
Research Article
A Two-Point Boundary Value Problem with Reflection of
the Argument

Nai-Sher Yeh

Department of Mathematics, Fu-Jen Catholic University, Taiwan

Correspondence should be addressed to Nai-Sher Yeh; 038300@mail.fju.edu.tw

Received 19 August 2023; Revised 1 October 2023; Accepted 6 October 2023; Published 28 November 2023

Academic Editor: Richard I. Avery

Copyright © 2023 Nai-Sher Yeh. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider the following two-point boundary value problems u″ x + u π − x + g x, u π − x = h x in 0, π , u 0 = 0 = u π ,
and u″ x + u π − x − g x, u π − x = −h x in 0, π , u 0 = 0 = u π , by setting h ∈ L1 0, π and g 0, π × R⟶ R being a
Caratheodory function. When a, b ∈ L1 0, π , a x ≤ 3 for x ∈ 0, π a.e. with strict inequality on a positive measurable subset of
0, π , and g x, u ≤ a x u + b x for x ∈ 0, π a.e. as well as sufficiently large u , several existence theorems will be
obtained, with or without a sign condition.

1. Introduction

Let us study the existence of solutions of the two-point
boundary value problems with reflection of the argument:

u″ x + u π − x + g x, u π − x = h x in 0, π ,
u 0 = 0 = u π ,

1

u″ x + u π − x − g x, u π − x = −h x in 0, π ,
u 0 = 0 = u π ,

2

by setting h ∈ L1 0, π and g 0, π × R⟶ R being a Car-
atheodory function. That means

(i) g x, u is continuous in u ∈ R for x ∈ 0, π a.e.,

(ii) g x, u is measurable in x ∈ 0, π for all u ∈ R, and
(iii) for each r > 0, there exists an ar ∈ L1 0, π such that

g x, u ≤ ar x , 3

for x ∈ 0, π a.e. and for all u ≤ r. Concerning the nonlin-
ear growth of g, let us make an assumption H :

(H) There exists a constant r0 > 0, for a, b, c, d ∈ L1
0, π , a, b ≥ 0 and a x ≤ 3 for x ∈ 0, π a.e. with strict
inequality on a positive measurable subset of 0, π , such that

(i) for x ∈ 0, π a.e. and for all u ≥ r0

c x ≤ g x, u ≤ a x u + b x , 4

as well as

(ii) for x ∈ 0, π a.e. and for all u ≤ −r0

−a x u − b x ≤ g x, u ≤ d x 5

both hold.
On the other hand, either with or without a Landesman-

Lazer condition (see (15) below), solvability of the resonance
problem

u″ x + u x + g x, u x = h x in 0, π , u 0 = 0 = u π
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has been extensively studied under the condition that the
nonlinearity of g x, u is assumed to have either the
following:

(i) linear growth in u as u ⟶∞ (see [1–11])

(ii) superlinear growth in u in one of the directions u
⟶∞ or u⟶ −∞, as well as may be bounded
in the opposite direction (see [12, 13])

Similar study on (1) in addition to a new order term
under a different assumption has been done by [14]. The
research on (2) has been first studied by [15] when g x, u
is bounded, while [16] focused on the nonresonance case
by allowing g x, u to grow linearly in u as u ⟶∞. How-
ever, research on the boundary value problems (1) and (2)
has been studied but not thoroughly enough.

The purpose of this paper is to establish solvability theo-
rems for (1) and (2) when H is satisfied. Based on the well-
known Leray-Schauder continuation method (see [17, 18])
some new solvability results will be obtained, with or with-
out a sign condition (that is c = 0 = d in H with r0 = 0,
and π

0h x sin xdx = 0).
We shall make use of real Banach spaces Lp 0, π , C 0, π ,

C1 0, π , as well as Sobolev spacesW2,1 0, π and H1 0, π in
the following procedure. The norms of Lp 0, π , C 0, π , C1

0, π , and H1 0, π are denoted by u Lp , u C , u C1 , and
u H1 , respectively. By saying “a solution of (1),” we mean
that u ∈W2,1 0, π with u 0 = 0 = u π and satisfies the dif-
ferential equation in (1), x ∈ 0, π a.e.

2. Existence Theorems

For each v ∈W2,1 0, π with v 0 = 0 = v π , we write v x =
2/π π

0v x sin tdt sin x and v = v − v. To obtain the main
results of this paper with reflection of the argument, we need
to deduce the following two lemmas which are extensions of
[7], Lemma 1.

Lemma 1. Let a be a nonnegative L1 0, π -function such that
for x ∈ 0, π a.e., a x ≤ 3 with strict inequality on a positive
measurable subset of 0, π . Then, there exists a constant
K1 > 0 such that

π

0
u x − u x u″ x + u π − x + p x u π − x dx

≥ K1 u 2
H1 ,

7

whenever p ∈ L1 0, π with 0 ≤ p x ≤ a x for x ∈ 0, π a.
e., and u ∈W2,1 0, π with u 0 = 0 = u π .

Proof. Just as in the proof in [7], Lemma 1, there exists a
constant K1 > 0 such that

π

0
u′ x

2
− 1 + p x u x 2dx ≥ K1 u 2

H1 , 8

whenever p ∈ L1 0, π with 0 ≤ p x ≤ a x for x ∈ 0, π a.e.
and u ∈W2,1 0, π with u 0 = 0 = u π . Since u π − x =
u x and u″ x = −u x , we have

π

0
u x − u x u π − x dx =

π

0
u x − u x u π − x + u π − x dx

=
π

0
u x u π − x dx −

π

0
u x u π − x dx

=
π

0
u x 2dx −

π

0
u x u π − x dx,

π

0
u x − u x u″ x dx =

π

0
u x − u x −u x + u″ x dx

= −
π

0
u x 2dx −

π

0
u x u″ x dx

= −
π

0
u x 2dx +

π

0
u′ x

2
dx,

9

therefore

π

0
u x − u x u″ x + u π − x dx

=
π

0
u′ x

2
− u x u π − x dx

10

Furthermore, since π
0 u π − x 2dx = π

0 u x 2dx and
π
0 u′ π − x

2
dx = π

0 u′ x 2
dx, we have π

0 u′ x 2 −
u x 2dx = π

0 u′ π − x
2 − u π − x 2dx, and

π

0
u x − u x u″ x + u π − x + p x u π − x dx

=
π

0
u′ x

2
− u x u π − x dx

+
π

0
u x − u x p x u π − x dx

≥
π

0
u′ x

2
−
1
2 u x 2 + u π − x 2 dx

+
π

0
u x − u x p x u π − x dx

=
π

0
u′ x

2
−
1
2 u x 2 + u π − x 2 dx

+
π

0
u x − u x p x u π − x dx

=
π

0
u′ x

2
−
1
2 u x 2 + u π − x 2 dx

−
1
2

π

0
p x u x 2 + u π − x 2 dx

+ 1
2

π

0
p x u π − x − u x 2 + u x 2 dx

≥ K1 u 2
H1

11
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Just as in the proof of Lemma 1, we can apply the
equality

π

0
u x − u x u″ x + u x dx

=
π

0
u′ x

2
dx −

π

0
u x 2dx

=
π

0
u′ x

2
dx −

1
2

π

0
u x 2 + u π − x 2 dx

12

to obtain the next lemma when u π − x is replaced by
u x

Lemma 2. Let a be a nonnegative L1 0, π -function such that
for x ∈ 0, π a.e., a x ≤ 3 with strict inequality on a positive
measurable subset of 0, π . Then, there exists a constant
K1 > 0 such that

π

0
− u x u″ x + u π − x − p x u π − x dx ≥ K1 u 2

H1 ,

13

whenever p ∈ L1 0, π with 0 ≤ p x ≤ a x for x ∈ 0, π a.
e., and u ∈W2,1 0, π with u 0 = 0 = u π .

Proof.

π

0
− u x u″ x + u π − x − p x u π − x dx

=
π

0
u′ x

2
− u x u π − x + p x u π − x u x dx

≥
π

0
u′ x

2
dx −

1
2

π

0
u x 2 + u π − x 2 dx

−
1
2

π

0
p x u x 2 + u π − x 2 dx

+ 1
2

π

0
p x u π − x + u x 2 + u x 2 dx

≥ K1 u 2
H1 ,

14

for some constant K1 > 0 independent of p ∈ L1 0, π with
0 ≤ p x ≤ a x for x ∈ 0, π a.e., and u ∈W2,1 0, π with
u 0 = 0 = u π .

Theorem 3. Let g 0, π × R⟶ R be a Caratheodory func-
tion satisfying H . Then for each h ∈ L1 0, π , the problem
(1) has a solution u, provided that

π

0
g− x sin xdx <

π

0
h x sin xdx <

π

0
g+ x sin xdx

15

holds, where g+ x = liminfu⟶∞g x, u and g− x =
limsupu⟶−∞g x, u .

Proof. Given a fixed α ∈ R, 0 < α < 3 Consider the boundary
value problems

u″ x + u π − x + 1 − t αu π − x + tg x, u π − x = th x in 0, π ,
u 0 = 0 = u π ,

16

for 0 ≤ t ≤ 1, which becomes the original problem when t = 1.
Since 0 < α < 3, (16) has only a trivial solution when t = 0 by
Lemma 1. To apply the Leray-Schauder continuation method,
it suffices to show first that solutions to (16) for 0 < t < 1 have
a priori bound in H1 0, π . To this end, let θ R⟶ R be a
continuous function such that 0 ≤ θ ≤ 1, θ u = 0 for u ≤ r0,
and θ u = 1 for u ≥ 2r0. Define e x =max ar0 x , b x , c
x , d x ,

g1 x, u =
min g x, u + e x , a x u θ u , if u ≥ 0,
max g x, u − e x , a x u θ u , if u ≤ 0,

17

and g2 x, u = g x, u − g1 x, u . Then, g1, g2 0, π × R
⟶ R are Caratheodory functions, such that for x ∈ 0, π a.
e. and u ∈ R, u ≠ 0,

0 ≤ g1 x, u
u

≤ a x , 18

and for x ∈ 0, π a.e. and u ∈ R

g2 x, u ≤ e x 19

If u is a possible solution to (16) for some 0 < t < 1, then by
using (18), (19), and Lemma 1, we have

0 =
π

0
u x − u x u″ x + u π − x

+ 1 − t αu π − x + tg x, u π − x − th x dx

≥ K1 u 2
H1 − e L1 + h L1 u + u C

≥ K1 u 2
H1 − C1 u + u H1 ,

20

which implies that

u 2
H1 ≤

C1
K1

u + u H1 , 21

for some constant C1 > 0 independent of u. It remains to show
that solutions of (16) for 0 < t < 1 have an a priori bound in
H1 0, π . We will show this by contradiction. Suppose that
there exists a sequence un and a corresponding sequence
tn in 0, 1 such that un is a solution of (16) with t = tn and
un H1 ≥ n for all n. Let vn = un/ un H1 , then vn H1 = 1 for

all n ∈N, and by (21), we have vn H1 ⟶ 0 as n⟶∞.
Since vn H1 = 1 and vn H1 ≤ vn H1 + vn H1 for all n ∈N,
wemay assume without loss of generality that vn converges
to v inH1 0, π with v x = β sin x for some β ≠ 0, and v″n
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is pointwise bounded by an L1 0, π -function independent of
n ∈N . In particular, vn′ converges uniformly on 0, π ,
which implies that vn converges to v in C1 0, π . Now, let
us consider only the case β > 0, for the case β < 0 can be
treated similarly. Using the elementary inequality

w x
sin x

≤
π

2 w′
C
, 22

for all x ∈ 0, π as well as w ∈ C1 0, π with w 0 = 0 =w π ,
and the fact that vn converges to 0 uniformly on 0, π ,
we have vn x ≥ β/2 sin x on 0, π for sufficiently large n.
Multiplying each side of (16) by sin x, and integrating them
over 0, π when u = un and t = tn, we find

tn
π

0
g x, un π − x sin xdx

< 1 − tn α
π

0
un π − x sin xdx

+ tn
π

0
g x, un π − x sin xdx = tn

π

0
h x sin xdx,

23

for sufficiently large n. It follows from (3) and H that
g x, un π − x is bounded below by a function in L1 0, π
independent of n ∈N . By applying Fatou’s lemma to the
inequality π

0g x, un π − x sin xdx ≤ π
0h x sin xdx, we

find π
0g+ x sin xdx ≤ π

0h x sin xdx, which contradicts the
second inequality in (15). Therefore, the theorem is proven.

Theorem 4. Let g 0, π × R⟶ R be a Caratheodory func-
tion satisfying H with g x, u u ≥ 0 for x ∈ 0, π a.e. and for
all u ∈ R. Then for each h ∈ L1 0, π , the problem (1) has a
solution u, provided that π

0 h x sin xdx = 0.
By modifying the proof of Theorem 3 slightly, we obtain

the next solvability theorem, where the nonlinearity of g sat-
isfies the following condition:

(F) There exist constants r0
~ ≥ 0, 0 ≤ γ, δ ≤ 1 and c~ , d~

∈ L1 0, π such that for x ∈ 0, π a.e. and for all u ≥ r0
~

g x, u u ≥ c
~
x u 1−γ 24

Also for x ∈ 0, π a.e. and for all u ≤ − r0
~

g x, u u ≥ d
~
x u 1−δ 25

At the same time, condition (15) may be replaced by the
inequality:

π

0
gδ− x sin1−δxdx <

π

0
h x sin xdx = 0 <

π

0
gγ
+ x sin1−γxdx,

26

where gδ− x = limsupu⟶−∞g x, u u δ and gγ
+ x =

liminfu⟶∞g x, u u γ

Theorem 5. Let g 0, π × R⟶ R be a Caratheodory func-
tion satisfying F and H . Then for each h ∈ L1 0, π , prob-
lem (1) has a solution u, provided that (26) holds.

Proof. In the process of showing Theorem 3, (15) is used
only to see the contradiction in the end. Thus, we may follow
exactly the same process as in the proof of Theorem 3, to the
point where β > 0 on 0, π is considered and (23) holds. By
F and (22), we find that

g x, un π − x un
γ
H1 = g x, un π − x un π − x γ vn π − x −γ

≥ − c
~
x vn π − x −γ

≥ − c
~
x

β

2 sin π − x
−γ

= − c
~
x

β

2 sin x
−γ

,

27

for x ∈ 0, π a.e. with un π − x ≥ r0
~ and for all n ≥ n0 By

(3) and (22), we also have

g x, un π − x un
γ
H1 = g x, un π − x un π − x γ vn π − x −γ

≥ − a
r0
~ x r0

~ γ
vn π − x −γ

≥ − a
r0
~ x r0

~ γ β

2 sin π − x
−γ

= − a
r0
~ x r0

~ γ β

2 sin x
−γ

,

28

for x ∈ 0, π a.e. with un π − x ≤ r0
~ and for all n ≥ n0.

Combining (27) and (28), we find that g x, un π − x
un

γ
H1 sin x is bounded below by a function in L1 0, π

independent of n ≥ n0. By applying Fatou’s lemma to the left
hand side of the following inequality

un
γ
H1

π

0
g x, un π − x sin xdx < un

γ
H1

π

0
h x sin xdx = 0,

29

we find

β−γ
π

0
gγ
+ x sin1−γxdx ≤ 0, 30

or equivalently

π

0
gγ
+ x sin1−γxdx ≤ 0, 31
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which contradicts the second inequality in (26). Thus, we
have proven the theorem.

Again, by modifying the proofs of Theorem 3, Theorem
4, and Theorem 5 slightly, we may use Lemma 2 to obtain
the following solvability results for (2).

Theorem 6. Let g 0, π × R⟶ R be a Caratheodory func-
tion satisfying H . Then for each h ∈ L1 0, π , the problem
(2) has a solution u, provided that (15) holds.

Theorem 7. Let g 0, π × R⟶ R be a Caratheodory func-
tion satisfying H with g x, u u ≥ 0 for x ∈ 0, π a.e. and for
all u ∈ R. Then for each h ∈ L1 0, π , the problem (2) has a
solution u, provided that π

0 h x sin xdx = 0.

Theorem 8. Let g 0, π × R⟶ R be a Caratheodory func-
tion satisfying F and H . Then for each h ∈ L1 0, π , the
problem (2) has a solution u, provided that (26) holds.

Remark 9. The conclusions of Theorem 5 and Theorem 8
both remain true if ar , c~ , d~ ∈ L∞ 0, π , but to use the
condition 0 ≤ γ, δ < 2 instead of 0 ≤ γ, δ ≤ 1 in F .

Also by applying Lemma 2, the next result may be
obtained when u π − x is replaced by u x .

Remark 10. Our results remain valid when problems (1) and
(2) are replaced by

u″ x + u x + g x, u π − x = h x in 0, π , u 0 = 0 = u π ,
u″ x + u x − g x, u π − x = −h x in 0, π , u 0 = 0 = u π ,

32

respectively.
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