg’ (32)
for any 0< 0 < 1.
We recall two classical formulas on complex interpola-

tion for Lebesgue spaces and for Morrey spaces.

Lemma 10 (see [4]). Let 1 <p,,p, <00 and 1<0 < 1. Then,
[LP(R"), L2 (R")]o = LP*(R"), (33)

for 1/py = (1-0)Ip, +6/p,.

The complex interpolation of Morrey spaces is more
complicated than that of Lebesgue spaces.

Lemma 11 (Hakim and Sawano [10]). Let 0<8< 1, 1<gq,
<00, and 0<s; <nlp,(i=1,2). If s,q, = s,q,, then

[qull (R"), M (R”)} ;

. :0}, (34)

for 1/gy=(1-0)/q,+6lq, and sy=(1-0)s,+0s, Here,
Mj{’e (R") denotes the closure with respect to M (R") of the
set of all essentially bounded functions in Mg, (R").

= {f € M;*’O(R”): lim HX{\f\m}f‘

a—0*"

The organization of the remain part is as follows: In Sec-
tion 2, we introduce tent spaces and our new space N, q(R").
In Section 3, we shall state the main theorems. Further, in
Section 4, some properties and the proofs of the main theo-
rems are given and in Section 5, we present their application.

2. Tent Spaces and New Spaces

In this section, we recall the definition and some properties
of tent spaces, and after that, we introduce the new space
N, ,(R"). We organize this section as follows: In Section
2.1, we present the definition and investigate some proper-

ties of tent spaces. In Section 2.2, we give the definition of
the space N, ,(R").
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2.1. Tent Spaces. In this section, we recall the definition and
some properties of tent spaces. Tent spaces were initially
introduced by Coifman et al. [2]. In the previous research,
tent spaces have been applied for study of boundedness of
Calderén-Zygmund operators (see Section 5 for the defini-
tion) and the theory of parabolic differential equations (see
David and Journé [11] and Koch and Tataru [12]). We write
R :=R" x (0,00).

Definition 12. Let 1 <p <00, 1 <g<o00, and s € R. The tent
space T;’q(RTl) is the set of all measurable functions

F:R"™ — C satisfying

1/q
0 . dydt
7, = ([ ] eeonor
P 0 JBx ¢

< 00,
LL(RY)

(35)

for p<co, and

1/q
1 (" dydt
1Pl = s ([ [ e 9R) <o,
©4 (xrerx(000) \ Bl JoJ jxyjart t

(36)
for p=oo.

It is easy to show that the triangle inequality for ||*

Tha
holds. Moreover, we note that by applying Fubini’s lemma,
we have

1ip
dxdt
||F|Tgp~<j |F<x,t>|"t> e
E RZH

for 1<p<ocoand FeL°(RM).
The following is the known duality theorem for tent
spaces based on Definition 4:

Lemma 13 (Huang [13]). Let I < p <00, I <q <00, ands € R.

IfFeT, (RI") and G e Ty (R™1), then F - G is integrable
with respect to the measure dxdt/t and

(T (®R2) =Ty (R (38)

via the coupling

dxdt

(F,G) =J F(x,1)G(x, 1) — (39)

n+l
R}

Furthermore, the following inequalities hold:

<C||F

~

dxdt
J F(x, £)G(x, ) T8 Glp » (40
wal t '

s
TM

5
for 1< p< oo, and
J . P00 R <clFlry Gl
for p = 1. Moreover, the inequality
IF-Gllgo < ClElls [1Glirz, (42)

holds for sy=s;+s,€R, 0<1/p,=1/p, +1/p, <1, and 0<
1/q,+ 11q, + 1/q, < 1 with 1<p,,p, <00, and 1 < q,,q, < 00.

We note that Lemma 13 is a particular case of Theorem
4.3 in [13] where 3,=0, f=s,and r=q.

We have also the Sobolev embedding theorem for tent
spaces as follows:

Lemma 14 (Amenta [14]). Let I < q < co. For 1 <p,;,p, <00
and s; <s,, if s; + nlp, = s, + nlp,, one has

Tpa(RY) € T3 g (RY), (43)
with a norm inequality
1Ellz,, < ClEllry,, (44)

forany F € T;IPPz(Rﬁ”).

The following lemma states that the Calderén product
for tent spaces can be calculated.

Lemma 15 (see [13]). Let 1 <q;,q, <00, I <p;, p, <oco(not
bothoo), and s € R. Then,

(T, (RE) ™ (T, (RE)) = T, (RE), - (45)

where
1 1- 1 1-
sp=(1-0)s, +0s,, — = 9+E’ and — = 9+2.
Po  Pi J2) 9o q; 92
(46)

2.2. The Definition of Ny, ,-Spaces. In this section, we intro-
duce new function spaces called Ny -spaces by using tent
spaces defined in Section 2.1. First, we define the N,  -norms
with respect to ¢ € L'(0,00;dt/t).

Definition 16. Let ¢ € L' (0,00;d¢/t). For 1 <p < 00,1 < q < 00,
and s < n/q, we define

£l

N;,’f; = H(p(t)l/qf(x) TS,

oo dydt) "’
: H (j J,.. Fnor ty—t>

(47)

Li(R")




for 1 <p <00, and

I1f

N2, T ||gb(t)”qf(x)HT§w

1 . dydt
S O G
(x,r)€R"x(0,00) ‘|0 |x—y|<r-t

(48)

for p = oo.
Using the above norm, we define the Ny ,-norm for s > 0.

Definition 17. For1 < q < 00,q<p<00,and 0 <s<n/q—nlp,
we define

Npg(RY) = {f € L*(R"): ||f|| s <coforany ¢ € L! (0,00; ?) }
(49)

where

fl, = s [flle- (50)

¢l (0,005dt/t) ™

Remark that for s>0, the definition of the N} ,-norm
demanded g < p. The way of defining the N’
is different from the one for g < p.

,-horm for P<q

Definition 18. Let 1 <p <q <00, n/q—n/p<-s<0, and e
L'(0,00,dt/t). We say that the function f,(x) is an (N o ©)-
atom if f,(x) > 0 for all x e R" and ¢ € (0,00) and

le®™f )l <1. (51)

The space N, (R") is the set of all f € L°(R") such that
there exists A > O and an (N , $)-atom f, for which

)] <Aj s (02, (52)

for almost all x € R”. Let A(¢, f,) be the infimum of such A,
and let

Il = inf A(. 1), (53)

where the infimum is taken over all functions ¢ which satisty
81111 0,00,401) = 1 and all (N, ¢)-atoms f,.

Remark that for s <0, the definition of the N;’q—norm
demanded p <g. For the case p=¢q, we defined the Ng)p—

norm in two ways. However, those are essentially equivalent
(see Lemma 24 in Section 4.1 below). The definition of the

. . . S
norm ||f||y-s is complicated; therefore, we introduce N, -
P4 i

“norms” for convenience.
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Definition 19. For 1 <p<g<oo and n/q—n/p<—-s<0, we
define

. inf
Al =, in

[l (0,005dt/t)

—5y 4
Wl (54)

for measurable function f. The space N;;(R") is the set
given by

-

Npo(®") = {f € LR"): |[f][g2 <c0}.  (55)

Then, we include the following:

Lemma 20. Assume that the parameters P, 9 satisfy the con-
ditions in Definition 18. Then, one has N (R”) C N, (R),
with the inequality

. <
Il < 115 (56)

for f € N;I(R”).

Proof. If f=0, then the conclusion is clear. So, assume
otherwise. Let f € N;;(R”). Then, for any & > 0, there exists
¢ € L'(0,00:dt/t) satisfying [[$]| 11 (g comar) = 1 such that

¢ < e .
fllze <1 fllr + e (57)

Subsequently, from ||| 1 g o) = 1, we have

=l || o) 2L

1= e T

HfHN;y’ v
(58)
Then, trivially,
’ = (59
Wl |-

Thus, we obtain
1l < Wl < 171+ (60)
for any € > 0, which concludes the proof. O

It is unclear that the N;Z—“norms”
because they do not satisfy the quasitriangle inequality

If +9llx= <CUIfllg= + |gllg ). Meanwhile, we claim that
P4 Pq Pq

are quasinorms

the N}, -norms do satisfy the quasitriangle inequality. For

s>0, it is evident from Definition 17. Thus, we consider
the case where s<0. Let f,g€N,;(R"). Then, for any
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€,& >0, there exists ¢,,¢,€L'(0,00dt/t)
[ 112 (0,003dt1t) = 16,12 (O00sdtst) = 1> and we have

satisfying

0 dt

1= (Ifll, +21) | i0ri0 5

(61)
dt

7)

9691 = (gl +) | 900,69

for some (N5, ¢;)-atom f, and (N,;, ¢,)-atom g,. Note that

[0 Fill o 920 o <1 (62)

If we put (1) = (6, (1) + $,(1))/2, then 19y |1 0ot =
1, and we obtain

£+ 9(| <27 (1l + 9l +es) J:O%(” o
NCXOPPNE SO
(e e T
(63)

where we put &;=¢, +¢,. The triangle inequality in tent
spaces implies that

‘ RS <¢1<t> P0R )

2V \go(8)7" @o(8) 7 I
g 1 (1) g L $:(1)
<|| %0 ¢o(f)ft Tpfq+‘¢0(t) B 8ol T
(64)
Then, from (62), we obtain
1 ¢,(0) 1 ¢ (1)
¢ I/q_, . =S\l )¢
‘%() 214 $o(t)" g 2 (¢1(f)+¢2(t))1/qf T;
1
<_.
2
(65)
Similarly, we have
g 1 (1) 1
’%(t) " g0 ) “

Thus, the fanction ((¢,/99)(1)f, + (6:/90)(),)121 is
an (N3, ¢,)-atom so that we get

1/q'
IS + gz, <27 (I Iz, + gl +e5), (67)

for any &5 > 0. This shows that the norm ||*|| y- satisfies the
pq

quasitriangle inequality.

3. Main Theorems

In this section, we introduce our main theorems. The first
result is the duality theorem of N} -spaces. This derives

the duality theorem on Morrey spaces by combining with
Proposition 31 in Section 4.1 below.

Theorem 21. Let I < p< 00, I <q< 00, and 0 <s < n/q— n/p.
Then, one has (N;f’qy (R")" =N, (R") in the sense of
Definition 4.

(0) Let f €N 7 (R") and g € N;, (R"). Then,-g € L'(R")

(i) For g €N, (R"), set

Then, ¢, € (N;f’q,(R”)) and HEgH(N;

- <Cllg|

4

s .
NM

(ii) For any L€ (N;,Sq,(R”))*, there uniquely exists g €
N, (R") satisfying =28, and one has Hg||N;ng

Cllellns e
P

Letting p = co and combining Theorem 21 with Prop-
osition 31 in Section 4.1 below, we obtain the following
corollary:

Corollary 22. Let 1 < g < oo and 0<s < n/q. Then,
(N;fq ,(R")> = Ni,,(R") = M(R"). (69)

For homogeneous Triebel-Lizorkin spaces F;,q(R”) and
the bounded mean oscillation space BMO(R"), it is known
that the duality (F?)Z(R”)) =BMO(R") holds (see Sawano

[15] for their definitions and the precise statement of the
duality). Furthermore, it is generalized to the duality

(F;’q(R”))* = F;rs,q/ (R") (see Frazier and Jawerth [16]). For
Morrey spaces, Theorem 21 realizes the above generalization
of F;, 4(R"). There are several predual of Morrey spaces. The

block spaces described in Section 1.3 were first introduced
in [5]. Subsequently, other predual spaces were found (see
[6, 7]). The space NIZ,(R”) is the new one we found.

The second theorem concerns a complex interpolation
between Lebesgue spaces and Morrey spaces.

Theorem 23. Let 1<p,q<oco, 0<s<n/q, and 0<0<1.
Then,

[LP(R"), M;(R")] . N% (R"), (70)

where p,=p/(1-0) and 1/gy=(1-0)/p +6/q.



We must assume s < n/q — n/p in the definition of N} -

norms when s > 0. The above 0s, py, and g, satisfy the condi-
tion. In fact, from s < n/q, we have

gs< O _(1=0m  On =22 o
q p q p d9 Pe

Theorem 23 implies that N, -spaces with s>0 can be

characterized by complex interpolation spaces between some
Lebesgue space and some Morrey space.

4. Proofs

In this section, we prove some lemmas of Ny, .-spaces, and

after that, we prove the main theorems introduced in Section
3. We organize this section as follows: In Section 4.1, we
investigate some properties of N;,q—spaces. In Section 4.2,

we prove Theorem 21. In Section 4.3, we prove Theorem 23.

4.1. Properties. In this section, we prove some properties of
N, ,-spaces. At first, we prove that the space N, q(R”) gener-

alizes Lebesgue spaces and Morrey spaces. This relation is
similar to the fact that homogeneous Triebel-Lizorkin space

F;)q(R”) generalizes L7 (R") and BMO(R"). The coincidence

with Lebesgue spaces is the following. Here, we must keep in
mind that we defined [|*|[yo in two ways, which are Ny, -
pp k

norms for s >0 and for s <0. We will show that Lemma 24
below holds in both senses.

Lemma 24. For 1< p <00, we have LP(R")
the following equivalence holds:

— N0 n
=N,,(R"), and

fllg, ~ 11 (72)

for any f € L°(R").

Proof. Let f € L°(R"). First, for N, -norms for s> 0, (37)
implies that

19" f 0, = sup

[flle = sup
PP (181121 0.001dert)

i (0,003d1/1)

. <JR»«L $(0)1f () dtdx) (73)

=If1l,-

=1

Conversely, for N;)p-norms for s <0, Lemma 20 and (37)
imply that

fllng, < 11fllge, = N8l ~ 11, (74)

H¢HL (0c0sdtrt) =
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Meanwhile, if we assume f € Ng)p(R”) in the sense of Def-

inition 18, then for any £ > 0, there exists ¢ € L'(0,00;d¢/t)
satisfying |||l 1 o) = 1 and (ng, ¢)-atom f, such that

00 dt
1= (g, o) [ oneo . 09
Thus, by Hélder’s inequality for ¢, we have

I, o]

<c(Wlg, =) ([0 %) " 1osr,

<[l +e

171, (W lyg, +¢)

for any € > 0. It concludes the proof in both senses. O

The scale N}, (R") is monotone in 1< ¢ < 0o as Lemma
25 shows, which is similar to homogeneous Triebel-Lizorkin
spaces F;’q(R") for 1< g < co.

Lemma 25. For any 1<p<co, 1<q,<q,<00, and s€R,
one has N,,, (R") N, (R"), and
42 200

(77)

for any f €Ny, (R").

Proof. If suffices to show that ||f] Nt S C\|f||1\,;¢;2 for any

¢ € L'(0,00:dt/t) satistying |||, ooz = 1 it is easy to
show for p=oco0 using Holder’s inequality. So, we assume
that 1 < p < 0o. Setting 1/g, = 1/q, + 1/q; and using Holder’s
inequality twice, we learn

1/q,
0 dyd
Il = H ([ .L< RSO tﬁf)
00 d qI/qu /g,
(ol oo™
00 tdt 1/q, 00 (s . dydt 1/q,
(o) ([ ], reeomom 25

= Ol

<C

<C

28

from H(/)”Ll(o,oo;dl‘/f) =1 -
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The following is the Sobolev embedding in N7, ,-spaces:

Lemma 26. Let I <q <o00. For 1<p,,p,<00,and 0<s,<s,
(ors; <s,<0), if s+ nlp, = s, + nlp,, then one has N}, ,(R")
C Ny 4(R"), and

fllyz, < Cllflls (79)

for any f € N} ,(R").

Lemma 26 is a direct consequence of Lemma 14. We
omit its proof. Lemmas 24 and 26 imply that N, (R")

Li(R") for —s + n/p = n/q. The following lemma claims that
the converse embedding locally holds.

Lemma 27. Let 1<p<q<o00, nlgq—n/p<-s<0, and B=

B(xy,r) CR" be a ball. For feLi(R") with supp f CB,
one has

Ifll; <Crememayif, (50)
In particular, the following inequality holds:

I lle < e D (81)

for 0<s<n/q'.
Before proving Lemma 27, we prepare the definition and
some properties of Lorentz spaces.

Definition 28. Let 0< p < oo and 0 < g < co. For f € L°(R"),

we define the decreasing rearrangement function f* : [0,00)
— [0,00] of f as

fr(t)=inf {a € (0,00): dp(a) <t}, (82)
where d is the distribution function of f, given by

dy(o) = |{x €R": [f(x)] >a}|(@>0).  (83)

Here, inf@ stands for co. Let f € L°(R"). If 0 < g < oo,
then define

|ﬂw=<j(WfU)my7 (84)

If g = 00, then define

[l = sup tPfr (). (85)

We define the Lorentz space LP1(R") as the set of all func-
tions f € L°(R") for which || || 54 < 00.
We note some properties of Lorentz spaces.

Remark 29.

(i) Let 1<py,p,,p; <00 satisfy 1/p; =1/p, + 1/p, and

1 <g<o0o. Then, for f € [P+4(R") and g € i (R"
), we have

15l < 1 fllrrallGll o (86)

(i) For 0 < g < oo and f € L1(R"), we have
M () o < ClIS Nl (87)

where M, is the g-powered Hardy-Littlewood max-
imal operator (see Section 1.1).

(iii) For any 0<p<oo and ball B=B(x,r) CR", we
have

sl e ~ IBI"™ (88)

See, e.g., [4] for the above properties.
All preparations to prove Lemma 27 were given.

Proof of Lemma 30. For a fixed a > sq, let ¢(t) = cxy , (£)t*/
r%, where ¢>0 is a normalization parameter satisfying

181l (0,005d111) = 1 Since supp f € B(x,, ), for y€supp f,
we get [y —x,|<r. Fix x € R" and 0 <t <r with supp fn
B(x,t) + &. Then, for y € supp f N B(x,t), we have

|x = x| < |x=y| + |y — x| <t+7r<2r. (89)

Keeping in mind that in Remark 29, we have

1/q
00 s dydt
Il < Q’j rqwovuthJ
, 0 JB(xp) Li(R")
T %59 dydt
SC<JJ |ﬂ>wwﬂ>
0J B(x,t) I (B(x(,2))
< CHTﬁSMq(f) ||LP(B(x0,2r))
< Cr_SHMq (f) ||L‘1’OO XB(x0>2r) LPol
< Crsea £
(%0)
where 1/p=1/g+1/p,,. -

The following proposition shows that N}, ,-spaces gener-

alize Morrey spaces.
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Proposition 31. For 1<q<oo and 0<s<nl/q, one has

Ng, ,(R") = M (R") with the norm equivalence
1l o1)
Jor any f € My(R").
Proof. We can easily show that ||f||y. <|f|l,s for fe
0.9 q
M (R"):
||fHN;Oq = Ssup sup

1111 (0,005a116) =1 (3o7) €R"%(0,00)

(rr g dydt
(wl.. oo 22)

< sup sup (92)
191121 (0,00satimy =1 (1) ER"%(0,00)

N g it
<|B| JO J|xy<r ( )|f(y)| >
= MS

/q

Conversely, we assume f € N¢, . (R"). For B=B(xg, ) C

R”, we have

T —" j fgdx.  (93)
ol 1108
Then, Lemma 27 implies gy, € Lq’(R”) C N;Sq, (R") for

any geLq/(B). Moreover, for any € >0, there exists ¢ ¢
L'(0,00:dt/t)  satisfying  [|¢]|;1 (g ooy =1  such  that

169 gyl < lgxslly, +& Thus, Holders inequality
Lq' 4
and Lemmas 13 and 27 imply that

sup || foigods
Il =118
0 dxdt
= ap (] gt
Il =110 Jre
<C sup [l9f], [0 o,
191, = o (94)

<C s
<€, e Wy, (laxsls, +e)

<C swp [flly, (7 lgxslly +e)

llall
Nzo,f)’

14 )

— C(r—s+ nlq) ||f

we, IS
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for any €>0. Consequently, the arbitrariness of &>0
implies that

S_(n/q)”f“Lq(B) <Cllflle, - (95)

for any ball B=B(x,,r), and it concludes the proof. O

Lemma 25 shows that the N -spaces are vested. We
combine Lemmas 25 and 26 and Proposition 31.

Remark 32. Let 1 <g<p<oo and 0<s<n/q—n/p. Then,
N (R") € NP (R™) = M7 (R, (96)

Here, we used Lemma 26 and Proposition 31.
Furthermore, we obtain the following:

Remark 33. Let 1 <p<g< oo and n/q—n/p <—s<0. Then,

- 0
NS (R") CNO (R") c IPo(R"), (97)

where p,=(1/p—s/n)"' <q. Here, we used Lemmas 26

and 25.

4.2. Proof of Theorem 21. In this section, we prove

Theorem 21.

Proof of Theorem 34 (0), (i). Let fEN;,Sq,(R”) and ge
N;,,(R"). Then, for any & >0, there exists ¢ € L'(0,00;d1/t)
satisfying ||| ;1 o) = 1 and (N;fq,, ¢)-atom f, such that

If(x)IS(IfIINs,H)J ()t() - (98)

Thus, (40) implies that

|, reolateas
< (111, +e) [ otorcorgn =

sc(Wiy,, +¢)
P
< (1l +¢)la

for any € > 0. Thus, we have

(99)
1/q

I/q’
"1,

s
NPv‘i

glly,»  (100)

|, reollgtas=cifly
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and it concludes the proof of Theorem 34 (0). From (100),
we obtain

(101)

| fegax

o) i <Claly,,
b ) i

It shows Theorem 21 (i).
Proof of Theorem 34 (ii). We assume that £ is a bounded
linear functional of N ? (R"). Fix a ball B=B(x,, 7). If f is

supported on B(x,, r), then

flly, < @0 g

(102)

from Lemma 27. Hence, £ induces a bounded linear func-
tional on Lq,(B(xO,r)) and acts with g® € L1(B(x,,r)). By
taking B; = B(0, j) (j € N), we have g% =g%" on Bj, and thus
we obtain a unique function gon R” that is locally in LI(R"),
such that €(f) = [.f(x)g(x)dx when f € N_, ,(R”) is sup-

ported on some ball. We can extend ¢ as a global functional
over R” using the following lemma:

Lemma 35. Let 1<p<q<oo, and n/q—n/p<—-s<0. For
feN,;(R"), let f; :fXB; where B;=B(0,j) (j €N). Then,

lim

(103)

N’S

Proof. Because f € N,%(R"), for any &, > 0, there exists ¢ €
L' (0,00:dt/t) satisfying [|$]]1: oo =1 and an (N5, ¢)-
atom f, such that

< (1l + ) [ 80 x0T

(104)

15| = Fxn

From the dominated convergence theorem, for any ¢, > 0,
there exists N € N such that

e sxny],, <o (105)
for j>N. Thus, the function f,x g e/ is an (N7, ¢)-atom,
and we have

=5l = (Wl +er) - 100
for j > N. This concludes the proof. O

To prove Theorem 21 (ii), it suffices to prove ||g||: <
pq

CHBH(N;H,) N§,, < CHEH(N;,)*) which

«. At first, we prove

11

is the case when p =co. Let B=B(x,, r). From Lemma 27,
we have

1/q
(j |a@ww> -~ sup
B(xy,r) |hali

L1 (B)

< sup [|g]| ”fXB”N"
1l q" 5= (Nl,q')

jﬂ@w@w

B

(107)

,
14 (B

< Crmia)|g| ( )
N7,
Lq

for any x,€R" and r>0. Thus, we have ||g|\» <C
00.q

Hellov:s -
(ii) for the case when 1<p<oo. To prove |g|
ClIell -

by Proposition 31. Next, we prove Theorem 21

N, S
- for 1 < p < 00, we present the following lemma.

Lemma 36. Let 1< g<p<oo and niq' —nlp' <—s<0. For
¢ € L' (0.001dt1t) satisfying 9],1(poonn) = 1 define

T[;’¢(F)(x) — Joo(p(t)l/thF(x’ t)ﬂ (108)
0 t
Then,
A NP (109)

r'd
for Fe TZ,’q,(RTI).

Proof. From the definition of nil’d)(F) (x), we get

(09)

1
<1, [ 60

807 PP ) 2
(110)
Note that

1
F
=

o) EFx bl =1 (111)

HNW”

T;'S,q'

The function (1/||F|| 1,
Pq

¢)-atom, and we obtain

(1) ¢ F(x, £)] is an (N

o

p <||Fll g, - (112)
P

N;'s)q'
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We now prove that [|g|[y: < Cl[€[|y - for 1<p <oo.
P g

For any ¢ € L'(0,00:dt/t) satisfying |||, ey =1 bY
applying Lemma 13, (40), and Lemma 36, we have

©0 dxdt
Igllyse = |6 g|[ 0 ~ sup (1) g(x) F(x, t) ——
= M Flo =1lJo Jre t
P'sd'
N ECLAGIOE
I1Fle,_ 11w
PHq
< sup flef o)
. () 1P
P q

<C sup IIEH<,S)‘IIFHT0,,
Flo - =t (N v

, Lq'
P

=C||EH<N_5 )
1q'

(113)

Taking the supremum over ¢ € L'(0,00;dt/t) satisfying
181112 (0,001/6) = 1 We obtain the conclusion.

4.3. Proof of Theorem 23. In this section, we prove Theorem
23. Notice that L?(R")(1 < p<oo) and M;(R")(0<s<n/q)
are Banach function lattices, satisty the Fatou property,
and are 1-convex. Furthermore, L?(R")(1 < p<oo) is separa-
ble. Thus, thanks to (32), it suffices to demonstrate the
following:

Theorem 37. Let 1<p,q<oco, 0<s<n/q, and 0<0<1.
Then,

— NGS

p1(1-6).q,(R") (114)

(PR (w3 R0

where 1/gy = (1-0)/p +0iq.

Before proving Theorem 37, we check the consistency of
Theorem 37 for the critical cases s=0 and s =n/q.

Lemma 38. Let 1 <p < 00. Then,

£ llg, ~ 1o (115)

for any 1< q<p and f € L°(R").
Proof. From Lemmas 24 and 25, we have

£lls, < 11 (116)

for any g < p. Conversely, we set

sn+6

¢£(t) = trTé‘X[s,oo)(t)’ (117)

Journal of Function Spaces

for some fixed § > 0. We also set
(1 dt
Cl - 1 W?

Then, by Lebesgue differentiation theorem and ¢, =

||¢£||Ll (0,003/dt/t) we have

1 dt

d = — . 118
and ¢, J1 57 (118)

1/q
171, = f(y)lqdy>

. 1
liminf | —
e—0 en
I

1/q
o o 1 dydt
hmlnf( J ¢£(t)8—,,|f(y)|q > )
B(x.e)

e—0 0 t

J B(x.¢)

S

i
1/q
1 00 88 dydt
< ~lim inf < t 977"
Hlimip ( LM S Xiew (O] t)

0

%)
< = .
<21fly,
(119)
So, we are done. O

Letting s=0 in Theorem 37, we see that the property
MZ(R”) =L®(R") for any 1 < g < oo yields

(LP(R") (L2 (R")? = NG, g (RY).

; (120)

From Lemma 38, we have N, o (R") = P'-9(R"), and
it does not contradict Lemma 10. Furthermore, we have the
following.

Proposition 39. If s = n/q — n/p, one has

A1, ~ 171 (121)

for any f € L1(R").

Proof. From Proposition 31 and Lemma 26, we have

Il = [ lage ~ [1F vz, < ClLF ltcra-comn - (122)
Next, Lemmas 24 and 26 imply that

il <Cllf g =l (123)

O

Setting s = n/q in Theorem 37, we learn that M;‘/q (R") =
L1(R") implies that

(L (R) (LR = Ny (R, (124)
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From On/q=n/q,— (1-0)n/p and Proposition 39, we

obtain N' p%q)e) (R") =L%(R"), and it does not contradict

Lemma 10.

We now prove Theorem 37. First, we prove that
nyy1-6 nyy1-6
(L (R") (M5 (R")’ € N8, g, (R"). Let f e (LP(R"))’
ny\\0 . n
(M;(R"))". Then, for any &>0, there exists f; € L’(R")

and f, € M(R") such that |£(x)| < |f, (0)]'*|,()[’ and

[l (125)

M £ Hf”(LP)l’e(MSq)a te

It should be noted that || f? s, = Ilf
»q

From (42), for any ¢ € L' (0,00;d1/t) satisfying ||| 11 o, costrt)
=1, we have

(;5/9 for any 0 > 0.
6p.6q

H¢(t) quf(x) | ’ T;’;(If@))qa
< (o0 )|
I

1-0 0
<CIAI LIS,

sc(llfl(mW(M;)e ”)’

s
Tg/(lfe) 40

$(1)"1f, (x)°

70

0:
p/(1-6).,p/(1-6) Tof),qxs

(126)

for any € > 0. Thus, we obtain HfHNe < CIFN zpy-oage 0>
/(1-0).99 q
-6 0
which concludes the proof of (L? (R”))1 (M (R"))” €
Os n
Np/l -0,q9 (R )
Os n ny\1-60
Next, ; we must prove Ny, o (R")C(LP(R"))
(M (R"))".
a>0, where ¢>0 denotes the number that satisfies
1661112 (0,005a110) = 1- We assume that f € ij 1-0)4s (R"). Then,
we have ¢,(t)"%f(x) e ng<1 _0)q,(RY™). Thus, Lemma 15
implies that for any € >0, there exists functions F(x,t) €
Ty, (RY™) and G(x, 1) € Tg, , (RY™), such that

Let ¢o(t) = ctx,)(¢) for a sufficiently large

Go(1) % |f(x)] < [F(x 1) OIG(x )% (127)

IFIEIGH, , <[lo(® f (), +e (128)
From (127), we obtain

Bo(1)|f ()] < 8o (00| F(x, 1) )G (x, 1)°. (129)

13

Since |||l 12 (0,000 =1 and 1/gg=(1- 0)/p' +06iq’,
integrating both sides of the above inequality against the
measure dt/t and using Holder’s inequality, we obtain

00 / d
()] j 90 (1) F(x, 1)) Glx, ) &

t
([ oo ®) ([ o om0 @)

=, ()] Ifo(x)[°.
(130)

Using {11 (g,c0za1) = 1 @and Holder’s inequality again,

(o) (i)

we obtain

HlepS NHFHTS‘P’

p
(131)

where we used (37) in the last equality. Next, we estimate f,.
Using (41), we have

0 / dxdt
If2ll oy~ sup (1) |G(x, 1)] 9(X) Xb(xy.1)
(B(xo-1)) _ " t
I90,4" ey =110 /R
<C s Gl 600" GXae @] -
1904 ™ K T

(132)

for any x, € R". Using the argument in the proof of Lemma
27, we obtain

(133)

460" Xy )|, < UG 0

T
which implies that

12l a8y 1)) < CIG

T, (134)

for any x, € R". By combining (131), (134), and (128), we
obtain that for any & > 0, there exists functions f; € L*(R")

and f, € L, (R"), such that |f(x)| < |f, ()|’ f,(x)|" and

0
1-0 1-6/ /6
< F s
I (;glgn||fz||w3(xo,l>>> < CIFIEIGIE,.
1
SH‘poqef

+&

s
Tp/ 1-0).99

(135)
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for any f € Ngf(lfe), 0" (R"). Thus, we obtain

6
1-0
1f1l, (sup ||f2||L‘7(B(x0 )
xy€R"

To conclude, we investigate the dilation property.

< CY|f] e

pI(1- ﬂ)q

(136)

Lemma 40. Let 1<p<o00, I<q<00, and 0<s<nl/q—nlp.
Define f,(x) = f(x/r) for r> 0 and f € L°(R"). Then,

1 g, =72 f (137)

for any f €N, (R").
Proof. Let feN, (R") and ¢eL'(0,00idt/t) satisfying

181121 0,005a110) = 1- Cons1dering that ¢(r-) € L'(0,00:dt/t)
with ||¢(r

M1t (0,00ur) = 1 for any r >0, we have

N 1/
= (T o) 28)
. dydr\ "
LA =),

1/q
o dydt
= (7] el
0 JBxn t o
pls+(nip)) Hf”Nj;j’;(") .
(138)
i = pls+(

Thus, we obtain ||f,|| N, =7 0O
Now, all preparations to prove N% (1-6), qe(R”) C

(rr (R”))I_Q(MS (R"))e have been provided. From Lemma
40, we have feN P/le) (R") if and only if f, e

Ngj(l 000 (R") for any r>0. We fix an arbitrary r>0.

Then, from (136) and Lemma 40, we obtain

o 1 1/q
1L, {jﬂ}ff(r—nL< LY <y>lqdy> }

0
= 0| £ I, ( Sull{’n I1f2 |L‘J(B(x0,1))>

< Cr95+( (1-0)/p) HfHN

PI(1-6).q9
=lfellye,

0

(139)
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Note that

<| (), (), @)
(140)

F@) < 1fi@)1LEF & If,x)]

>

for any r > 0. By replacing f, = g for any g € N P/ (1-0).05 (R"),
there exist meaurable functions g,, g, such that

19()| <19, (%) |9, ()"

1/q
} (1
|mm9swr—4 19,001 dy
x0eR*  \T" JB(xy.r)

<Cllglhys,

0
(141)

Because r > 0 is arbitrary, we have the conclusion.

5. An Application of Complex
Interpolation Spaces

As basic properties of function spaces, we will prove the
boundedness of Calderén-Zygmund operators. Calderén-
Zygmund operators are defined by the following:

For a bounded linear operator T : L*(R") —> L*(R"), we
say that T is a Calderén-Zygmund operator if there exists a
kernel k(x, y), and it satisfies the following conditions:

(i) Tf(x) = [gok(x y)f (v) dy for x ¢ suppf
(i) |k(x,y)| < C(1/|x—y|") for any x,y € R"

(iii) |k(x,y) —k(z, p)| + [k(y, x) = k(y, 2)| < C(|z - y|/
lx — y|"*") whenever |z - y| < (1/2)|x - y|

In fact, these operators are bounded on Lebesgue spaces
IP(R") (1<p<oo) (see Stein [17]) and Morrey spaces
M;(R") (1<q<o00, 0<s<n/q) (see F. Chiarenza and M.
Frasca [18]). Using Theorem 37, we obtain the bounded-
ness in Ny, -spaces.

Theorem 41. For 1 <p <00, 1<g<00,and0<s<n/q—nlp,
any Calderén-Zygmund operator T are bounded on N, ,(R").

Proof. For the case where s =0, it immediately follows by the
boundedness of T in Lebesgue spaces and Lemma 38. Fur-
thermore, for the case where p = co, we use the boundedness
in Morrey spaces and Proposition 31. We prove the other
cases. Combining Lemma 8 with Theorem 23 and the
boundedness of T in LP(R") and M;(R"), we see

0
I Tllyes 0 —nee < ClITHuHLPHTllM;HM;’ (142)

p/(1-6).q9 PI(1-6).q99

for any 0<0<1, 1<p,g<o00, and 0<s<n/q. Thus, we
obtain ||T||ys _ N <00 for any 1 <p<o0, 1 <g< 00, and
P4 Pq

0<s<nlq-nlp. O



Journal of Function Spaces

Data Availability

Data is not applicable in this manuscript. I introduce some
previous researches I referred. A. Amenta, Tent spaces
over metric measure spaces under doubling and related
assumptions, Operator Theory in Harmonic and Non-
commutative Analysis Vol. 240 (2014), 1-29. Y. Huang,
Weighted tent spaces with Whitney averages: factorizations,
interpolation, and duality, Math. Zeitschrift\textbf {24}
(2016), 913-933. R. R. Coifman, Y. Meyer, E. M. Stein, Some
new function spaces and their applications to harmonic anal-
ysis, J. Funct. Anal. Vol. 62 No. 2 (1985), 304-335.

Conflicts of Interest

The author declares no conflicts of interest.

Acknowledgments

This study was supported by the Japan Society of Promotion
of Science (202020606).

References

[1] C.B. Morrey Jr., “On the solutions of quasi-linear elliptic par-
tial differential equations,” Transactions of the American
Mathematical Society, vol. 43, no. 1, pp. 126-166, 1938.

[2] R.R. Coifman, Y. Meyer, and E. M. Stein, “Some new function
spaces and their applications to harmonic analysis,” Journal of
Functional Analysis, vol. 62, no. 2, pp. 304-335, 1985.

[3] H. Triebel, Theory of Function Spaces, Birkhéuser, Basel, 1983.

[4] L. Grafakos, Classical Fourier Analysis, vol. 2, Springer, New
York, 2009.

[5] R. L. Long, “The spaces generated by blocks, science in China
series A-mathematics, physics, astronomy and technological,”
Science, vol. 27, no. 1, pp. 16-26, 1984.

[6] D. R. Adams and J. Xiao, “Nonlinear potential analysis on
Morrey spaces and their capacities,” Indiana University Math-
ematics Journal, vol. 53, no. 6, pp. 1631-1666, 2004.

[7] A. Gogatishvili and R. C. Mustafayev, “New pre-dual space of
Morrey space,” Journal of Mathematical Analysis and Applica-
tions, vol. 397, no. 2, pp. 678-692, 2013.

[8] J. Bergh and ]. Lofstrom, Interpolation Spaces, Springere
Verlag, Newe, 1976.

[9] N. Kalton and M. Mitrea, “Stability results on interpolation
scales of quasi-Banach spaces and applications,” Transactions
of the American Mathematical Society, vol. 350, no. 10,
pp. 3903-3922, 1998.

[10] D.I. Hakim and Y. Sawano, “Calderon’s first and second com-
plex interpolations of closed subspaces of Morrey spaces,”
Journal of Fourier Analysis and Applications, vol. 23, no. 5,
pp. 1195-1226, 2017.

[11] G.David and J. L. Journé, “A boundedness criterion for gener-
alized Calder6n-Zygmund operators,” The Annals of Mathe-
matics, vol. 120, no. 2, pp- 371-397, 1984.

[12] H.Kochand D. Tataru, “Well-posedness for the Navier-Stokes
equations,” Advances in Mathematics, vol. 157, no. 1, pp. 22—
35, 2001.

[13] Y. Huang, “Weighted tent spaces with Whitney averages:
factorization, interpolation and duality,” Mathematische
Zeitschrift, vol. 282, no. 3-4, pp. 913-933, 2016.

15

[14] A. Amenta, “Interpolation and embeddings of weighted tent
spaces,” Journal of Fourier Analysis and Applications, vol. 24,
no. 1, pp. 108-140, 2018.

[15] Y. Sawano, Theory of Besov Spaces, Springer, Singapore, 2018.

[16] M. Frazier and B. Jawerth, “A discrete transform and decom-
positions of distribution spaces,” Journal of Functional Analy-
sis, vol. 93, no. 1, pp. 34-170, 1990.

[17] E. M. Stein, “Harmonic analysis: real-variable methods,
orthogonality, and oscillatory integrals,” Princeton University
Press, Princeton, NJ, 1993.

[18] F. Chiarenza and M. Frasca, “Morrey spaces and Hardy-
Littlewood maximal function,” Rendiconti del Seminario
Matematico della Universita di Padova, vol. 7, no. 3, pp. 273~
279, 1987.



	Tent Space Approach of Morrey Spaces and Their Application to Duality and Complex Interpolation
	1. Introduction
	1.1. Notations
	1.2. Lebesgue Spaces and Morrey Spaces
	1.3. Dual Spaces
	1.4. Complex Interpolation Spaces

	2. Tent Spaces and New Spaces
	2.1. Tent Spaces
	2.2. The Definition of Np,qs-Spaces

	3. Main Theorems
	4. Proofs
	4.1. Properties
	4.2. Proof of Theorem 21
	4.3. Proof of Theorem 23

	5. An Application of Complex Interpolation Spaces
	Data Availability
	Conflicts of Interest
	Acknowledgments



